-
压电振动传感器与其他振动传感技术相比具有频率范围宽、动态范围大、结构简单、工作可靠、体积小等优点,在核电行业、航空航天、轨道交通及国防军工等多个领域有着广泛的应用。然而,随着振动测试技术的飞速发展以及应用领域的不断拓宽,对压电振动传感器在极端环境中长时服役的可靠性提出了更高要求,如何提高压电振动传感器的服役温度满足极端环境下的应用需求是目前迫切解决的问题。本文综述了高温压电传感技术应用场景和工作原理,讨论了常见的高温压电陶瓷和晶体材料,系统总结了现有的压电振动传感器工作模式、不同类型压电振动传感器结构及传感器振动校准装置,重点介绍了近年来国内外高温振动传感器的研究进展。在此基础上,探讨了高温压电振动传感器当前面临的问题及未来发展趋势,为开发下一代极端环境应用的超高温振动传感器提供了思路,有望促进国内高温压电振动传感技术的进一步研究。Vibration sensor technology, particularly piezoelectric vibration sensors, is extensively utilized across various fields due to their excellent dynamic response, linearity, wide bandwidth, high sensitivity, large temperature range, simple structure, and stable performance. They are widely applied in sectors such as nuclear power, aerospace, rail transportation, and defense industries. However, most piezoelectric vibration sensors are limited to operating temperatures below 500 ℃, which restricts their use in extreme high-temperature environments encountered in nuclear reactors, aircraft engines, missile systems, and internal combustion engines. These application scenarios impose higher demands on the reliability of piezoelectric vibration sensors for long-term service in extreme environments. How to improve the operating temperature of piezoelectric vibration sensors to meet the application needs in extreme environments is currently an urgent problem to be solved.
High-temperature piezoelectric materials, as the core components of piezoelectric vibration sensors, play a decisive role in determining the overall performance of the sensor. Common high-temperature piezoelectric materials include piezoelectric ceramics and single crystals. To ensure stable operation and excellent sensitivity in extreme environments, it is essential to select piezoelectric materials with high Curie temperatures, high piezoelectric coefficients, high resistivity, and low dielectric losses as the sensing elements of the sensor. Piezoelectric vibration sensors typically come in three main types: bending, compression, and shear. In addition to selecting the appropriate piezoelectric material, it is also crucial to choose the optimal sensor structure tailored to the specific application scenario.
Based on the urgent demand for ultrahigh-temperature vibration sensors, this paper primarily reviews the current research progress on high-temperature piezoelectric materials and high-temperature piezoelectric vibration sensors, summarizes the structures, advantages and disadvantages, and application scenarios of different types of high-temperature piezoelectric vibration sensors, explores the current problems and future development trends of high-temperature piezoelectric vibration sensors, and provides ideas for developing the next generation of ultrahigh temperature vibration sensors for extreme environmental applications, which is expected to promote the further development of high-temperature piezoelectric vibration sensing technology.-
