搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种耐高温的柔性压电/热释电双功能传感器

李银辉 殷荣艳 梁建国 李玮栋 范凯 周赟磊

引用本文:
Citation:

一种耐高温的柔性压电/热释电双功能传感器

李银辉, 殷荣艳, 梁建国, 李玮栋, 范凯, 周赟磊

A flexible piezoelectric/pyroelectric dual-function sensor resistant to high temperature

Li Yinhui, Yin Rongyan, Liang Jianguo, Li Weidong, Fan Kai, Zhou Linlei
PDF
导出引用
  • 提高压电聚合物的耐温性,且构建压电特异结构提高电学输出特性,成为柔性耐高温压电/热释电双功能传感器制造的关键。本文采用静电纺丝法制备了聚丙烯腈(PAN)纳米纤维薄膜,通过程序控温对PAN纳米纤维膜进行热处理得到了耐高温的柔性纤维薄膜。研究结果表明,PAN耐高温柔性纤维薄膜纳米传感器可以在高温环境(> 500 ℃)中使用,其输出性能随热处理温度的升高先增大(< 260 ℃)后基本保持不变(260-450 ℃),最后输出性能减小(> 450 ℃),当热处理温度达到260 ℃时,输出电压可达10.08 V,输出电流达到2.89 μA,与未进行热处理的PAN膜相比,其输出电压和电流分别提高了3.54倍和2.83倍。同时,该传感器在高温环境下的输出不发生变化。首次发现热处理的PAN具有热释电效应,且热释电输出随着温度梯度的增加而变大。在5000次的敲击循环测试中,经过热处理的PAN纳米纤维薄膜传感器具有稳定的输出,这表明该传感器有望应用在消防安全、航空航天等高温环境中。
    Most exiting piezoelectric polymers have low glass transition temperature, so they can only opereture at lower temperature (<150 °C). Once the operate temperature is exceeded, the piezoelectric performance of the device rapidly decreases. At higher temperatures, dense chain motion can interfere with the orientation of dipoles, thus limiting the development of polmer based high-temperature piezoelectric sensors. High-temperature piezoelectric sensor devices are entirely made of inorganic materials, however, inorganic materials are rigid and can only under small strains. Therefore, the enhancement the temperature resistance of piezoelectric polmers and constructing piezoelectric asymmetric structure are the key to the manufacturing of flexible high-temperature resistant piezoelectric/pyroelectric dual functional sensors. In this study, polyacrylonitrile (PAN) nanofiber film was prepared by electrospinning, then heat treating PAN nanofiber film by program temperature control. The effects of the different heat-treatment temperatures on the mechanical and electrical performance of PAN nanofiber film are studied systematically. The results of the study show that, PAN high temperature resistant flexible nanofiber film sensors can be used in high temperature environment (> 500 ℃). Its output performance increases with the increase of heat treatment temperature (< 260 ℃) and then basically remains unchanged (260-450 ℃). Finally, the output performance decreased (> 450 ℃). When the heat treatment temperature reaches 260 ℃, the output voltage was up to 10.08 V, and current reached 2.89 μA. Compared to the PAN membranes without heat treatment, its output voltage and current were increased by 3.54 times and 2.83 times, respectively. At the same time, the output of the PAN high temperature resistant flexible nanofiber film sensors almost unchanged in the high-temperature environment. For the first time, the heat-treated PAN nanofiber film has a pyroelectric effect, and the pyroelectric output open-circuit voltage and short-circuit current increase with the increasing of the temperature gradient. Besides, the PAN nanofiber film sensors have durability for over 5000 cycles under room temperature(25 °C), and it also has durability for over 5000 cycles under high temperature (400 °C). Overall, good flexible, high-temperature resistance, and bifunctional sensing ability make PAN flexible nanofiber film sensors expect to be widely used in high temperature environments such as fire safety, aerospace and other harsh environment.
  • [1]

    Wang Y, Zhang J S, Jia X X, Chen M M, Wang H R, Ji G N, Zhou H Y, Fang Z Z, Gao Z X 2024 Nano Energy 119 109080

    [2]

    Li F C, K Z, W J H, Ji X Y, Liang J J 2021 Acta Phys. Sin. 70 100703 李凤超, 孔振, 吴锦华, 纪欣宜, 梁嘉杰 2021 物理学报 70 100703

