搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Na原子修饰的Bn(n=3-10)团簇的储氢性能

荔海玲 郑小平 祁鹏堂 张娟

引用本文:
Citation:

Na原子修饰的Bn(n=3-10)团簇的储氢性能

荔海玲, 郑小平, 祁鹏堂, 张娟

The hydrogen storage properties of Na-decorated Bn(n=3-10) clusters

Li Hailing, Zheng Xiaoping, Qi Pengtang, Zhang Juan
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 采用密度泛函理论方法研究了Na原子修饰的Bn (n=3-10)团簇的储氢性能.结果表明,两个Na原子能够与Bn团簇稳定地结合形成BnNa2(n=3-10)复合体.Na原子修饰的Bn团簇最多可以吸附10个氢分子,平均吸附能处在0.063-0.095 eV/H2范围内,最大储氢密度介于11.57-20.45 wt%之间.分子动力学模拟表明,温度越高,氢分子的脱附速率越大,脱附量也越大,在常温条件下,BnNa2 (n=3-8)团簇能够在短时间内(小于262 fs)实现完全脱氢,因此,Na原子修饰的Bn团簇是一类极具潜力的储氢材料.
    Hydrogen is widely considered as an ideal alternative energy resource because of its high efficiency, abundance, nonpollution, and renewable nature. One of the main challenges is finding efficient materials that can store hydrogen safely with rapid kinetics, favorable thermodynamics, and high hydrogen density under ambient conditions. The nanomaterial is one of the most promising hydrogen storage materials because of its high surface to volume rate, unique electronic structure and novel chemical and physical properties. In this study, the hydrogen storage properties of Na-decorated Bn(n=3 - 10) clusters are investigated using dispersion-corrected density functional theory and atomic density matrix propagation (ADMP) simulations. The results demonstrate that Na atoms can stably bind to Bn clusters, forming BnNa2 complexes. The average binding energies of Na atoms on the host clusters (1.876-2.967 eV) are significantly higher than the cohesive energy of bulk Na (1.113 eV), effectively preventing aggregation of Na atoms on the cluster surface. Furthermore, when Na atoms bind to Bn (n=3 - 10) clusters, electrons transfer from Na to B atoms, resulting in positively charged Na atoms. Hydrogen molecules are moderately polarized under the electric field and adsorbed around Na atoms through electrostatic interactions. The H-H bonds are slightly stretched but do not break. The Na-decorated Bn clusters can adsorb up to 10 hydrogen molecules with average adsorption energies of 0.063-0.095 eV/H₂ and maximum hydrogen storage densities reaching 11.57-20.45 wt%. Almost no structural change is observed in the host clusters after hydrogen adsorption. Molecular dynamics simulations reveal that the desorption rate of hydrogen molecules increases with temperature. At ambient temperature (300 K), BnNa2 (n=3-8) clusters achieve complete dehydrogenation within 262 fs, while B9Na2 and B10Na2 clusters exhibit a dehydrogenation rate of 90% within 1000 fs. The Na-decorated Bn(n=3-10) clusters not only exhibit excellent properties of hydrogen storage but also enable efficient dehydrogenation at ambient temperature. Thus, BnNa2 (n=3-10) clusters can be regarded as highly promising candidates for hydrogen storage.
  • [1]

    Shindell D T, Lee Y, Faluvegi G 2016 Nat. Clim. Change 6 503

    [2]

    Ceran B, Mielcarek A, Hassan Q, Teneta J, Jaszczur M 2021 Appl. Energy 297 117161

    [3]

    Wróbel K, Wróbel J, Tokarz W, Lach J, Podsadni K, Czerwiński A 2022 Energies 15 8937

    [4]

    Okolie J A, Patra B R, Mukherjee A, Nanda S, Dalai A K, Kozinski J A 2021 Int. J. Hydrogen Energy 46 8885

    [5]

    Ousaleh H A, Mehmood S, Baba Y F, Bürger I, Linder M, Faik A 2024 Int. J. Hydrogen Energy 52 1182