Keywords:
- vibration sensors /
- high-temperature piezoelectric materials /
- vibration modes /
- vibration calibration devices
-
[1] Lv Q 2006Principles and Applications of Modern Sensors (Beijing: Tsinghua University Press) (in Chinese) [吕泉2006现代传感器原理及应用(北京: 清华大学出版社)]
[2] Giuliani A, Drera L, Arancio D, Mukhopadhyay B, Ngo H D 2014Procedia Engineering 87 720
[3] Vandeparre H, Watson D, Lacour S 2013Appl. Phys. Lett. 103 20
[4] Tavakkoli H, Momen H G, Sani E A, Yazgi M 2017proceedings of the 201710th International Conference on Electrical and Electronics Engineering Bursa, Turkey, November 30-December 02, 2017 p459
[5] Yao Z, Liang T, Jia P G, Hong Y P, Qi L, Lei C, Zhang B, Xiong J J 2016Sensors 16 913
[6] Roessig T A, Howe R T, Pisano A P, Smith J H 1997proceedings of the Proceedings of International Solid State Sensors and Actuators Conference Chicago, United States, June 19, 1997 p859
[7] Kim N I, Chang Y L, Chen J, Barbee T, Wang W, Kim J Y, Kwon M K, Shervin S, Moradnia M, Pouladi S, Khatiwada D, Selvamanickam V, Ryou J H 2020Sens. Actuator A-Phys. 305 111940
[8] Jiang X N, Kim K, Zhang S J, Johnson J, Salazar G 2013Sensors 14 144
[9] Yu F P, Zhang S J, Zhao X, Yuan D R, Qin L F, Wang Q M, Shrout T R 2011IEEE Trans. Ultrason. Ferroelectr. Freq. Control58 868
[10] Shrout T R, Yu F P, Zhang S J, Wang Q M, Fei Y, Chai B 2011proceedings of the 2011 Joint Conference of the IEEE International Frequency Control and the European Frequency and Time Forum (FCS) ProceedingsSan Francisco, United States, May 1-52011 p82
[11] Salazar G, Kim K, Zhang S J, Jiang X N 2012Nondestructive Characterization for Composite Materials, Aerospace Engineering, Civil Infrastructure, and Homeland Security 2012 San Diego, United States, March 12-15, 2012 p8347
[12] Yu F P, Duan X, Zhang S J, Lu Q, Zhao X 2014Crystals 4 241
[13] Yuan Y P, Mei Y, Qi L C, Zhang Z W, Li X F, Wang P D 2022Piezoelectrics & Acoustooptics 44 940(in Chinese) [袁宇鹏, 梅勇, 齐良才, 张祖伟, 李小飞, 王登攀2022压电与声光44 940]
[14] Wu Z D 1988J. Exp. Mech. 3 329(in Chinese) [吴宗岱1988实验力学3 329]
[15] Zhang Y F 2003M.S. Thesis (Xi'an: Northwestern Polytechnical University) (in Chinese) [张永峰2003硕士学位论文(西安: 西北工业大学)]
[16] Hall C L, Leary S, Lapierre L, Hess A, Bladen K 2001proceedings of the 2001 IEEE Aerospace Conference Proceedings Montana, United States, March 10-17, 2001 p3069
[17] Zhang X F 1990Avionics Technology 11 (in Chinese) [张福学1990航空电子技术1 1]
