搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种耐高温的柔性压电/热释电双功能传感器

李银辉 殷荣艳 梁建国 李玮栋 范凯 周赟磊

引用本文:
Citation:

一种耐高温的柔性压电/热释电双功能传感器

李银辉, 殷荣艳, 梁建国, 李玮栋, 范凯, 周赟磊
cstr: 32037.14.aps.73.20241006

A flexible piezoelectric/pyroelectric dual-function sensor with high temperature resistance

Li Yin-Hui, Yin Rong-Yan, Liang Jian-Guo, Li Wei-Dong, Fan Kai, Zhou Yun-Lei
cstr: 32037.14.aps.73.20241006
PDF
HTML
导出引用
  • 提高压电聚合物的耐温性, 且构建压电特异结构提高电学输出特性, 成为柔性耐高温压电/热释电双功能传感器制造的关键. 本文采用静电纺丝法制备了聚丙烯腈(PAN)纳米纤维薄膜, 通过程序控温对PAN纳米纤维膜进行热处理得到了耐高温的柔性纤维薄膜. 研究结果表明, PAN耐高温柔性纤维薄膜纳米传感器可以在高温环境(> 500 ℃)中使用, 其输出性能随热处理温度的升高先增大(< 260 ℃)后基本保持不变(260—450 ℃), 最后输出性能减小(> 450 ℃), 当热处理温度达到260 ℃时, 输出电压可达10.08 V, 输出电流达到2.89 μA, 与未进行热处理的PAN膜相比, 其输出电压和电流分别提高了3.54倍和2.83倍. 同时, 该传感器在高温环境下的输出不发生变化. 发现热处理的PAN具有热释电效应, 且热释电输出随着温度梯度的增大而变大. 在5000次的敲击循环测试中, 经过热处理的PAN纳米纤维薄膜传感器具有稳定的输出, 这表明该传感器有望应用在消防安全、航空航天等高温环境中.
    Most of existing piezoelectric polymers have low glass transition temperatures, so they can only operate at lower temperatures (<150 ℃). Once the operating temperature is exceeded, the piezoelectric performance of the device rapidly decreases. At higher temperatures, dense chain motion can interfere with the orientation of dipoles, thus limiting the development of polymer based high-temperature piezoelectric sensors. High-temperature piezoelectric sensor devices are entirely made of inorganic materials, however, inorganic materials are rigid and can only work under small strains. Therefore, enhancing the temperature resistance of piezoelectric polmers and constructing piezoelectric asymmetric structure are the key to fabricating flexible high-temperature resistant piezoelectric/pyroelectric dual functional sensors. In this study, polyacrylonitrile (PAN) nanofiber film is prepared by electrospinning, and then subjected to heat treatment through programmed temperature control. The effects of the different heat-treatment temperatures on the mechanical and electrical performance of PAN nanofiber film are studied systematically, and the results show that PAN high temperature resistant flexible nanofiber film sensors can be used in high temperature environments (>500 ℃). Its output performance is improved with the increase of heat treatment temperature (<260 ℃) and then basically remains unchanged in a temperature range of 260–450 ℃. Finally, the output performance decreases at temperatures higher than 450 ℃. When the heat treatment temperature reaches 260 ℃, the output voltage increases to 10.08 V, and current reaches 2.89 μA. Compared with those of the untreated PAN membranes , its output voltage and current are increase by 3.54 times and 2.83 times, respectively. At the same time, the output of the PAN high temperature resistant flexible nanofiber film sensors is almost unchanged in the high-temperature environments. This is the first time that the pyroelectric effect has been observed in heat-treated PAN nanofiber films and both the open-circuit voltage and short-circuit current have been shown to increase with temperature gradient increasing. Besides, the PAN nanofiber film sensors have durability of more than 5000 cycles at room temperature(25 ℃) even at high temperature (400 ℃). Overall, good flexible, high-temperature resistance, and bifunctional sensing ability make PAN flexible nanofiber film sensors expected to be widely used in high temperature environments such as fire safety, aerospace and other harsh environment.
      通信作者: 李银辉, liyinhui@tyut.edu.cn ; 周赟磊, zhouyunlei@xidian.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 52075361, 52205593)、山西省科技重大专项(批准号: 20201102003)、山西省青年科学基金(批准号: 20210302124046)、山西省面上科学基金(批准号: 20210302123156)和吕梁市校地合作重点研发专项(批准号: 2022XDHZ08)资助的课题.
      Corresponding author: Li Yin-Hui, liyinhui@tyut.edu.cn ; Zhou Yun-Lei, zhouyunlei@xidian.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 52075361, 52205593), the Major Science and Technology Project of Shanxi Province, China (Grant No. 20201102003), the Science Foundation for Youths of Shanxi Province, China (Grant No. 20210302124046), the National Science Foundation of Shanxi Province, China (Grant No. 20210302123156), the Key Research and Development Special Projects of Luliang City and University Cooperation, China (Grant No. 2022XDHZ08).
    [1]

