搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

柔性呼吸传感技术的医疗级开发:医学物理实现路径与临床肺功能数据验证

杨瑛琦 李轲轶 林桂阳 林益华 郑冠英 谢宝松 崔丽娜 刘向阳

引用本文:
Citation:

柔性呼吸传感技术的医疗级开发:医学物理实现路径与临床肺功能数据验证

杨瑛琦, 李轲轶, 林桂阳, 林益华, 郑冠英, 谢宝松, 崔丽娜, 刘向阳

Flexible Respiratory Sensing Technology: Clinical Validation of Pulmonary Function Monitoring in Medical Physics Applications

Yang Yingqi, Li Keyi, Lin Guiyang, Lin Guihua, Zheng Guanying, Xie Baosong, Cui Lina, Liu Xiang Yang
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 柔性电子技术的快速发展推动了可穿戴呼吸监测设备的革新,但其在医疗级肺功能定量评估中的精准性仍面临挑战。本研究通过融合水分子响应型柔性传感技术、可穿戴设备与云端智能分析平台,成功开发出首个医疗级柔性呼吸传感系统(SFMS)。该系统基于仿生微腔压差传感与湿度敏感界面的协同作用,结合压差-通量动态模型,实现了呼气峰值流速(PEF)和用力肺活量(FVC)的同步解析,精准提取FEV1/FVC等核心肺功能指标。通过454例临床验证,系统与金标准肺功能仪的检测结果高度一致(组内相关系数ICC=0.93-0.97),在慢性阻塞性肺疾病(COPD)与哮喘鉴别诊断中展现出89.7%的敏感性和92.3%的特异性。技术层面,本研究突破传统肺功能检测对专业操作人员的依赖,首创医疗级柔性传感定量检测技术,通过嵌入式边缘计算架构实现实时数据云端交互,并建立多生理参数关联分析的疾病特征谱。应用价值上,系统兼具低成本、便携性和操作简便性,可无缝融入基层医疗场景与家庭健康管理,为慢性呼吸道疾病的分级诊疗提供技术工具。其技术路径直接响应WHO呼吸健康行动计划需求,通过普适化监测推动疾病早筛与长期管理,具有显著的临床转化潜力,为构建呼吸系统疾病全域防控体系提供了创新解决方案。
    The rapid advancement of flexible electronics has driven innovation in wearable respiratory monitoring devices, yet challenges remain in achieving medical-grade precision for quantitative pulmonary function assessment. This study integrates water molecule-responsive flexible sensing technology, wearable devices, and a cloud-based intelligent analysis platform to develop the first medical-grade flexible respiratory sensing system (SFMS). By leveraging the synergistic effect of bionic microcavity differential pressure sensing and humidity-sensitive interfaces, combined with a pressure difference-flux dynamic model, the system enables simultaneous resolution of peak expiratory flow (PEF) and forced vital capacity (FVC), accurately deriving core pulmonary function indicators such as FEV1/FVC. Clinical validation across 454 cases demonstrated high consistency with gold-standard spirometry (intraclass correlation coefficient [ICC] = 0.93–0.97), with 89.7% sensitivity and 92.3% specificity in differentiating chronic obstructive pulmonary disease (COPD) from asthma. Technologically, this work pioneers medical-grade flexible sensing for quantitative pulmonary testing, eliminating dependence on specialized operators through an embedded edge computing architecture that supports real-time cloud data interaction. The system establishes disease-specific profiles through multi-parametric physiological correlation analysis. Practically, its low cost, portability, and user-friendly operation facilitate seamless integration into primary healthcare and home health management, providing technical tools for hierarchical diagnosis and treatment of chronic respiratory diseases. Aligned with WHO's Respiratory Health Action Plan, this innovation enables universal monitoring to advance early screening and long-term disease management. With significant clinical translation potential, it offers a groundbreaking solution for building a comprehensive prevention and control framework for respiratory diseases.
  • [1]

    Wu R, Ma L, Liu X Y 2022 Adv Sci 9 e2103981

    [2]

    Lu C S, Jiang Z R, Wang X, Li K Y, Lin G Y, Yang Y Q, Lin Y H, Zheng G Y, Xie B S, Liu X Y 2024 Acta Phys Sin 73 038701

    [3]

    Kim D H, Lu N, Ma R, Kim Y S, Kim R H, Wang S, Wu J, Won S M, Tao H, Islam A, Yu K J, Kim T I, Chowdhury R, Ying M, Xu L, Li M, Chung H J, Keum H, McCormick M, Liu P, Zhang Y W, Omenetto F G, Huang Y, Coleman T, Rogers J A 2011 Science 333 838

    [4]

    Wang X, Liu Z, Zhang T 2017 Small 13 1602790

    [5]