[18] Zhou J 2016M.S. Thesis (Wuhan: Huazhong University of Science and Technology) (in Chinese) [周俊2016硕士学位论文(武汉: 华中科技大学)]
[19] Wu D F, Zhao S G, Pan B, Wang Y W, Wang J, Mou M, Zhu L 2013Acta Mech. Sin. 45 598(in Chinese) [吴大方, 赵寿根, 潘兵, 王岳武, 王杰, 牟朦, 朱林2013力学学报45 598]
[20] Crawley E F 1994AIAA J. 32 1689
[21] High-temperature modal survey of a hot-structure control surface, Spivey ND https://ntrs.nasa.gov/citations/20110023803[2011-6-1]
[22] Sun M X, Ji J Y, Shi Y F, Chen Y L, Zhang Q S 2019Struct. Environ. Eng. 46 54(in Chinese) [孙明晓, 季俊云, 史岩峰, 陈玉玲, 张巧寿2019强度与环境46 54]
[23] Turner R, Fuierer P A, Newnham R, Shrout T R 1994Appl. Acoust. 41 299
[24] Fleming W J 2001IEEE Sens. J. 1 296
[25] Yuan Y P, Wang D P, Li X F, Li J, Hu Y, Zeng X B 2019Piezoelectrics & Acoustooptics 41 49(in Chinese) [袁宇鹏, 王登攀, 李小飞, 李军, 胡杨, 曾翔豹压电与声光41 49]
[26] Bulst W E, Fischerauer G, Reindl L 1998proceedings of the IECON'98 Proceedings of the 24th Annual Conference of the IEEE Industrial Electronics Society Aachen, Germany, August 31-September 04, 1998 p265
[27] Wang S R 2000Theory and Applications of Silicon Miniature Inertial Devices (Nanjing: Southeast University Press) (in Chinese) [王寿荣2000硅微型惯性器件理论及应用(南京: 东南大学出版社)]
[28] Kazys R, Vaskeliene V 2021Sensors 21 3200
[29] Frame P I, Spring 2004IEEE Trans. Ultrason. Ferroelectr. Freq. Control 50 762
[30] Yu F P, Duan X L, Zhang S J, Yu Y G, Ma T F, Zhao X T 2012proceedings of the 2012 Symposium on Piezoelectricity, Acoustic Waves, and Device Applications Shanghai, China, November 23-252012 p293
[31] Wang T Z, Zhou Z Y, Li W, Dong X L, Zhang L 2020Transducer & Microsyst. Technol. 39 1(in Chinese) [王天资, 周志勇, 李伟, 董显林, 张磊2020传感器与微系统, 39 1]
[32] Shan C X 1999Theoretical and design basis of sensors and their applications (Beijing: National Defense Industry Press) (in Chinese) [单成祥1999传感器的理论与设计基础及其应用(北京: 国防工业出版社)]
[33] Bilgunde P N, Bond L J 2018Ultrasonics 87 103
[34] Yu J C, Lan C B 2001Sens. Actuator A-Phys. 88 178
[35] Kim K, Zhang S J, Salazar G, Jiang X N 2012Sens. Actuator A-Phys. 178 40
[36] Wang D Y, Wang A J, Wang W S, Li L, Zhang Y B, Zhai J W 2021J. Ceram. 42 376(in Chinese) [王丹钰, 王安玖, 王五松, 李荔, 张垚宾, 翟继卫2021陶瓷学报42 376]
[37] Luan G D, Zhang J D, Wang R Q 2005Piezoelectric transducers and transducer arrays (Beijing: Peking University Press) (in Chinese) [栾桂冬, 张金铎, 王仁乾2005压电换能器和换能器阵(北京: 北京大学出版社)]
[38] Li Q L, Cao J X, Zhao L Y, Lv J M, Fan G F 2008CIE Prog. 1 16(in Chinese) [李庆利, 曹建新, 赵丽媛, 吕剑明, 范冠锋2008化工进展1 16]
[39] Zhang F Q, Li Y X 2014J. Inorg. Mater. 29 449
[40] Chen L, Liu H, Qi H, Chen J 2022Prog. Mater. Sci. 127 100944
[41] Jaffe B, Roth R, Marzullo S 1954J. Appl. Phys. 25 809