    Wang Y, Zhang J S, Jia X X, Chen M M, Wang H R, Ji G N, Zhou H Y, Fang Z Z, Gao Z X 2024 Nano Energy 119 109080Google Scholar

    [2]

    李凤超, 孔振, 吴锦华, 纪欣宜, 梁嘉杰 2021 物理学报 70 100703Google Scholar

    Li F C, K Z, W J H, Ji X Y, Liang J J 2021 Acta Phys. Sin. 70 100703Google Scholar

    [3]

    Hyeon D Y, Nam C, Ham S S, Hwang G T, Yi S, Kim K T, Park K 2020 Adv. Electron. Mat. 7 1

    [4]

    Hyeon D Y, Lee G J, Lee S H, Park J J, Kim S, Lee M K, Park K I 2022 Compos Part B-eng 234 109671Google Scholar

    [5]

    Li Y H, Sun J J, Li P W, Li X R, Tan J Q, Zhang H L, Li T Y, Liang J G, Zhou Y L, Hai Z Y, Zhang J 2023 J. Mater. Chem. A 11 13708Google Scholar

    [6]

    Hosseini E S, Manjakkal L, Shakthivel D, Dahiya R 2020 ACS Appl. Mater. Interfaces 12 9008Google Scholar

    [7]

    Maity K, Mondal A, Saha M C 2023 ACS Appl. Mater. Interfaces 15 13956

    [8]

    Dong L, Lou J, Shenoy V B 2017 ACS Nano 11 8242Google Scholar

    [9]

    Su Y J, Chen C X, Pan H, Yang Y, Chen G R, Zhao X, Li W X, Gong Q C, Xie G Z, Zhou Y H, Zhang S L, Tai H L, Jiang Y D, Chen J 2021 Adv. Funct. Mater. 31 2010962Google Scholar

    [10]

    Jackson N, Mathewson A 2017 Smart Mater. Struct. 26 045005Google Scholar

    [11]

    Tu Y L, Zheng Y, Guo S Y, Shen J B 2022 ACS Appl. Mater. Interfaces 14 40331Google Scholar

    [12]

    Ding W J, Xu W W, Dong Z J, Liu Y Q, Wang Q 2021 Ceram. Int. 47 29681Google Scholar

    [13]

    Khanbareh H, Hegde M, Bijleveld J C 2017 Royal Society of Chemistry 5 9389

    [14]

    Bahl O, Manocha L 1974 Carbon 12 417Google Scholar

    [15]

    Zhang W X, Liu J, Wu G 2003 Carbon 41 2805Google Scholar

    [16]

    Xue Y, Liu J, Liang J Y 2013 Polym. Degrad. Stabil. 98 219Google Scholar

    [17]

    Li Y, Tan J, Liang K, Li Y, Sun J, Zhang H, Luo C, Li P, Xu J, Jiang H, Wang K 2022 J. Mater. Sci. Mater. Electron. 33 4291Google Scholar

    [18]

    Moon S C, Farris R J 2009 Carbon 47 2829Google Scholar

    [19]

    Lian F, Liu J, Ma Z, Liang J Y 2012 Carbon 50 488Google Scholar

    [20]

    Liu Y, Liu Y, Shang L, Ao Y 2022 J. Appl. Polym. Sci. 139 18

    [21]

    Ge Y, Fu Z Y, Zhang M Y, Zhang H X 2021 J. Appl. Polym. Sci. 138 49603Google Scholar

    [22]

    Sun L H, Shang L, Xiao L H, Zhang M J, Ao Y H , Li M 2020 J. Mater. Sci. 55 3408

    [23]

    Wang W Y, Zheng Y D, Sun Y, Jin X, Niu J R, Cheng M Y, Wang H X, Shao H, Lin T 2021 J. Mater. Chem. A 9 20395Google Scholar

    [24]

    Bai S, Xu Q, Gu L, Ma F, Qin Y, Wang Z L 2012 Nano Energy 1 789Google Scholar

    [25]

    Chen C J, Zhao S L, Pan C F, Zi Y L, Wang F C, Yang C, Wang Z L 2022 Nat. Commun. 13 1391Google Scholar

    [26]

    Fu R M, Tu L J, Zhou Y H, Fan L, Zhang F M, Wang Z G, Xing J, Chen D F, Deng C L, Tan G X, Yu P, Zhou L, Ning C Y 2019 Chem. Mater. 31 9850Google Scholar

    [27]

    Korkmaz S, Kariper I A 2021 Nano Energy 84 105888Google Scholar

  • 图 1  热处理程序温控图

    Fig. 1.  Temperature control chart of the heat treatment program.