    [3]

    Hyeon D Y, Nam C, Ham S S, Hwang G T, Yi S, Kim K T, Park K 2020 Adv. Electron. Mat. 7 1

    [4]

    Hyeon D Y, Lee G J, Lee S H, Park J J, Kim S, Lee M K, Park K I 2022 Compos Part B-eng 234 109671

    [5]

    Li Y H, Sun J J, Li P W, Li X R, Tan J Q, Zhang H L, Li T Y, Liang J G, Zhou Y L, Hai Z Y, Zhang J 2023 J. Mater. Chem. A 11 13708

    [6]

    Hosseini E S, Manjakkal L, Shakthivel D, Dahiya R 2020 ACS Appl. Mater. Interfaces 12 9008

    [7]

    Maity K, Mondal A, Saha M C 2023 ACS Appl. Mater. Interfaces 15 13956

    [8]

    Dong L, Lou J, Shenoy V B 2017 ACS Nano 11 8242

    [9]

    Su Y J, Chen C X, Pan H, Yang Y, Chen G R, Zhao X, Li W X, Gong Q C, Xie G Z, Zhou Y H, Zhang S L, Tai H L, Jiang Y D, Chen J 2021 Adv. Funct. Mater. 31 2010962

    [10]

    Jackson N, Mathewson A 2017 Smart Mater. Struct. 26 045005

    [11]

    Tu Y L, Zheng Y, Guo S Y, Shen J B 2022 ACS Appl. Mater. Interfaces 14 40331

    [12]

    Ding W J, Xu W W, Dong Z J, Liu Y Q, Wang Q 2021 Ceram. Int. 47 29681

    [13]

    Khanbareh H, Hegde M, Bijleveld J C 2017 Royal Society of Chemistry 5 9389

    [14]

    Bahl O, Manocha L 1974 Carbon 12 417

    [15]

    Zhang W X, Liu J, Wu G, 2003 Carbon 41 2805

    [16]

    Xue Y, Liu J, Liang J 2013 Polym. Degrad. Stab. 98 219

    [17]

    Li Y, Tan J, Liang K, Li Y, Sun J, Zhang H, Luo C, Li P, Xu J, Jiang H, Wang K 2022 J. Mater. Sci. Mater. Electron. 33 4291

    [18]

    Moon S C, Farris R J 2009 Carbon 47 2829

    [19]

    Lian F, Liu J, Ma Z, Liang J Y 2012 Carbon 50 488

    [20]

    Liu Y, Liu Y, Shang L, Ao Y 2022 J. Appl. Polym. Sci. 139 18

    [21]

    Ge Y, Fu Z Y, Zhang M Y, Zhang H X 2021 J. Appl. Polym. Sci. 138 49603

    [22]

    Sun L H, Shang L, Xiao L H, Zhang M J, Ao Y H, Li M 2020 J. Mater. Sci. 55 3408

    [23]

    Wang W Y, Zheng Y D, Sun Y, Jin X, Niu J R, Cheng M Y, Wang H X, Shao H, Lin T 2021 J. Mater. Chem. A 9 20395

    [24]

    Bai S, Xu Q, Gu L, Ma F, Qin Y, Wang Z L 2012 Nano Energy 1 789

    [25]

    Chen C J, Zhao S L, Pan C F, Zi Y L, Wang F C, Yang C, Wang Z L 2022 Nat. Commun. 13 1391

    [26]

    Fu R, Tu L, Zhou Y, Fan L, Zhang F, Wang Z, Xing J, Chen D, Deng C, Tan G, Yu P, Zhou L, Ning C 2019 Chem. Mater. 31 9850

    [27]