[42] Kumar A, Bhanu Prasad V V, James Raju K C, James A R 2015J. Mater. Sci.-Mater. Electron. 26 3757
[43] Eitel R E, Randall C A, Shrout T R, Rehrig P W, Hackenberger W, Park S E 2001Jpn. J. Appl. Phys. 40 5999
[44] Dong Y Z, Zou K, Liang R H, Zhou Z Y 2023Prog.Mater. Sci. 132 101026
[45] Zou T T, Wang X H, Wang H, Zhong C F, Li L T, Chen I W 2008Appl. Phys. Lett. 93 19
[46] Zhao H Y, Hou Y D, Yu X L, Zheng M P, Zhu M K 2018J. Appl.Phys. 124 19
[47] Kim Y M, Kumar A, Hatt A, Morozovska A N, Tselev A, Biegalski M D, Ivanov I, Eliseev E A, Pennycook S J, Rondinelli J M, Kalinin S V, Borisevich A Y 2013Adv. Mater.25 2497
[48] Dho J H, Qi X D, Kim H, MacManus-Driscoll J L, Blamire M G 2006Adv. Mater. 18 1445
[49] Leontsev S O, Eitel R E 2009J. Am. Ceram. Soc. 92 2957
[50] Kim S, Miyauchi R, Sato Y, Nam H, Fujii I, Ueno S 2023Adv. Mater. 35 11
[51] Yang H B, Sun Y Y, Gao H Y, Zhou X Y, Tan H, Shu C 2022IEEE Trans. Ultrason. Ferroelectr. Freq. Control 69 3102
[52] Lee M H, Kim D J, Park J S, Kim S W, Song T K, Kim M H 2015Adv. Mater. 27 6976
[53] Hu H, Zhuang J, Weng Y X, Zhang N, Wang B Y, Wang D W, Feng G B, Ren W 2023J. Eur. Ceram. Soc.43 6815
[54] Hu W, Tan X L, Rajan K 2011J. Eur. Ceram. Soc. 31 801
[55] Sun S D, Liu Y, Zhang Y Y, Wang L, Huo C R, Deng S Q, Liu H, Ren Y, Wu J, Oi H, Chen J 2022Acta Mater. 239 118285
[56] Wang K, Yao F Z, Jo W, Gobeljic D, Shvartsman V V, Lupascu D C, Li J F, ROEDEL J 2013Adv. Funct. Mater. 23 4079
[57] Yao F Z, Wang K, Jo W, Webber K G, Comyn T P, Ding J X, Xu B, Cheng L Q, Zheng M P, Hou Y D, Li J F 2016Adv. Funct. Mater. 26 1217
[58] Zhang M H, Wang K, Du Y J, Dai G, Sun W, Li G, Hu D, Thong H C, Zhao C L, Xi X Q, Yue Z X, Li J F 2017J. Am. Chem. Soc. 139 3889
[59] Li P, Zhai J W, Shen B, Zhang S J, Li X L, Zhu F Y, Zhang X M 2018Adv.Mater. 30 1705171
[60] Egerton L, Dillon D M 1959J. Am. Ceram. Soc. 42 438
[61] Zuo R Z, Fu J 2011J. Am. Ceram. Soc. 94 1467
[62] Zhang B Y, Wu J G, Cheng X J, Wang X P, Xiao D Q, Zhu J G, Wang X J, Lou X J 2013ACS Appl. Mater. Interfaces 5 7718
[63] Wu J G, Wang X P, Cheng X J, Zheng T, Zhang B Y, Xiao D Q, Zhu J G, Luo X J 2014J. Appl. Phys. 115 114104
[64] Rubio-Marcos F, Lopez-Juarez R, Rojas-Hernandez R E, del Campo A, Razo-Perez N, Fernandez J F 2015ACS Appl. Mater. Interfaces 7 23080
[65] Zhang M H, Wang K, Du Y J, Dai G, Sun W, Li G, Hu D, Thong H C, Zhao C L, Xi X Q, Yue Z X, Li J F 2017J. Am. Chem. Soc. 139 3889
[66] Chen X F, Zhang D J 2014Adv. Ceram. 4 28(in Chinese) [陈秀峰, 张大军2014现代技术陶瓷4 28]
[67] Chen J, Liu H H, Yu D Y, Li Q N, Yuan C L, Xu J W, Cheng S, Zhao J T, Zhou C R, Rao G H 2024Chem. Eng. J. 480 148202
[68] Li Y M, Zhang Y P, Liao R H, Chen L 2006J. Ceram. 27 205(in Chinese) [李月明, 张玉平, 廖润华, 程亮2006陶瓷学报27 205]