    [6]

    U. S. Department of Energy, Hydrogen and Fuel Cell Technologies Office

    [7]

    Liu X Y, He J, Yu J X, Li Z X, Fan Z Q 2014 Chinese Phys. B 23 067303

    [8]

    Mohan M, Sharma V K, Kumar E A, Gayathri V, J E S 2019 Energy Storage 1 e35

    [9]

    Kumar A, Vyas N, Ojha A K 2020 Int. J. Hydrogen Energy 45 12961

    [10]

    Tang C, Wang Z, Zhang X, Wen N 2016 Chem. Phys. Lett. 661 161

    [11]

    Durgun E, Ciraci S, Zhou W, Yildirim T 2006 Phys. Rev. Lett. 97 226102

    [12]

    Duraisamy P D, S P M P, Gopalan P, Angamuthu A 2024 Struct. Chem. 35 681

    [13]

    Aal S A, Alfuhaidi A K 2021 Vacuum 183 109838

    [14]

    Ma L, Wang L, Sun Y, Ma L, Zhang J 2021 Physica E 128 114588

    [15]

    Banerjee P, Pathak B, Ahuja R, Das G P 2016 Int. J. Hydrogen Energy 41 14437

    [16]

    Satawara A M, Shaikh G A, Gupta S K, Gajjar P N 2024 Int. J. Hydrogen Energy 87 1461

    [17]

    Muthu R N, Rajashabala S, Kannan R 2016 Renew. Energ. 85 387

    [18]

    Lu Q L, Huang S G, De Li Y, Wan J G, Luo Q Q 2015 Int. J. Hydrogen Energy 40 13022

    [19]

    Tang C, Zhang X 2016 Int. J. Hydrogen Energy 41 16992

    [20]

    Kumar A, Ojha S K, Vyas N, Ojha A K 2022 Int. J. Hydrogen Energy 47 7861

    [21]

    Li H R, Zhang C, Ren W B, Wang Y J, Han T 2023 Int. J. Hydrogen Energy 48 25821

    [22]

    Olalde-López D, Rodríguez-Kessler P L, Rodríguez-Carrera S, Muñoz-Castro A 2024 Int. J. Hydrogen Energy 107 419

    [23]

    Si L, Tang C 2017 Int. J. Hydrogen Energy 42 16611

    [24]

    Ruan W, Wu D L, Xie A D, Yu X G 2011 Chin. Phys. B. 20 043104

    [25]

    Zhang Y, Cheng X 2019 Physica E 107 170

    [26]

    Becke A D 1992 J. Chem. Phys. 96 2155

    [27]

    Lee C, Yang W, Parr R G 1988 Phys. Rev. B 37 785

    [28]

    Miehlich B, Savin A, Stoll H, Preuss H 1989 Chem. Phys. Lett. 157 200

    [29]

    Ruan W, Wu D L, Luo W L, Yu X G, Xie A D 2013 Chinese Phys. B 23 023102

    [30]

    Lu T, Chen F 2012 J. Comput. Chem. 33 580

    [31]

    Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Scalmani G, Barone V, Petersson G A, Nakatsuji H, Li X 2016 Gaussian 16 Rev. C.01. Wallingford, CT

    [32]

    Atış M, Özdoğan C, Güvenç Z B 2007 Int. J. Quantum Chem. 107 729

    [33]

    Ye X J, Teng Z W, Yang X L, Liu C S 2018 J. Saudi Chem. Soc. 22 84

    [34]

    Li Y Y, Hu Y F, Lai Q, Yuan Y Q, Huang T X, Li Q Y, Huang H B 2023 Mol. Phys. 121 e2166881

    [35]

