搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高能X射线FLASH放射治疗: 基于低气压电离室的束流监视器物理及性能

赵继荣 羊奕伟 张毅 王诗岚 冯松

引用本文:
Citation:

高能X射线FLASH放射治疗: 基于低气压电离室的束流监视器物理及性能

赵继荣, 羊奕伟, 张毅, 王诗岚, 冯松
cstr: 32037.14.aps.74.20250258

High-energy X-ray FLASH radiotherapy: Physics and performance study of beam monitoring based on low-pressure ionization chambers

ZHAO Jirong, YANG Yiwei, ZHANG Yi, WANG Shilan, FENG Song
cstr: 32037.14.aps.74.20250258
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 超高剂量率X射线(简称XFLASH)的剂量实时准确监测在XFLASH放射治疗临床前后都起着关键作用. 本文研究了一种用于XFLASH放射治疗剂量在线监测的低气压电离室(LPIC), 并将其作为XFLASH束流的监视器. 开展了电离室物理设计, 两个独立腔室分别放置高压极、收集极和保护极. 高压极与收集极电极间距为1 mm, 腔室气压约5 kPa. 实验分析了该监视器的坪曲线、剂量重复性、剂量线性等性能. 测试结果表明, 研制的低气压电离室表现出优异的剂量线性(R2 > 0.999)和剂量重复性(变异系数小于0.5%), 被证明是一种可靠的剂量监视器, 其性能满足国家标准对放射治疗剂量监视系统的要求.
    This study solves the key challenge of real-time beam monitoring in ultra-high dose rate X-ray FLASH (XFLASH) radiotherapy, in which the traditional ionization chambers suffer serious electron-ion recombination losses at extreme dose rates (≥40 Gy/s). We propose a low-pressure ionization chamber (LPIC) as a novel beam monitor to achieve accurate dose measurement while maintaining beam penetration characteristics required for clinical applications. The LPIC is designed to have two independent chambers to accommodate high-voltage, collecting, and protecting electrodes. Key parameters include a 1-mm electrode gap and a reduced chamber pressure (~5 kPa) to mitigate recombination effects. Theoretical analysis based on the Boag model and numerical simulations (using the numerical-ks-calculator program) quantifies the dependence of recombination loss on pressure (P), electrode spacing (d ), and voltage (Uc). MCNP simulations evaluate X-ray transmission through chamber windows (Be, Al, Ti) with thickness up to 1000 μm. According to the national standards (GB/T15213-2016), a prototype LPIC is constructed and tested on a 10-MeV XFLASH accelerator (dose rate: 80 Gy/s) for plateau characteristics, dose repeatability, linearity, and dose-rate response. Theoretical analysis based on the Boag model reveals that the values of recombination ratio R scale with $P^3$, $d^2$, and $U_{\rm c}^{-1} $, which are validated by numerical simulations $(R = 0.2256P^3;\; R = 0.0534U_{\rm c}^{-1};\; R = 0.00548d^2) $. At 1.1 Gy/pulse, recombination losses are maintained below 1% at the optimal parameters: P < 0.3 atm for d = 0.1 mm or P < 0.04 atm for d = 1 mm. MCNP simulations show that X-ray transmission exceeds 90% for beryllium (Be), aluminum (Al), and titanium (Ti) windows with thickness ≤1000 μm. While 0.1-mm Be achieves the highest transmission (>99%), 1-mm Al (transmission ~95%) is selected as the optimal window material due to its clinical acceptability (<5% dose loss), cost-effectiveness, and easy fabrication. The prototype exhibits stable plateau characteristics (ΔI/I < 0.069% at Uc > 40V), exceptional dose repeatability (coefficient of variation <0.5% across 10–250 Gy/s), and linearity (R2 > 0.999 for dose and dose-rate measurements). These results confirm their compliance with the national standard (GB/T15213-2016) and are suitable for real-time XFLASH monitoring. The LPIC demonstrates robust suppression of recombination losses and reliable performance under XFLASH conditions. Its design, which is optimized via theoretical modeling and simulations, ensures high precision, which meets GB/T15213-2016 requirements, while preserving beam penetration. The use of 1-mm Al windows balances cost and function, making the LPIC a reliable clinical dose monitor. Future studies will focus on multi-channel LPIC arrays for two-dimensional beam profiling.
      通信作者: 羊奕伟, winfield1920@126.com ; 冯松, fengs9115@gmail.com
    • 基金项目: 国家自然科学基金(批准号: 12375318, 12375296)、湖南省科技创新计划 (批准号: 2024RC3205)和国家卫生健康委员会核技术医学转化重点实验室(绵阳市中心医院)( 批准号: 2021HYX021)资助的课题.
      Corresponding author: YANG Yiwei, winfield1920@126.com ; FENG Song, fengs9115@gmail.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12375318, 12375296), the Science and Technology Innovation Program of Hunan Province (Grant No. 2024RC3205), and the NHC Key Laboratory of Nuclear Technology Medical Transformation (Mianyang Central Hospital), China (Grant No. 2021HYX021).
    [1]