[69] Cai K, Jiang F, Deng P Y, Ma J T, Guo D 2015J. Am. Ceram. Soc. 98 3165
[70] Zhao X M, Liu C, Zhang D N, Huang D, Liu K, Zhang H W 2022Ceram. Int. 48 35461
[71] Zhou J, Zhao R, Chen W 2005J. Ceram. 26 202(in Chinese) [周静, 赵然, 陈文2005陶瓷学报26 202]
[72] Fang R R, Zhou Z Y, Liang R H, Dong X L 2020Ceram.Int. 46 23505
[73] Ray S, Günther E, Ritzhaupt-Kleissl H J 2000J. Mater.Sci. 35 6221
[74] Vasant Kumar C, Sayer M, Pascual R 1992Appl. Phys. Lett. 60 2207
[75] Jin R Q, Ren X D, Xu Z, Yan Y K 2023Ceram. Int. 49 39516
[76] Hagh N M, Nonaka K, Allahverdi M, Safari A 2005J. Am. Ceram. Soc. 88 3043
[77] Fang R R, Zhou Z Y, Liang R H, Dong X L 2021Ceram. Int.47 26942
[78] Wu J G, Gao X Y, Chen J G, Wang C M, Zhang S J, Dong S X 2018Acta Phys Sin-Ch Ed. 67 20(in Chinese) [吴金根, 高翔宇, 陈建国, 王春明, 张树君, 董蜀湘2018物理学报67 20]
[79] Chen H B, Zhai J W 2012 J. Electron. Mater. 41 2238
[80] Long C B, Fan H Q, Li M M 2013Dalton Trans. 42 3561
[81] Li T, Li X L, Zhao Z H, Ji H M, Dai Y J 2015Integr. Ferroelectr.162 1
[82] Pan C B, Zhao G C, Li S M, Wang X L, Wang J M Z, Tao M, Zhang X K, Yang C, Xu J P,Yin W, Yin L H, Song W H, Tong P, Zhu X B, Yang J, Sun Y P 2022J. Mater. Chem. C 10 15851
[83] Zhang H X 2007proceedings of the 2007 Sixteenth IEEE International Symposium on the Applications of FerroelectricsNara, Japan, May 27-312007 p751
[84] Zhang S J, Alberta E, Eitel R E, Rehrig P W, Hackenberger W, Randall C A, Shrout T R 2005proceedings of the Smart Structures and Materials 2005: Active Materials: Behavior and Mechanics, California, United States, March 07-10, 2005 p279
[85] Dong Y Z, Zou K, Liang R H, Zhou Z Y 2023Progress in Materials Science 132 101026
[86] Zhao H Y, Hou Y D, YU X L, Zheng M P, Zhu M K 2020J. Mater. Chem. C 8 1562
[87] Zhang S J, Yu F P 2011J. Am. Ceram. Soc. 94 3153
[88] Belavic D, Bradesko A, Zarnik M S, Rojac T 2015Metrol. Meas. Syst. 22 331
[89] Wu J G, Gao X Y, Chen J G, Wang C M, Zhang S J, Dong S X 2018Acta Phys. Sin. 67 207701
[90] Gong M X 2001IEE 1 9(in Chinese) [龚美霞2001国外电子元器件1 9]
[91] Philippot E, Palmier D, Pintard M, Goiffon A 1996J. Solid State Chem. 123 1
[92] London D 2001Can. Mineral. 49 117
[93] Shen C Y, Zhang S J, Cao W W, Cong H J, Yu H H, Wang J Y, Zhang H J 2015Appl. Phys. 117 064106
[94] Shen C Y, Zhang S J, Wang D L, Xu T X, Yu H H, Cao W W, Wang J Y, Zhang H J 2015Crystengcomm 17 1791
[95] Takeda H, Hagiwara M, Noguchi H, Hoshina T, Takahashi T, Kodama N 2013Appl. Phys. Lett. 102 242907
[96] Zhang Y Y, Yin X, Yu H H, Cong H J, Zhang H J, Wang J Y, Boughtont R I 2012Cryst. Growth Des. 12 622
[97] Haines J, Cambon O, Prudhomme N, Fraysse G, Keen D A, Chapon L C, Tucker M G 2006Phys.Rev. B 73 14103