    Ray S S, Sahoo S R, Sahu S 2019 Int. J. Hydrogen Energy 44 6019

  • [1] 董肖. P掺杂LiNH2团簇与LiH反应机理的密度泛函理论研究及一种新储放氢机制. 物理学报, doi: 10.7498/aps.72.20230374
    [2] 张陈俊, 王养丽, 陈朝康. InCn+(n=110)团簇的密度泛函理论研究. 物理学报, doi: 10.7498/aps.67.20172662
    [3] 姜平国, 汪正兵, 闫永播, 刘文杰. W20O58(010)表面氢吸附机理的第一性原理研究. 物理学报, doi: 10.7498/aps.66.246801
    [4] 姜平国, 汪正兵, 闫永播. 三氧化钨表面氢吸附机理的第一性原理研究. 物理学报, doi: 10.7498/aps.66.086801
    [5] 祁鹏堂, 陈宏善. Li修饰的C24团簇的储氢性能. 物理学报, doi: 10.7498/aps.64.238102
    [6] 唐春梅, 王成杰, 高凤志, 张轶杰, 徐燕, 巩江峰. 碳硼富勒烯衍生物C18B2M(M=Li, Ti, Fe)的储氢性能计算研究. 物理学报, doi: 10.7498/aps.64.096103
    [7] 温俊青, 张建民, 姚攀, 周红, 王俊斐. PdnAl(n=18)二元团簇的密度泛函理论研究. 物理学报, doi: 10.7498/aps.63.113101
    [8] 温俊青, 夏涛, 王俊斐. PtnAl (n=18)小团簇的密度泛函理论研究. 物理学报, doi: 10.7498/aps.63.023103
    [9] 卢其亮, 黄守国, 李宜德. Mg原子修饰的封闭型六硼烷B6H62-储氢性质的研究. 物理学报, doi: 10.7498/aps.62.213601
    [10] 阮文, 罗文浪, 余晓光, 谢安东, 伍冬兰. 锂原子修饰B6团簇的储氢性能研究. 物理学报, doi: 10.7498/aps.62.053103
    [11] 张蓓, 保安, 陈楚, 张军. ConCm(n=15; m=1,2)团簇的密度泛函理论研究. 物理学报, doi: 10.7498/aps.61.153601
    [12] 黄海深, 王小满, 赵冬秋, 伍良福, 黄晓伟, 李蕴才. 钇覆盖Si@Al12团簇的贮氢性能. 物理学报, doi: 10.7498/aps.61.073101
    [13] 孙路石, 张安超, 向军, 郭培红, 刘志超, 苏胜. 密度泛函理论研究Hg与Auqn(n=1—6, q=0,+1,-1) 团簇的相互作用. 物理学报, doi: 10.7498/aps.60.073103
    [14] 金蓉, 谌晓洪. 密度泛函理论对ZrnPd团簇结构和性质的研究. 物理学报, doi: 10.7498/aps.59.6955
    [15] 孙建敏, 赵高峰, 王献伟, 杨雯, 刘岩, 王渊旭. Cu吸附(SiO3)n(n=1—8)团簇几何结构和电子性质的密度泛函研究. 物理学报, doi: 10.7498/aps.59.7830
    [16] 杨培芳, 胡娟梅, 滕波涛, 吴锋民, 蒋仕宇. Rh在单壁碳纳米管上吸附的密度泛函理论研究. 物理学报, doi: 10.7498/aps.58.3331
    [17] 许桂贵, 吴青云, 张健敏, 陈志高, 黄志高. 第一性原理研究氧在Ni(111)表面上的吸附能及功函数. 物理学报, doi: 10.7498/aps.58.1924
    [18] 陈玉红, 康 龙, 张材荣, 罗永春, 马 军. [Mg(NH2)2]n(n=1—5)团簇的密度泛函理论研究. 物理学报, doi: 10.7498/aps.57.4866
    [19] 陈玉红, 张材荣, 马 军. MgmBn(m=1,2;n=1—4)团簇结构与性质的密度泛函理论研究. 物理学报, doi: 10.7498/aps.55.171
    [20] 曾振华, 邓辉球, 李微雪, 胡望宇. O在Au(111)表面吸附的密度泛函理论研究. 物理学报, doi: 10.7498/aps.55.3157
计量
  • 文章访问数:  182
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 上网日期:  2025-05-29

/

返回文章
返回