    Diffenderfer E, Verginadis I, Michele M K, Shoniyozov K, Velalopoulou A, Goia D, Putt M, Hagan S, Avery S, Teo K, Zou W, Lin A, Swisher-McClure S, Koch C, Kennedy A, Minn A, Maity A, Busch T, Dong L, Koumenis C, Metz J, Cengel K 2020 Int. J. Radiat. Oncol. Biol. Phys. 106 440Google Scholar

    [2]

    Sørensen B S, Sitarz M K, Ankjærgaard C, Johansen J, Andersen C E, Kanouta E, Overgaard C, Grau C, Poulsen P 2022 Radiother. Onco. 167 109Google Scholar

    [3]

    Sørensen B S, Sitarz M K, Ankjærgaard C, Johansen Jacob Claus G, Andersen E, Kanouta E, Grau C, Poulsen P 2022 Radiother. Oncol. 175 178Google Scholar

    [4]

    Böhlen T T, Germond J, Petersson K, Ozsahin E M, Herrera F G, Bailat C, Bochud F, Bourhis J, Moeckli R, Adrian G, Bailat C, Bochud F, Bourhis J, Moeckli R, Adrian G, 2023 Int. J. Radiat. Oncol. Biol. Phys. 117 1007Google Scholar

    [5]

    Zhang Q X, Gerweck L E, Cascio E, Yang Q Y, Huang P G, Niemierko A, Bertolet A, Nesteruk K P, McNamara A, Schuemann J 2023 Phys. Med. Biol. 68 055010Google Scholar

    [6]

    Romano F, Bailat C, Ferretti C, Jorge P G, Lerch M L F, Darafsheh A 2022 Med. Phys. 49 4912Google Scholar

    [7]

    Vignati A, Giordanengo S, Federico F, Villarreal O A M, Milian F M, Mazza G, Shakarami Z, Cirio R, Monaco V, Sacchi R 2022 Front. Phys. 8 375

    [8]

    Levin D, Friedman P, Ferretti C, Ristow N, Tecchio M, Litzenberg D, Bashkirov V, Schulte R 2024 Med. Phys. 51 2905Google Scholar

    [9]

    艾自辉 2008 硕士学位论文 (绵阳: 中国工程物理研究院)

    Ai Z H 2008 M. S. Thesis (Mianyang: China Academy of Engineering Physics

    [10]

    Marinelli M, Martino F D, Sarto D D, Pensavalle J H, Felici G, Giunti L, Liso V D, Kranzer R, Verona C, Rinati G V 2023 Phys. Med. Biol. 68 175011Google Scholar

    [11]

    Boag J W, Hochhuser E, Balk O A 1996 Phys. Med. Biol. 41 885Google Scholar

    [12]

    Di Martino F, Giannelli M, Traino A C, Lazzeri M 2005 Med. Phys. 32 2204Google Scholar

    [13]

    Petersson K, Jaccard M, Germond J, Buchillier T, Bochud F, Bourhis J, Vozenin M, Bailat C 2017 Med. Phys. 44 1157Google Scholar

    [14]

    Gotz M, Karsch L, Pawelke J. Gotz M, Karsch L, Pawelke J 2017 Phys. Med. Biol. 62 8634Google Scholar