[98] Fachberger R, Bruckner G, Knoll G, Hauser R, Biniasch J, Reindl L 2004IEEE Trans.Ultrason. Ferroelectr. Freq. Control 51 1427
[99] Giurgiutiu V, Xu B L, Liu W P 2010Struct. Health Monit. 9 513
[100] Chen L, Chen Y, Xiao D Q, Zhu J G 2005J. Sichuan Univ. 42 156(in Chinese) [陈林, 陈异, 肖定全, 朱建国2005四川大学学报42 156]
[101] Bouchy S, Zednik R J, Bélanger P 2022Materials15 4716
[102] Kim N I, Yarali M, Moradnia M, Aqib M, Liao C H, AlQatari F, Nong M T, Li X H, Ryou J H 2023Adv. Funct. Mater. 33 2212538
[103] Sotnikov A V, Schmidt H, Weihnacht M, Smirnova E P, Chemekova T Y, Makarov Y N 2010IEEE Trans. Ultrason. Ferroelectr. Freq. Control 57 808
[104] Zhao C L, Song B, Zhang X H, Han J C 2012Mater. Rep. 26 11(in Chinese) [赵超亮, 宋波, 张幸红, 韩杰才2012材料导报26 11]
[105] Oreshko A P, Ovchinnikova E N, Rogalev A, Wilhelm F, Mill B V, Dmitrienko V E 2018J. Synchrot. Radiat. 25 222
[106] Bohm J, Chilla E, Flannery C, Fröhlich H J, Hauke T, Heimann R B, Hengst M, Straube U 2000J. Cryst. Growth 216 293
[107] Sato J, Takeda H, Morikoshi H, Shimamura K, Rudolph P, Fukuda T 1998J. Cryst. Growth 191 746
[108] Nakao H, Nishida M, Shikida T, Shimizu H, Takeda H, Shiosaki T 2006J. Alloy. Compd. 408 582
[109] Zhang S, Yoshikawa A, Kamada K, Frantz E, Xia R, Snyder D W, Fukuda T, Shrout T R 2008Solid State Commun. 148 213
[110] Takeda H, Shimamura K, Chani V, Kato T, Fukuda T 1999Crystal Research and Technology: Journal of Experimental and Industrial Crystallography 34 1141
[111] Takeda H, Fukuda T, Kawanaka H, Onozato N 2001J. Mater. Sci.-Mater. Electron. 12 199
[112] Ren C K, Yin L B, Wang S, Chen W R, Wang S, Xiong K N, Tu X N, Bao N Z, Zheng Y Q, Chen J, Shi E W 2024J. Rare Earths(received)
[113] Shen C Y, Zhang H J, Cong H J, Yu H H, Wang J Y, Zhang S J 2014Appl. Phys. 116 4
[114] Taylor N T, Davies F H, Hepplestone S 2017Mater. Res. Express4 125904
[115] Zhong D G, Teng B, Kong W J, Ji S H, Zhang S M, Li J H, Cao L F, Jing H L, He L X 2017J. Alloy. Compd. 692 413
[116] Takeda H, Nakao H, Izukawa S, Shimizu H, Nishida T, Okamura S, Shiosaki T 2006J. Alloy. Compd. 408 474
[117] Fei Y, Chai B H, Ebbers C, Liao Z, Schaffers K I, Thelin P 2006J. Cryst. Growth 290 301
[118] Zhang S J, Fei Y T, Frantz E, Snyder D W, Chai B H T, Shrout T R 2008IEEE Trans. Ultrason. Ferroelectr. Freq. Control 55 2703
[119] Yu F P, Zhang S J, Zhao X, Guo S Y, Duan X L, Yuan D R, Shrout T R 2011J. Phys. D-Appl. Phys. 44 135405
[120] Zhang S J, Yu F P, Xia R, Fei Y T, Frantz E, Zhao X, Yuan D R, Chai B H T, Snyder D, Shrout T R 2011J. Cryst. Growth 318 884
[121] Yu F P, Hou S, Zhao X, Zhang S J 2014IEEE Trans. Ultrason. Ferroelectr. Freq. Control 61 1344
