搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高能X射线FLASH放射治疗:基于低气压电离室的束流监视器物理及性能研究

赵继荣 羊奕伟 张毅 王诗岚 冯松

引用本文:
Citation:

高能X射线FLASH放射治疗:基于低气压电离室的束流监视器物理及性能研究

赵继荣, 羊奕伟, 张毅, 王诗岚, 冯松

High-Energy X-ray FLASH Radiotherapy: Physics and Performance Study of Beam Monitoring Based on Low-Pressure Ionization Chambers

ZHAO Jirong, YANG Yiwei, ZHANG Yi, WANG Shilan, FENG Song
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 超高剂量率X射线(简称XFLASH)的剂量实时准确监测在XFLASH放射治疗临床前后都起着关键作用。本文研究了一种用于XFLASH放射治疗剂量在线监测的低气压电离室(LPIC),并将其作为XFLASH束流的监视器。开展了电离室物理设计,两个独立腔室分别放置高压极、收集极和保护极。高压极与收集极电极间距为1 mm,腔室气压约5 kPa。实验分析了该监视器的坪曲线、剂量重复性、剂量线性等性能。测试结果表明,研制的低气压电离室表现出优异的剂量线性(R2>0.999)和剂量重复性(变异系数小于0.5%),被证明是一种可靠的剂量监视器,其性能满足国家标准对放射治疗剂量监视系统的要求。
    Purpose
    This study addresses the critical challenge of real-time beam monitoring in ultra-high dose rate X-ray FLASH (XFLASH) radiotherapy, where conventional ionization chambers suffer from severe electron-ion recombination losses under extreme dose rates (≥40 Gy/s). We propose a low-pressure ionization chamber (LPIC) as a novel beam monitor, aiming to achieve accurate dose measurement while maintaining beam penetration characteristics required for clinical applications.
    Methods
    The LPIC was designed with two independent chambers housing high-voltage, collecting, and guard electrodes. Key parameters included a 1 mm electrode gap and a reduced chamber pressure (~5 kPa) to mitigate recombination effects. Theoretical analysis based on the Boag model and numerical simulations (using the numerical-ks-calculator program) quantified recombination loss dependency on pressure (P), electrode spacing (d), and voltage (Uc​). MCNP simulations evaluated X-ray transmission through chamber windows (Be, Al, Ti) with thicknesses up to 1000 μm. A prototype LPIC was fabricated and tested on a 10 MeV XFLASH accelerator (dose rate: 80 Gy/s) for plateau characteristics, dose repeatability, linearity, and dose-rate response, following national standards (GB/T15213-2016).
    Key Physical Results
    1.Recombination Loss Suppression: Theoretical analysis based on the Boag model revealed that the recombination ratio R scales with P3, d2, and Uc−1​, validated by numerical simulations (R=0.2256P3; R=0.0534Uc−1; R=0.00548d2). At1.1 Gy/pulse, recombination losses were maintained below 1% by optimizing parameters: P<0.3 atm for d=0.1 mm or P<0.04 atm for d=1 mm.
    2.Beam Transmission Optimization: MCNP simulations demonstrated that X-ray transmission exceeded 90% for beryllium (Be), aluminum (Al), and titanium (Ti) windows with thicknesses ≤1000 μm. While 0.1 mm Be achieved the highest transmission (>99%), 1 mm Al (transmission ~95%) was selected as the optimal window material due to its clinical acceptability (<5% dose loss), cost-effectiveness, and ease of fabrication.
    3.LPIC Performance Validation: The prototype exhibited stable plateau characteristics (ΔI/I<0.069% at Uc​>40V), exceptional dose repeatability (coefficient of variation <0.5% across 10–250 Gy/s), and linearity (R2>0.999 for dose and dose-rate measurements). These results confirm compliance with national standards (GB/T15213-2016) and suitability for real-time XFLASH monitoring.
    Conclusion
    The LPIC demonstrates robust suppression of recombination losses and reliable performance under XFLASH conditions. Its design—optimized via theoretical modeling and simulations—ensures high precision (meeting GB/T15213-2016 requirements) while preserving beam penetration. The use of 1 mm Al windows balances cost and functionality, making the LPIC a practical solution for clinical translation. Future studies will focus on multi-channel LPIC arrays for 2D beam profiling.
  • [1]