    [15]

    Greening J R 1954 Br. J. Radiol. 27 163Google Scholar

    [16]

    Rathore R K S, Munshi P, Bhatia V K, Pandimani S 1988 Nucl. Eng. Des. 108 375Google Scholar

    [17]

    Rinati G V, Felici G, Galante F, Gasparini A, Kranzer R, Mariani G, Pacitti M, Prestopino G, Schüller A, Vanreusel V, Verellen D, Verona C, Marinelli M 2022 Med. Phys. 49 5513Google Scholar

    [18]

    Schüler E, Acharya M, Montay-Gruel P, Loo B W, Vozenin M C, Maxim P G 2022 Med. Phys. 49 2082Google Scholar

    [19]

    Siddique S, Ruda H E, Chow J C L 2023 Cancers 15 3883Google Scholar

    [20]

    Esplen N, Mendonca M S, Bazalova-Carter M 2020 Phys. Med. Biol. 65 23TR03Google Scholar

    [21]

    Vanreusel, Gasparini A, Galante F, Mariani G, Pacitti M, Cociorb M, Giammanco A, Reniers B, Reulens N, Shonde T B, Vallet H, Vandenbroucke D, Peeters M, Leblans P, Ma B, Felici G, Verellen D, Nascimento L D F 2022 Phys. Medica. 103 127Google Scholar

  • 图 1  复合损失比R与LPIC腔室气压关系

    Fig. 1.  Relationship between R and gas pressure of the LPIC.

    图 2  复合损失比R与LPIC高压关系

    Fig. 2.  Relationship between R and high voltage of the LPIC.

    图 3  复合损失比R与LPIC电极间距关系

    Fig. 3.  Relationship between R and electrode spacing of the LPIC.

    图 4  不同单脉冲剂量下复合损失比R与LPIC腔室气压之间的关系

    Fig. 4.  The relationship between R and gas pressure of the LPIC under different single pulse doses.

    图 5  LPIC窗厚与射束透射率关系

    Fig. 5.  Relationship between transmissivity and the LPIC window thickness.

    图 6  XFLASH加速器实验台及低气压电离室实物图

    Fig. 6.  Physical image of the XFLASH accelerator experimental setup and LPIC.

    图 7  LPIC的坪响应曲线

    Fig. 7.  Plateau curve of the LPIC.

    图 8  重复性测量中归一到平均值的Ri

    Fig. 8.  Normalized ratios of dose measurements using the LPIC to a reference.

    图 9  LPIC的剂量线性

    Fig. 9.  Dose linearity of the LPIC.

    图 10  LPIC剂量率线性

    Fig. 10.  Dose rate linearity of the LPIC.

  • [1]

    Diffenderfer E, Verginadis I, Michele M K, Shoniyozov K, Velalopoulou A, Goia D, Putt M, Hagan S, Avery S, Teo K, Zou W, Lin A, Swisher-McClure S, Koch C, Kennedy A, Minn A, Maity A, Busch T, Dong L, Koumenis C, Metz J, Cengel K 2020 Int. J. Radiat. Oncol. Biol. Phys. 106 440Google Scholar

    [2]

    Sørensen B S, Sitarz M K, Ankjærgaard C, Johansen J, Andersen C E, Kanouta E, Overgaard C, Grau C, Poulsen P 2022 Radiother. Onco. 167 109Google Scholar

    [3]

    Sørensen B S, Sitarz M K, Ankjærgaard C, Johansen Jacob Claus G, Andersen E, Kanouta E, Grau C, Poulsen P 2022 Radiother. Oncol. 175 178Google Scholar

    [4]

    Böhlen T T, Germond J, Petersson K, Ozsahin E M, Herrera F G, Bailat C, Bochud F, Bourhis J, Moeckli R, Adrian G, Bailat C, Bochud F, Bourhis J, Moeckli R, Adrian G, 2023 Int. J. Radiat. Oncol. Biol. Phys. 117 1007Google Scholar

    [5]

    Zhang Q X, Gerweck L E, Cascio E, Yang Q Y, Huang P G, Niemierko A, Bertolet A, Nesteruk K P, McNamara A, Schuemann J 2023 Phys. Med. Biol. 68 055010Google Scholar