    Hammock M L, Chortos A, Tee B C, Tok J B, Bao Z 2013 Adv Mater 25 5997

    [6]

    Someya T, Bao Z, Malliaras G G 2016 Nature 540 379

    [7]

    Gao W, Emaminejad S, Nyein H Y Y, Challa S, Chen K, Peck A, Fahad H M, Ota H, Shiraki H, Kiriya D, Lien D H, Brooks G A, Davis R W, Javey A 2016 Nature 529 509

    [8]

    Lee H, Choi T K, Lee Y B, Cho H R, Ghaffari R, Wang L, Choi H J, Chung T D, Lu N, Hyeon T, Choi S H, Kim D H 2016 Nat Nanotechnol 11 566

    [9]

    Ray T R, Choi J, Bandodkar A J, Krishnan S, Gutruf P, Tian L, Ghaffari R, Rogers J A 2019 Chem Rev 119 5461

    [10]

    Yang Y, Gao W 2019 Chem Soc Rev 48 1465

    [11]

    Wang T, Li Z, Zhang Q, Chen L, Li M 2022 Sensor Actuat A-Phys 335 113010

    [12]

    Zhao Y, Zhang Y, Wang Y, Zhang Q, Liu Z 2022 Adv Sci 9 e2102873

    [13]

    Safiri S, Carson-Chahhoud K, Noori M, Nejadghaderi S A, Sullman M J M, Ahmadian Heris J, Ansarin K, Mansournia M A, Collins G S, Kolahi A A, Kaufman J S 2022 BMJ 378 e069679

    [14]

    GBD 2019 Chronic Respiratory Diseases Collaborators 2023 eClinicalMedicine 59 100975

    [15]

    Wang C, Xu J, Yang L, Xu Y, Zhang X, Bai C, Kang J, Ran P, Shen H, Wen F, Huang K, Yao W, Sun T, Shan G, Yang T, Lin Y, Wu S, Zhu J, Wang R, Shi Z, Zhao J, Ye X, Song Y, Wang Q, Zhou Y, Ding L, Yang T, Chen Y, Guo Y, Xiao F, Lu Y, Peng X, Zhang B, Xiao D, Chen C S, Wang Z, Zhang H, Bu X, Zhang X, An L, Zhang S, Cao Z, Zhan Q, Yang Y, Cao B, Dai H, Liang L, He J 2018 Lancet 391 1706

    [16]

    Global Initiative for Chronic Obstructive Lung Disease (GOLD) 2023 Global Strategy for the Diagnosis Management and Prevention of Chronic Obstructive Pulmonary Disease (2023 Report) Available at https://goldcopd.org

    [17]

    Pellegrino R, Viegi G, Brusasco V, Crapo R O, Burgos F, Casaburi R, Coates A, van der Grinten C P, Gustafsson P, Hankinson J, Jensen R, Johnson D C, MacIntyre N, McKay R, Miller M R, Navajas D, Pedersen O F, Wanger J 2005 Eur Respir J 26 948

    [18]

    Miller M R, Hankinson J, Brusasco V, Burgos F, Casaburi R, Coates A, Crapo R, Enright P, van der Grinten C P, Gustafsson P, Jensen R, Johnson D C, MacIntyre N, McKay R, Navajas D, Pedersen O F, Pellegrino R, Viegi G, Wanger J, ATS/ERS Task Force 2005 Eur Respir J 26 319

    [19]

    Celli B R, MacNee W, ATS/ERS Task Force 2004 Eur Respir J 23 932

    [20]

    Vestbo J, Hurd S S, Agustí A G, Jones P W, Vogelmeier C, Anzueto A, Barnes P J, Fabbri L M, Martinez F J, Nishimura M, Stockley R A, Sin D D, Rodriguez-Roisin R 2013 Am J Respir Crit Care Med 187 347

    [21]

    Li H, Zhao X, Wang Y, Lou X, Chen S, Deng H, Shi L, Xie J, Tang D, Zhao J, Bouchard L S, Xia L, Zhou X 2021 Sci Adv 7 eabc8180

    [22]

    Li H, Li H, Zhang M, Huang C, Zhou X 2024 5 100720

    [23]

    Rao Q, Li H, Zhou Q, Zhang M, Zhao X, Shi L, Xie J, Fan L, Han Y, Guo F, Liu S, Zhou X 2024 Eur Radiol 34 7450

    [24]

    Quanjer P H, Stanojevic S, Cole T J, Baur X, Hall G L, Culver B H, Enright P L, Hankinson J L, Ip M S, Zheng J, Stocks J 2012 Eur Respir J 40 1324

    [25]

    Levy M L, Quanjer P H, Booker R, Cooper B G, Holmes S, Small I 2009 Prim Care Respir J 18 130

    [26]

    Eaton T, Withy S, Garrett J E, Mercer J, Whitlock R M L, Rea H H 1999 Chest 116 416