    Diffenderfer E, Verginadis I, Michele M K, Shoniyozov K, Velalopoulou A, Goia D, Putt M, Hagan S, Avery S, Teo K, Zou W, Lin A, Swisher-McClure S, Koch C, Kennedy A, Minn A, Maity A, Busch T, Dong L, Koumenis C, Metz J, Cengel K 2020Int. J. Radiat. Oncol. Biol. Phys. 106(2)440

    [2]

    Sørensen B S, Sitarz M K, Ankjærgaard C, Johansen J, Andersen C E, Kanouta E, Overgaard C, Grau C, Poulsen P 2022Radiother. Onco. 167 109

    [3]

    Sørensen B S, Sitarz M K, Ankjærgaard C, Johansen Jacob Claus G, Andersen E, Kanouta E, Grau C, Poulsen P 2022Radiother. Oncol. 175 178

    [4]

    Böhlen T T, Germond J, Petersson K, Ozsahin E M, Herrera F G, Bailat C, Bochud F, Bourhis J, Moeckli R, Adrian G, Bailat C, Bochud F, Bourhis J, Moeckli R, Adrian G, 2023Int J Radiat Oncol Biol Phys. 117(4):1007-1017

    [5]

    Zhang Q, Gerweck L E, Cascio E, et al. Zhang Q X, Gerweck L E, Cascio E, Yang Q Y, Huang P, Niemierko A, Bertolet A, Nesteruk K P, McNamara A Schuemann J. 2023Phys Med Biol. 68(5)055010

    [6]

    Vignati A, Giordanengo S, Fausti Federico, Oscar A. Martì Villarreal, Felix Mas Milian, Giovanni Mazza, Zahra Shakarami, Roberto Cirio, Vincenzo Monaco, Roberto Sacchi. 2022Front. Phys. 8 375

    [7]

    Liu K, Palmiero A, Chopra N, Velasquez B, Li Z Y, Beddar S, Schüler E J 2023Appl. Clin. Med. Phys. 24(2):e13891

    [8]

    Levin D, Friedman P, Ferretti C, Ristow N, Tecchio M, Litzenberg D, Bashkirov V, Schulte R. 2024Med. Phys. 51(4)2905

    [9]

    Ai Z H 2008M.S. Thesis(Mianyang:China Academy of Engineering Physics)(in Chinese)[艾自辉2008硕士学位论文(绵阳:中国工程物理研究院)]

    [10]

    Marinelli M, Martino F d, Sarto D D, Pensavalle J H, Felici G, Giunti L, Liso V De, Kranzer R, Verona C, Rinati G V 2023Phys. Med. Biol. 68(17):175011

    [11]

    Boag J W, Hochhuser E, Balk O A 1996Phys. Med. Biol. 41(5)885

    [12]

    Di Martino F, Giannelli M, Traino A C, Lazzeri M 2005Med. Phys. 32(7Part1)2204

    [13]

    Petersson K, Jaccard M, Germond J, Buchillier T, Bochud F, Bourhis J, Vozenin M, Bailat C. 2017Med. Phys. 44(3)1157

    [14]

    Gotz M, Karsch L, Pawelke J. Gotz M, Karsch L, Pawelke J 2017Phys. Med. Biol. 62(22)8634

    [15]

    Greening J R 1954Br. J. Radiol. 27(315)163

    [16]

    Rathore R K S, Munshi P, Bhatia V K, Pandimani S 1988Nucl. Eng. Des. 108(3), 375

    [17]

    Rinati G V, Felici G, Galante F, Gasparini A, Kranzer R, Mariani G, Pacitti M, Prestopino G, Schüller A, Vanreusel V, Verellen D, Verona C, Marinelli M 2022Med. Phys. 49.8, 5513

    [18]

    Schüler E, Acharya M, Montay-Gruel P, Loo B W, Vozenin M-C, Maxim P G 2022Med. Phys. 49.3 2082

    [19]

    Siddique, Sarkar, Harry E. Ruda, Chow J C. 2023Cancers 15(15)3883

    [20]

    Esplen, Nolan, Marc S. Mendonca, Bazalova-Carter Magdalena. N. Esplen, M. Mendonca, M. Bazalova-Carter 2020Phys. Med. Biol. 65.23 23TR03

    [21]

    Vanreusel, Gasparini A, Galante F, Mariani G, Pacitti M, Cociorb M, Giammanco A, Reniers B, Reulens N, Shonde T B, Vallet H, Vandenbroucke D, Peeters M, Leblans P, Ma B, Felici G, Verellen D, Nascimento L d F 2022Phys. Medica. 103 127