[122] Zhang S J, Frantz E, Xia R, Everson W, Randi J, Snyder D W, Shrout T R 2008Appl. Phys. 104 8
[123] Yan C H, Huang X W 2024J. Chin. Soc. Rare Earths 42 381(in Chinese) [严纯华, 黄小卫2024中国稀土学报42 381]
[124] Stephan A, Gaulden T, Brown A D, Smith M, Miller L, Thundat T 2002Rev. Sci. Instrum. 73 36
[125] Cao M S, Ye L, Zhou L M, Su Z Q, Bai R B 2011 Mech. Syst. Signal Proc. 25 630
[126] Zang H Y, Zhang X M, Zhu B L, Fatikow S 2019Sens. Actuator A-Phys. 296 155
[127] Havelock D I, Kuwano S, Vorlander M 2008Handbook of signal processing in acoustics (Springer)
[128] Wu J G, Shi H D, Zhao T L, Yu Y, Dong S X 2016Adv. Funct. Mater. 26 7186
[129] Guo X R 2021M.S. Thesis (Shanxi: North Central University) (in Chinese) [郭欣榕硕士学位论文2021(山西: 中北大学)]
[130] Shi S Z, Geng W P, Liu Y, Bi K X, Li F, Chou J X 2022Acta Armament. 43 1998(in Chinese) [石树正, 耿文平, 刘勇, 毕开西, 李芬, 丑修建2022兵工学报43 1998]
[131] Xu M H, Zhou H, Zhu L H, Shen J N, Zeng Y B, Feng Y J, Guo H 2019Microsyst. Technol.25 4465
[132] Le Traon O, Masson S, Chartier C, Janiaud D 2010Solid State Sci. 12 318
[133] Li D N, Fan Q Q, Li J H, Ren W, Wu L, Sun B, Yang Z 2019proceedings of the 201913th Symposium on Piezoelectrcity, Acoustic Waves and Device Applications Harbin, China, January 11-14, 2019
[134] Han J Q, Zhu Y S, Tao G H, Zhao Z Q, Yin Y J, Niu W J, Dong L Z 2019IEEE Sens. J. 19 6602
[135] Zeng H C 2021M.S. Thesis (Sichuan: University of Electronic Science and Technology) (in Chinese) [曾宏川2021硕士学位论文(四川: 电子科技大学)]
[136] Wang Y M, Liu X L, Bai L Y, Cheng R, Jiang C, Li Y Z, Zhang J Q, Chen H, Li Y L, Yu F P, Guo S Y 2023J. Alloy. Compd. 937 168449
[137] Chen L J, Xu X Y, Lei Y H, Yang Y, Piao S C, Zhang L 2020J. CAEIT 15 1212(in Chinese) [ 陈丽洁, 徐兴烨, 雷亚辉, 杨月, 朴胜春, 张丽2020中国电子科学研究院学报15 1212]
[138] Zhang D Z, Liu J, Qin L, Liu J C, Li M 2020IEEE Sens. J. 20 7129
[139] Pan R 2019M.S. Thesis (Jinan: Shandong University) (in Chinese) [潘睿2019硕士学位论文(济南: 山东大学)]
[140] Zhu R J 2019M.S. Thesis (Chengdu: University of Electronic Science and Technology) (in Chinese) [朱瑞浩2019硕士学位论文(成都: 电子科技大学)]
[141] Wu T Q, You D, Gao H Y, Lian P H, Ma W G, Zhou X Y, Wang C M, Luo J H, Zhang H B, Tan H 2023Crystals 13 1363
[142] Ding M P 2020M.S. Thesis (Jinan: Shandong University) (in Chinese) [丁明鹏2020硕士学位论文(济南: 山东大学)]
[143] Zeng H C, Peng B, Zhang W L 2021Piezoelectr. & Acoustoopt 43 320(in Chinese) [曾宏川, 彭斌, 张万里2021压电与声光43 320]
[144] Shi Y N, Jiang S S, Liu Y, Wang Y Y, Qi P L 2022Geofluids 2022 3964502
[145] Kapusuz H, Güvenc M A, Mistikoglu S 2019International Advanced Researches and Engineering Journal 3 144
[146] Metz B 2014proceedings of the 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference Cleveland, United States, July 28-30, 2014 p3974