    [27]

    Enright P L, Crapo R O 2000 Clin Chest Med 21 645

    [28]

    Johnston K, Grimmer-Somers K, Young M 2010 BMC Res Notes 3 321

    [29]

    Wanger J, Clausen J L, Coates A, Pedersen O F, Brusasco V, Burgos F, Casaburi R, Crapo R, Enright P, van der Grinten C P, Gustafsson P, Hankinson J, Jensen R, Johnson D, Macintyre N, McKay R, Miller M R, Navajas D, Pellegrino R, Viegi G 2005 Eur Respir J 26 511

    [30]

    Kano S, Burton D L, Lanteri C J 1993 Med Eng Phys 15 365

    [31]

    Farré R, Montserrat J M, Navajas D 1998 Eur Respir J 12 1152

    [32]

    MacIntyre N R, Cheng K C 2002 Respir Care 47 193

    [33]

    Jin L, Liu Z K, Altintas M, Zheng Y, Liu Z C, Yao S R, Fan Y Y, Li Y 2022 ACS Sens 7 2281

    [34]

    Sanchez-Perez J A, Berkebile J A, Nevius B N, Ozmen G C, Nichols C J, Ganti V G, Mabrouk S A, Clifford G D, Kamaleswaran R, Wright D W et al 2022 Sensors 22 1130

    [35]

    Bai S, Chen J 2019 Sensor Actuat B-Chem 298 126908

    [36]

    Yao R Q, Zhou Y T, Shi H, Wan W B, Zhang Q H, Gu L, Wen Z, Lang X Y, Jiang Q 2020 Adv Mater 32 1907214

    [37]

    Lian Y, Yu H, Wang M, Yang X, Zhang H 2020 Nanoscale Res Lett 15 70

    [38]

    Zhang L, Chen X 2020 ACS Appl Mater Interfaces 12 34256

    [39]

    Lee Y K, Park S H 2022 J Biomed Opt 27 550

    [40]

    Ma L, Liu Q, Wu R, Meng Z, Patil A, Yu R, Yang Y, Zhu S, Fan X, Hou C, Li Y, Qiu W, Huang L, Wang J, Lin N, Wan Y, Hu J, Liu X Y 2020 Small 16 2070147

    [41]

    Qian Q, Wu W, Peng L, Wang Y, Tan A M Z, Liang L, Hus S M, Wang K, Choudhury T H, Redwing J M, Puretzky A A, Geohegan D B, Hennig R G, Ma X, Huang S 2022 ACS Nano 16 7428

    [42]

    Pan X, Grossiord N, Sol J A H P, Debije M G, Schenning A P H J 2021 Adv Funct Mater 31 2100465

    [43]

    Lu L, Ding W, Liu J, Yang B 2020 Nano Energy 78 105251

    [44]

    Ma L, Wu R, Patil A, Zhu S, Meng Z, Meng H, Hou C, Zhang Y, Liu Q, Yu R, Wang J, Lin N, Liu X Y 2019 Adv Funct Mater 29 1904549

    [45]

    Zhang L, Zhu Y, Nie Z, Li Z, Ye Y, Li L, Hong J, Bi Z, Zhou Y, Hu G 2023 Adv Mater 35 2209876

    [46]

    Hao F, Wang B, Wang X, Tang T, Li Y, Yang Z, Lu J 2022 Nano Energy 103 107823

    [47]

    Han B, Zheng R, Zeng H, Wang S, Sun K, Chen R, Li L, Wei W, He J 2024 Natl Cancer Cent 4 47

    [48]

    Culver B H, Graham B L, Coates A L, Wanger J, Berry C E, Clarke P K, Hallstrand T S, Hankinson J L, Kaminsky D A, MacIntyre N R, McCormack M C, Rosenfeld M, Stanojevic S, Weiner D J, ATS Committee on Proficiency Standards for Pulmonary Function Laboratories 2017 Am J Respir Crit Care Med 196 1463

    [49]

    Ruppel G L, Enright P L 2012 Respir Care 57 165

    [50]

    Graham B L, Steenbruggen I, Miller M R, Barjaktarevic I Z, Cooper B G, Hall G L, Hallstrand T S, Kaminsky D A, McCarthy K, McCormack M C, Oropez C E, Rosenfeld M, Stanojevic S, Swanney M P, Thompson B R 2019 Am J Respir Crit Care Med 200 e70

    [51]

    Mortimer K M, Fallot A, Balmes J R, Tager I B 2003 Chest 123 1899

    [52]

    Zhang S Q, Lin J, Yu C, Guo Z L, Tang C C, Huang Y 2025 Sensor Actuat B-Chem 437 137744

    [53]

    Lu C S, Wang X, Li K Y, Lin G Y, Yang Y Q, Lin Y H, Zheng G Y, Xie B S, Jiang Z. Xu Z, Liu Y, Ke S, Zhang B, Han K, Huang Y, Cui L, Liu X Y Adv. Fibers Mater to be published.