    图 2  耐高温柔性PAN压电/热释电双功能传感器示意图

    Fig. 2.  Schematic diagram of the high temperature resistant flexible PAN piezo/pyrooelectric dual function sensor.

    图 3  不同温度热处理PAN纤维的SEM图 (a)未处理; (b) 150 ℃; (c) 260 ℃; (d) 350 ℃; (e) 450 ℃; (f) 550 ℃

    Fig. 3.  SEM of PAN fibers at different heat treatment temperatures: (a) Untreated; (b) 150 ℃; (c) 260 ℃; (d) 350 ℃; (e) 450 ℃; (f) 550 ℃.

    图 4  (a) 不同温度热处理PAN纤维薄膜的XRD图谱; (b) PAN-untreated, (c) PAN-150 ℃, (d) PAN-260 ℃的XRD谱图的拟合曲线   

    Fig. 4.  (a) XRD profiles of PAN fiber films at different heat treatment temperatures; the peak-fitting curves of XRD spectrum of (b) PAN-untreated, (c) PAN-150 ℃, (d) PAN-260 ℃.

    图 5  PAN-untreated, PAN-260 ℃, PAN-550 ℃纳米纤维膜DSC曲线

    Fig. 5.  DSC curve of PAN-untreated, PAN-260 ℃ and PAN-550 ℃ nanofiber films.

    图 6  不同温度热处理PAN纤维薄膜的压电输出 (a) 开路电压; (b) 短路电流; (c) 正反接测试; (d) 输出功率(PAN-450 ℃)

    Fig. 6.  Piezoelectric output of PAN fiber films at different heat treatment temperatures: (a) Open circuit voltage; (b) short-circuit current; (c) positive and negative test; (d) output power (PAN-450 ℃).

    图 7  PAN-450 ℃纤维薄膜的高温压电测试 (a) 不同高温环境下的电压输出; (b) 正反接测试(400 ℃)

    Fig. 7.  High-temperature piezoelectric test of PAN-450 ℃ fiber film: (a) Voltage output at different high-temperature environments; (b) positive and negative test (400 ℃).

    图 8  PAN-450 ℃纤维薄膜的热释电性能测试 (a) 电压输出; (b) 电流输出

    Fig. 8.  Pyroelectric performance test of PAN-450 ℃ fiber film: (a) Voltage output; (b) current output.

    图 9  (a) 电偶极子取向示意图; (b) 压电效应原理图; (c) 热释电效应原理图

    Fig. 9.  (a) Schematic illustration of the orientation of the electric dipoles; (b) schematic diagram of the piezoelectric effect; (c) schematic diagram of the pyroelectric effect.

    图 10  PAN-450 ℃纤维薄膜的稳定性测试 (a) 室温(25 ℃); (b) 高温(400 ℃)

    Fig. 10.  Stability testing of the PAN-450 ℃ fiber film: (a) Room temperature (25 ℃); (b) high temperature (400 ℃).

  • [1]

    Wang Y, Zhang J S, Jia X X, Chen M M, Wang H R, Ji G N, Zhou H Y, Fang Z Z, Gao Z X 2024 Nano Energy 119 109080Google Scholar

    [2]

    李凤超, 孔振, 吴锦华, 纪欣宜, 梁嘉杰 2021 物理学报 70 100703Google Scholar

    Li F C, K Z, W J H, Ji X Y, Liang J J 2021 Acta Phys. Sin. 70 100703Google Scholar

    [3]

    Hyeon D Y, Nam C, Ham S S, Hwang G T, Yi S, Kim K T, Park K 2020 Adv. Electron. Mat. 7 1

    [4]

    Hyeon D Y, Lee G J, Lee S H, Park J J, Kim S, Lee M K, Park K I 2022 Compos Part B-eng 234 109671Google Scholar

    [5]