    [6]

    Romano F, Bailat C, Ferretti C, Jorge P G, Lerch M L F, Darafsheh A 2022 Med. Phys. 49 4912Google Scholar

    [7]

    Vignati A, Giordanengo S, Federico F, Villarreal O A M, Milian F M, Mazza G, Shakarami Z, Cirio R, Monaco V, Sacchi R 2022 Front. Phys. 8 375

    [8]

    Levin D, Friedman P, Ferretti C, Ristow N, Tecchio M, Litzenberg D, Bashkirov V, Schulte R 2024 Med. Phys. 51 2905Google Scholar

    [9]

    艾自辉 2008 硕士学位论文 (绵阳: 中国工程物理研究院)

    Ai Z H 2008 M. S. Thesis (Mianyang: China Academy of Engineering Physics

    [10]

    Marinelli M, Martino F D, Sarto D D, Pensavalle J H, Felici G, Giunti L, Liso V D, Kranzer R, Verona C, Rinati G V 2023 Phys. Med. Biol. 68 175011Google Scholar

    [11]

    Boag J W, Hochhuser E, Balk O A 1996 Phys. Med. Biol. 41 885Google Scholar

    [12]

    Di Martino F, Giannelli M, Traino A C, Lazzeri M 2005 Med. Phys. 32 2204Google Scholar

    [13]

    Petersson K, Jaccard M, Germond J, Buchillier T, Bochud F, Bourhis J, Vozenin M, Bailat C 2017 Med. Phys. 44 1157Google Scholar

    [14]

    Gotz M, Karsch L, Pawelke J. Gotz M, Karsch L, Pawelke J 2017 Phys. Med. Biol. 62 8634Google Scholar

    [15]

    Greening J R 1954 Br. J. Radiol. 27 163Google Scholar

    [16]

    Rathore R K S, Munshi P, Bhatia V K, Pandimani S 1988 Nucl. Eng. Des. 108 375Google Scholar

    [17]

    Rinati G V, Felici G, Galante F, Gasparini A, Kranzer R, Mariani G, Pacitti M, Prestopino G, Schüller A, Vanreusel V, Verellen D, Verona C, Marinelli M 2022 Med. Phys. 49 5513Google Scholar

    [18]

    Schüler E, Acharya M, Montay-Gruel P, Loo B W, Vozenin M C, Maxim P G 2022 Med. Phys. 49 2082Google Scholar

    [19]

    Siddique S, Ruda H E, Chow J C L 2023 Cancers 15 3883Google Scholar

    [20]

    Esplen N, Mendonca M S, Bazalova-Carter M 2020 Phys. Med. Biol. 65 23TR03Google Scholar

    [21]

    Vanreusel, Gasparini A, Galante F, Mariani G, Pacitti M, Cociorb M, Giammanco A, Reniers B, Reulens N, Shonde T B, Vallet H, Vandenbroucke D, Peeters M, Leblans P, Ma B, Felici G, Verellen D, Nascimento L D F 2022 Phys. Medica. 103 127Google Scholar