  • [1] 张恒博, 李银辉, 李玮栋, 高飞, 殷荣艳, 梁建国, 赵鹏, 周赟磊, 李朋伟, 边桂彬. PAN/MoS2柔性复合纳米纤维膜的压电传感特性. 物理学报, doi: 10.7498/aps.74.20241676
    [2] 李银辉, 殷荣艳, 梁建国, 李玮栋, 范凯, 周赟磊. 一种耐高温的柔性压电/热释电双功能传感器. 物理学报, doi: 10.7498/aps.73.20241006
    [3] 卢昌盛, 蒋泽荣, 王晓, 李轲轶, 林桂阳, 杨瑛琦, 林益华, 郑冠英, 谢宝松, 刘向阳. 基于动态湿度传感的穿戴式呼吸功能检测系统: 肺功能测量原理与实验对照. 物理学报, doi: 10.7498/aps.73.20231787
    [4] 葛宏义, 李丽, 蒋玉英, 李广明, 王飞, 吕明, 张元, 李智. 基于双开口金属环的太赫兹超材料吸波体传感器. 物理学报, doi: 10.7498/aps.71.20212303
    [5] 陈乐迪, 范仁浩, 刘雨, 唐贡惠, 马中丽, 彭茹雯, 王牧. 基于柔性超构材料宽带调控太赫兹波的偏振态. 物理学报, doi: 10.7498/aps.71.20220801
    [6] 王鑫, 王俊林. 太赫兹波段电磁超材料吸波器折射率传感特性. 物理学报, doi: 10.7498/aps.70.20201054
    [7] 庞慧中, 王鑫, 王俊林, 王宗利, 刘苏雅拉图, 田虎强. 双频带太赫兹超材料吸波体传感器传感特性. 物理学报, doi: 10.7498/aps.70.20210062
    [8] 王闯, 鲍容容, 潘曹峰. 基于纳米发电机的触觉传感在柔性可穿戴电子设备中的研究与应用. 物理学报, doi: 10.7498/aps.70.20202157
    [9] 李凤超, 孔振, 吴锦华, 纪欣宜, 梁嘉杰. 柔性压阻式压力传感器的研究进展. 物理学报, doi: 10.7498/aps.70.20210023
    [10] 王大勇, 李兵, 戎路, 赵洁, 王云新, 翟长超. 连续太赫兹波双物距叠层定量相衬成像. 物理学报, doi: 10.7498/aps.69.20191310
    [11] 李闯, 李伟伟, 蔡理, 谢丹, 刘保军, 向兰, 杨晓阔, 董丹娜, 刘嘉豪, 陈亚博. 基于银纳米线电极-rGO敏感材料的柔性NO2气体传感器. 物理学报, doi: 10.7498/aps.69.20191390
    [12] 谈溥川, 赵超超, 樊瑜波, 李舟. 自驱动柔性生物医学传感器的研究进展. 物理学报, doi: 10.7498/aps.69.20201012
    [13] 申茂良, 张岩. 基于压电纳米发电机的柔性传感与能量存储器件. 物理学报, doi: 10.7498/aps.69.20200784
    [14] 侯星宇, 郭传飞. 柔性压力传感器的原理及应用. 物理学报, doi: 10.7498/aps.69.20200987
    [15] 张玉萍, 李彤彤, 吕欢欢, 黄晓燕, 张会云. 工字形太赫兹超材料吸波体的传感特性研究. 物理学报, doi: 10.7498/aps.64.117801
    [16] 欧阳博, 金心宇, 夏永祥, 蒋路茸, 吴端坡. 疾病传播与级联失效相互作用的研究:度不相关网络中疾病扩散条件的分析. 物理学报, doi: 10.7498/aps.63.218902
    [17] 黄斌, 赵翔宇, 齐凯, 唐明, 都永海. 复杂网络的顶点着色及其在疾病免疫中的应用. 物理学报, doi: 10.7498/aps.62.218902
    [18] 张海燕, 曹亚萍, 于建波, 陈先华. 采用单个压电传感器的单模式兰姆波激发频率的选择. 物理学报, doi: 10.7498/aps.60.114301
    [19] 温罗生, 杨小帆, 钟 将. 在二部无标度网上的两性疾病传播. 物理学报, doi: 10.7498/aps.57.4794
    [20] 俞阿龙. 基于小波神经网络的振动速度传感器幅频特性补偿研究. 物理学报, doi: 10.7498/aps.56.3166
计量
  • 文章访问数:  62
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 上网日期:  2025-05-27

/

返回文章
返回