    Li Y H, Sun J J, Li P W, Li X R, Tan J Q, Zhang H L, Li T Y, Liang J G, Zhou Y L, Hai Z Y, Zhang J 2023 J. Mater. Chem. A 11 13708Google Scholar

    [6]

    Hosseini E S, Manjakkal L, Shakthivel D, Dahiya R 2020 ACS Appl. Mater. Interfaces 12 9008Google Scholar

    [7]

    Maity K, Mondal A, Saha M C 2023 ACS Appl. Mater. Interfaces 15 13956

    [8]

    Dong L, Lou J, Shenoy V B 2017 ACS Nano 11 8242Google Scholar

    [9]

    Su Y J, Chen C X, Pan H, Yang Y, Chen G R, Zhao X, Li W X, Gong Q C, Xie G Z, Zhou Y H, Zhang S L, Tai H L, Jiang Y D, Chen J 2021 Adv. Funct. Mater. 31 2010962Google Scholar

    [10]

    Jackson N, Mathewson A 2017 Smart Mater. Struct. 26 045005Google Scholar

    [11]

    Tu Y L, Zheng Y, Guo S Y, Shen J B 2022 ACS Appl. Mater. Interfaces 14 40331Google Scholar

    [12]

    Ding W J, Xu W W, Dong Z J, Liu Y Q, Wang Q 2021 Ceram. Int. 47 29681Google Scholar

    [13]

    Khanbareh H, Hegde M, Bijleveld J C 2017 Royal Society of Chemistry 5 9389

    [14]

    Bahl O, Manocha L 1974 Carbon 12 417Google Scholar

    [15]

    Zhang W X, Liu J, Wu G 2003 Carbon 41 2805Google Scholar

    [16]

    Xue Y, Liu J, Liang J Y 2013 Polym. Degrad. Stabil. 98 219Google Scholar

    [17]

    Li Y, Tan J, Liang K, Li Y, Sun J, Zhang H, Luo C, Li P, Xu J, Jiang H, Wang K 2022 J. Mater. Sci. Mater. Electron. 33 4291Google Scholar

    [18]

    Moon S C, Farris R J 2009 Carbon 47 2829Google Scholar

    [19]

    Lian F, Liu J, Ma Z, Liang J Y 2012 Carbon 50 488Google Scholar

    [20]

    Liu Y, Liu Y, Shang L, Ao Y 2022 J. Appl. Polym. Sci. 139 18

    [21]

    Ge Y, Fu Z Y, Zhang M Y, Zhang H X 2021 J. Appl. Polym. Sci. 138 49603Google Scholar

    [22]

    Sun L H, Shang L, Xiao L H, Zhang M J, Ao Y H , Li M 2020 J. Mater. Sci. 55 3408

    [23]

    Wang W Y, Zheng Y D, Sun Y, Jin X, Niu J R, Cheng M Y, Wang H X, Shao H, Lin T 2021 J. Mater. Chem. A 9 20395Google Scholar

    [24]

    Bai S, Xu Q, Gu L, Ma F, Qin Y, Wang Z L 2012 Nano Energy 1 789Google Scholar

    [25]

    Chen C J, Zhao S L, Pan C F, Zi Y L, Wang F C, Yang C, Wang Z L 2022 Nat. Commun. 13 1391Google Scholar

    [26]

    Fu R M, Tu L J, Zhou Y H, Fan L, Zhang F M, Wang Z G, Xing J, Chen D F, Deng C L, Tan G X, Yu P, Zhou L, Ning C Y 2019 Chem. Mater. 31 9850Google Scholar

    [27]