  • [1] 陈翠红, 李占奎, 王秀华, 李荣华, 方芳, 王柱生, 李海霞. 高性能PIN-硅探测器的研制及其在高能放射性核束实验中的应用测试. 物理学报, 2023, 72(12): 122902. doi: 10.7498/aps.72.20230213
    [2] 龙天洋, 李伟, 许浩天, 王逍. 时空耦合畸变对超快超强激光参数测试及性能评估的影响. 物理学报, 2022, 71(17): 174204. doi: 10.7498/aps.71.20220563
    [3] 魏江涛, 杨亮亮, 秦源浩, 宋培帅, 张明亮, 杨富华, 王晓东. 低维纳米材料热电性能测试方法研究. 物理学报, 2021, 70(4): 047301. doi: 10.7498/aps.70.20201175
    [4] 殷娇, 肖国梁, 陈程远, 冯北滨, 张轶泼, 钟武律. 用于超声分子束束流特性测试的纹影系统研制及应用. 物理学报, 2020, 69(21): 215202. doi: 10.7498/aps.69.20201383
    [5] 田永顺, 胡志良, 童剑飞, 陈俊阳, 彭向阳, 梁天骄. 基于3.5 MeV射频四极质子加速器硼中子俘获治疗装置的束流整形体设计. 物理学报, 2018, 67(14): 142801. doi: 10.7498/aps.67.20180380
    [6] 陈媛, 王晓方, 邵光超. 电子束放射照相的特性与参数优化. 物理学报, 2015, 64(15): 154101. doi: 10.7498/aps.64.154101
    [7] 谢朝, 邹炼, 侯氢, 郑霞. 质子束治疗中非均匀组织的等效水厚度修正研究. 物理学报, 2013, 62(6): 068701. doi: 10.7498/aps.62.068701
    [8] 刘雷, 李永东, 王瑞, 崔万照, 刘纯亮. 微波阶梯阻抗变换器低气压电晕放电粒子模拟. 物理学报, 2013, 62(2): 025201. doi: 10.7498/aps.62.025201
    [9] 肖渊, 王晓方, 滕建, 陈晓虎, 陈媛, 洪伟. 激光加速电子束放射照相的模拟研究. 物理学报, 2012, 61(23): 234102. doi: 10.7498/aps.61.234102
    [10] 陈国云, 辛勇, 黄福成, 魏志勇, 雷升杰, 黄三玻, 朱立, 赵经武, 马加一. 用于反应堆中子/ 射线混合场测量的涂硼电离室性能. 物理学报, 2012, 61(8): 082901. doi: 10.7498/aps.61.082901
    [11] 李兵, 何怡刚, 侯周国, 佘开, 佐磊. 无源标签反向散射调制性能的分析和测试. 物理学报, 2011, 60(8): 084202. doi: 10.7498/aps.60.084202
    [12] 周海洋, 朱晓东, 詹如娟. CVD金刚石辐射探测器研制及性能测试. 物理学报, 2010, 59(3): 1620-1624. doi: 10.7498/aps.59.1620
    [13] 侯周国, 何怡刚, 李兵, 佘开, 朱彦卿. 基于软件无线电的无源超高频RFID标签性能测试. 物理学报, 2010, 59(8): 5606-5612. doi: 10.7498/aps.59.5606
    [14] 戴伟, 唐永建, 王朝阳, 孙卫国. 自制吸附仪储氢性能测试研究. 物理学报, 2009, 58(10): 7313-7316. doi: 10.7498/aps.58.7313
    [15] 宁禹, 余浩, 周虹, 饶长辉, 姜文汉. 20单元双压电片变形镜的性能测试与闭环校正实验研究. 物理学报, 2009, 58(7): 4717-4723. doi: 10.7498/aps.58.4717
    [16] 高 飞, 刘华锋, 施鹏程. 小动物正电子断层成像仪性能测试. 物理学报, 2007, 56(7): 4229-4234. doi: 10.7498/aps.56.4229
    [17] 赵培涛, 李国华, 吴福全, 彭捍东, 张寅超, 赵曰峰, 王 莲, 刘玉丽. 高精度消色差相位延迟器性能测试研究. 物理学报, 2006, 55(9): 4582-4587. doi: 10.7498/aps.55.4582
    [18] 郭红霞, 陈雨生, 张义门, 吴国荣, 周辉, 关颖, 韩福斌, 龚建成. 多层平板电离室测量不同材料界面剂量分布及其蒙特-卡洛模拟. 物理学报, 2001, 50(8): 1545-1548. doi: 10.7498/aps.50.1545
    [19] 王朝俊, 何景棠, 郑志鹏, 唐孝威. 低气压正比计数管. 物理学报, 1976, 25(2): 175-177. doi: 10.7498/aps.25.175
    [20] 胡仁宇. 用小电离室测量镭所放出的γ射线的剂量率. 物理学报, 1962, 18(10): 527-539. doi: 10.7498/aps.18.527
计量
  • 文章访问数:  491
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-03-02
  • 修回日期:  2025-04-10
  • 上网日期:  2025-05-13
  • 刊出日期:  2025-07-20

/

返回文章
返回