  • [1] 陈翠红, 李占奎, 王秀华, 李荣华, 方芳, 王柱生, 李海霞. 高性能PIN-硅探测器的研制及其在高能放射性核束实验中的应用测试. 物理学报, doi: 10.7498/aps.72.20230213
    [2] 龙天洋, 李伟, 许浩天, 王逍. 时空耦合畸变对超快超强激光参数测试及性能评估的影响. 物理学报, doi: 10.7498/aps.71.20220563
    [3] 魏江涛, 杨亮亮, 秦源浩, 宋培帅, 张明亮, 杨富华, 王晓东. 低维纳米材料热电性能测试方法研究. 物理学报, doi: 10.7498/aps.70.20201175
    [4] 殷娇, 肖国梁, 陈程远, 冯北滨, 张轶泼, 钟武律. 用于超声分子束束流特性测试的纹影系统研制及应用. 物理学报, doi: 10.7498/aps.69.20201383
    [5] 田永顺, 胡志良, 童剑飞, 陈俊阳, 彭向阳, 梁天骄. 基于3.5 MeV射频四极质子加速器硼中子俘获治疗装置的束流整形体设计. 物理学报, doi: 10.7498/aps.67.20180380
    [6] 陈媛, 王晓方, 邵光超. 电子束放射照相的特性与参数优化. 物理学报, doi: 10.7498/aps.64.154101
    [7] 谢朝, 邹炼, 侯氢, 郑霞. 质子束治疗中非均匀组织的等效水厚度修正研究. 物理学报, doi: 10.7498/aps.62.068701
    [8] 刘雷, 李永东, 王瑞, 崔万照, 刘纯亮. 微波阶梯阻抗变换器低气压电晕放电粒子模拟. 物理学报, doi: 10.7498/aps.62.025201
    [9] 肖渊, 王晓方, 滕建, 陈晓虎, 陈媛, 洪伟. 激光加速电子束放射照相的模拟研究. 物理学报, doi: 10.7498/aps.61.234102
    [10] 陈国云, 辛勇, 黄福成, 魏志勇, 雷升杰, 黄三玻, 朱立, 赵经武, 马加一. 用于反应堆中子/ 射线混合场测量的涂硼电离室性能. 物理学报, doi: 10.7498/aps.61.082901
    [11] 李兵, 何怡刚, 侯周国, 佘开, 佐磊. 无源标签反向散射调制性能的分析和测试. 物理学报, doi: 10.7498/aps.60.084202
    [12] 周海洋, 朱晓东, 詹如娟. CVD金刚石辐射探测器研制及性能测试. 物理学报, doi: 10.7498/aps.59.1620
    [13] 侯周国, 何怡刚, 李兵, 佘开, 朱彦卿. 基于软件无线电的无源超高频RFID标签性能测试. 物理学报, doi: 10.7498/aps.59.5606
    [14] 戴伟, 唐永建, 王朝阳, 孙卫国. 自制吸附仪储氢性能测试研究. 物理学报, doi: 10.7498/aps.58.7313
    [15] 宁禹, 余浩, 周虹, 饶长辉, 姜文汉. 20单元双压电片变形镜的性能测试与闭环校正实验研究. 物理学报, doi: 10.7498/aps.58.4717
    [16] 高 飞, 刘华锋, 施鹏程. 小动物正电子断层成像仪性能测试. 物理学报, doi: 10.7498/aps.56.4229
    [17] 赵培涛, 李国华, 吴福全, 彭捍东, 张寅超, 赵曰峰, 王 莲, 刘玉丽. 高精度消色差相位延迟器性能测试研究. 物理学报, doi: 10.7498/aps.55.4582
    [18] 郭红霞, 陈雨生, 张义门, 吴国荣, 周辉, 关颖, 韩福斌, 龚建成. 多层平板电离室测量不同材料界面剂量分布及其蒙特-卡洛模拟. 物理学报, doi: 10.7498/aps.50.1545
    [19] 王朝俊, 何景棠, 郑志鹏, 唐孝威. 低气压正比计数管. 物理学报, doi: 10.7498/aps.25.175
    [20] 胡仁宇. 用小电离室测量镭所放出的γ射线的剂量率. 物理学报, doi: 10.7498/aps.18.527
计量
  • 文章访问数:  10
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 上网日期:  2025-05-13

/

返回文章
返回