    Korkmaz S, Kariper I A 2021 Nano Energy 84 105888Google Scholar

  • [1] 高裕昆, 赵洁, 周晶晶, 周静. 压电纤维复合材料智能传感器的有限元预测与器件性能研究. 物理学报, 2025, 74(5): . doi: 10.7498/aps.74.20241379
    [2] 余慧芬, 祁核, 涂小牛, 张海波, 陈大力, 吴捷, 陈骏. 高温压电振动传感器及其压电材料研究进展. 物理学报, 2025, 74(2): 027702. doi: 10.7498/aps.74.20240906
    [3] 侯星宇, 郭传飞. 柔性压力传感器的原理及应用. 物理学报, 2020, 69(17): 178102. doi: 10.7498/aps.69.20200987
    [4] 李闯, 李伟伟, 蔡理, 谢丹, 刘保军, 向兰, 杨晓阔, 董丹娜, 刘嘉豪, 陈亚博. 基于银纳米线电极-rGO敏感材料的柔性NO2气体传感器. 物理学报, 2020, 69(5): 058101. doi: 10.7498/aps.69.20191390
    [5] 马超, 闵道敏, 李盛涛, 郑旭, 李西育, 闵超, 湛海涯. 聚丙烯/氧化铝纳米电介质的陷阱与直流击穿特性. 物理学报, 2017, 66(6): 067701. doi: 10.7498/aps.66.067701
    [6] 陈钢进, 饶成平, 肖慧明, 黄华, 赵延海. 界面极化注极聚丙烯薄膜驻极体的电荷存储特性研究. 物理学报, 2015, 64(23): 237702. doi: 10.7498/aps.64.237702
    [7] 武丽明, 张晓青. 交联聚丙烯压电驻极体的压电性能及振动能量采集研究. 物理学报, 2015, 64(17): 177701. doi: 10.7498/aps.64.177701
    [8] 唐海通, 敖玉辉, 王聪, 赵瑞雪, 高忠民, 孟繁玲. 聚丙烯腈基碳纤维原丝在纺丝过程中纳米孔变化规律与机理研究. 物理学报, 2015, 64(4): 046101. doi: 10.7498/aps.64.046101
    [9] 张添乐, 黄曦, 郑凯, 张欣梧, 王宇杰, 武丽明, 张晓青, 郑洁, 朱彪. 极化电压对聚丙烯压电驻极体膜压电性能的影响. 物理学报, 2014, 63(15): 157703. doi: 10.7498/aps.63.157703
    [10] 迟晓红, 高俊国, 郑杰, 张晓虹. 聚丙烯中电树枝生长机理研究. 物理学报, 2014, 63(17): 177701. doi: 10.7498/aps.63.177701
    [11] 张欣梧, 张晓青. 聚丙烯压电驻极体膜的压电和声学性能研究. 物理学报, 2013, 62(16): 167702. doi: 10.7498/aps.62.167702
    [12] 张彩红, 盛毅, 田红, 徐耀, 吕春祥, 吴忠华. 全谱拟合法研究聚丙烯腈基碳纤维形成过程中晶态结构演变. 物理学报, 2011, 60(3): 036101. doi: 10.7498/aps.60.036101
    [13] 高鹏举, 章文贡, 陈淑卿, 周秀华, 肖丽足. YBCO/聚丙烯腈杂化膜及其超导性研究. 物理学报, 2010, 59(1): 583-586. doi: 10.7498/aps.59.583
    [14] 王建立, 熊国平, 顾明, 张兴, 梁吉. 多壁碳纳米管/聚丙烯复合材料热导率研究. 物理学报, 2009, 58(7): 4536-4541. doi: 10.7498/aps.58.4536
    [15] 王飞鹏, 夏钟福, 张晓青, 黄金峰, 沈 军. 宏观电偶极子对聚丙烯铁电驻极体膜电荷储存及其动态特性的影响. 物理学报, 2007, 56(10): 6061-6067. doi: 10.7498/aps.56.6061
    [16] 王飞鹏, 夏钟福, 邱勋林, 沈 军. 聚丙烯孔洞铁电驻极体膜的电极化及其电荷动态特性. 物理学报, 2006, 55(7): 3705-3710. doi: 10.7498/aps.55.3705
    [17] 张鹏锋, 夏钟福, 邱勋林, 王飞鹏, 吴贤勇. 充电参数对聚丙烯蜂窝膜驻极体压电性的影响. 物理学报, 2006, 55(2): 904-909. doi: 10.7498/aps.55.904
    [18] 邱勋林, 夏钟福, 安振连, 吴贤勇. 热膨胀处理的聚丙烯蜂窝膜驻极体的压电性. 物理学报, 2005, 54(1): 402-406. doi: 10.7498/aps.54.402
    [19] 张鹏锋, 夏钟福, 邱勋林, 吴贤勇. 聚丙烯蜂窝膜驻极体压电系数的测量及压电性的改善. 物理学报, 2005, 54(1): 397-401. doi: 10.7498/aps.54.397
    [20] 唐明道. 聚丙烯腈与硝酸银络合后的热处理产物的红外光谱. 物理学报, 1963, 19(12): 830-832. doi: 10.7498/aps.19.830
计量
  • 文章访问数:  1531
  • PDF下载量:  44
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-19
  • 修回日期:  2024-08-28
  • 上网日期:  2024-09-05
  • 刊出日期:  2024-10-20

/

返回文章
返回