    Korkmaz S, Kariper I. A 2021 Nano Energy 84 105888

  • [1] 侯星宇, 郭传飞. 柔性压力传感器的原理及应用. 物理学报, doi: 10.7498/aps.69.20200987
    [2] 李闯, 李伟伟, 蔡理, 谢丹, 刘保军, 向兰, 杨晓阔, 董丹娜, 刘嘉豪, 陈亚博. 基于银纳米线电极-rGO敏感材料的柔性NO2气体传感器. 物理学报, doi: 10.7498/aps.69.20191390
    [3] 李敏, 时鑫娜, 张泽霖, 吉彦达, 樊济宇, 杨浩. 柔性Pb(Zr0.53Ti0.47)O3薄膜的高温铁电特性. 物理学报, doi: 10.7498/aps.68.20181967
    [4] 马超, 闵道敏, 李盛涛, 郑旭, 李西育, 闵超, 湛海涯. 聚丙烯/氧化铝纳米电介质的陷阱与直流击穿特性. 物理学报, doi: 10.7498/aps.66.067701
    [5] 陈钢进, 饶成平, 肖慧明, 黄华, 赵延海. 界面极化注极聚丙烯薄膜驻极体的电荷存储特性研究. 物理学报, doi: 10.7498/aps.64.237702
    [6] 武丽明, 张晓青. 交联聚丙烯压电驻极体的压电性能及振动能量采集研究. 物理学报, doi: 10.7498/aps.64.177701
    [7] 唐海通, 敖玉辉, 王聪, 赵瑞雪, 高忠民, 孟繁玲. 聚丙烯腈基碳纤维原丝在纺丝过程中纳米孔变化规律与机理研究. 物理学报, doi: 10.7498/aps.64.046101
    [8] 张添乐, 黄曦, 郑凯, 张欣梧, 王宇杰, 武丽明, 张晓青, 郑洁, 朱彪. 极化电压对聚丙烯压电驻极体膜压电性能的影响. 物理学报, doi: 10.7498/aps.63.157703
    [9] 迟晓红, 高俊国, 郑杰, 张晓虹. 聚丙烯中电树枝生长机理研究. 物理学报, doi: 10.7498/aps.63.177701
    [10] 张欣梧, 张晓青. 聚丙烯压电驻极体膜的压电和声学性能研究. 物理学报, doi: 10.7498/aps.62.167702
    [11] 张彩红, 盛毅, 田红, 徐耀, 吕春祥, 吴忠华. 全谱拟合法研究聚丙烯腈基碳纤维形成过程中晶态结构演变. 物理学报, doi: 10.7498/aps.60.036101
    [12] 高鹏举, 章文贡, 陈淑卿, 周秀华, 肖丽足. YBCO/聚丙烯腈杂化膜及其超导性研究. 物理学报, doi: 10.7498/aps.59.583
    [13] 王建立, 熊国平, 顾明, 张兴, 梁吉. 多壁碳纳米管/聚丙烯复合材料热导率研究. 物理学报, doi: 10.7498/aps.58.4536
    [14] 王飞鹏, 夏钟福, 张晓青, 黄金峰, 沈 军. 宏观电偶极子对聚丙烯铁电驻极体膜电荷储存及其动态特性的影响. 物理学报, doi: 10.7498/aps.56.6061
    [15] 王飞鹏, 夏钟福, 邱勋林, 沈 军. 聚丙烯孔洞铁电驻极体膜的电极化及其电荷动态特性. 物理学报, doi: 10.7498/aps.55.3705
    [16] 张鹏锋, 夏钟福, 邱勋林, 王飞鹏, 吴贤勇. 充电参数对聚丙烯蜂窝膜驻极体压电性的影响. 物理学报, doi: 10.7498/aps.55.904
    [17] 邱勋林, 夏钟福, 安振连, 吴贤勇. 热膨胀处理的聚丙烯蜂窝膜驻极体的压电性. 物理学报, doi: 10.7498/aps.54.402
    [18] 张鹏锋, 夏钟福, 邱勋林, 吴贤勇. 聚丙烯蜂窝膜驻极体压电系数的测量及压电性的改善. 物理学报, doi: 10.7498/aps.54.397
    [19] 严 媚, 马世红, 刘丽英, 王文澄, 陈张海, 刘普霖. 半花菁有序超薄膜热释电效应的产生机理. 物理学报, doi: 10.7498/aps.47.1917
    [20] 唐明道. 聚丙烯腈与硝酸银络合后的热处理产物的红外光谱. 物理学报, doi: 10.7498/aps.19.830
计量
  • 文章访问数:  122
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 上网日期:  2024-09-05

/

返回文章
返回