[147] Wang J H, Zuo A B, Peng Y X 2022Acta Metrol. Sin. 43 1634(in Chinese)[王佳豪, 左爱斌, 彭月祥2022计量学报43 1634]
[148] Zhu G, Yang X W, Liu X 2018proceedings of the Journal of Physics: Conference Series p1065
[149] Zhu G, Yang X W, Yan L, Liu X, Wu D J 2014Patent CN204188258U (in Chinese) [朱刚, 杨晓伟, 闫磊, 刘鑫, 武东健2014 CN204188258U]
[150] Paul beckman, Huntington Valley, Chalfont 1975US Patent 3884085
[151] Brian L. Norling, Mill Creek, Wash 1988US Patent 4750363
[152] Kubasov I V, Kislyuk A M, Turutin A V, Bykov A S, Kiselev D A, Temirov A A, Zhukov R N, Sobolev N A, Malinkovich M D, Parkhomenko Y N 2019Sensors 19 614
[153] Chen J G, Wu J E, Lu Y, Wang Y, Cheng J R 2022Appl. Phys. Lett. 121 23
[154] Cavalloni C, Sommer R, Waser M 2011Proceedings SENSOR 2011 2011 520
[155] Liu X L, Jiang C, Tian S W, Fang H R, Yu F P, Xian Z 2019proceedings of the 201914th Symposium on Piezoelectrcity, Acoustic Waves and Device Applications Shijiazhuang, China November 01-04, 2019 p214
[156] Yu F P, Liu X L, Jiang C, Fang H R, Yang Y, Zhao X 2020Patent CN111579815B (in Chinese) [于法鹏, 刘学良, 姜超, 房浩然, 杨勇, 赵显2020 CN111579815B]
[157] Jiang C, Liu X L, Yu F P, Zhang S J, Fang H R, Cheng X F, Zhao X 2020IEEE Trans. Ind. Electron. 68 12850
[158] Zhang S J, Jiang X N, Lapsley M, Moses P, Shrout T R 2010Appl Phys Lett. 96 1
[159] Ren Z, Su G, Wang H Z, Yan C X 2019Patent CN210269907U (in Chinese) [任政, 苏刚, 王红战, 闫长新2019 CN210269907U]
[160] Hu Z J, Li C E, Zhou J G, Li Y, Yan H X, Wang Z C 1999Patent CN1226681(in Chinese) [胡子俭, 李承恩, 周家光, 李毅, 晏海学, 王志超1999 CN1226681]
[161] Xu Y G, Zhu W X, Sun L, Xun Z L, Shen S Q, Li P Z 2022Patent CN116298388A (in Chinese) [徐昱根, 朱万霞, 孙磊, 郇正利, 沈双全, 李朋洲2022 CN116298388A]
[162] Zhang Z H, Liu S H, He G, Wu L S, Zhang W Y, Teng F 2023Patent CN116660578A (in Chinese) [张振海, 刘石豪, 何光, 吴缪斯, 张文一, 滕飞2023 CN116660578A]
[163] Ochiai T 1998Jpn. J. Appl. Phys. 37 1964
[164] Qin L F, Xia H, Li N, Yang C 2022Patent CN219016353U (in Chinese) [秦利锋, 夏虎, 李宁, 杨淳2022 CN219016353U]
[165] Liu X L, Yu F P, Li F L, Tian S W, Cheng X F, Zhao X 2019proceedings of the 201913th Symposium on Piezoelectrcity, Acoustic Waves and Device Applications Harbin, China, January 11-14, 2019
[166] Salazar G, Kim K, Zhang S J, Jiang X N 2012Proceedings of SPIE-The International Society for Optical Engineering 8347 40
[167] Kim H, Kerrigan S, Bourham M, Jiang X N 2021IEEE Trans. Ind. Electron. 68 5346
[168] Kerrigan S P 2023Development, Fabrication, and Characterization of Piezoelectric Non-Intrusive Wireless Vibration Sensors for Nuclear Power Plant Applications
[169] Yu K, Zhao C, Peng P, Huang W, Jin C, Feng T 2023Patent CN219996335U (in Chinese) [余快, 赵聪, 彭鹏, 黄伟, 金城, 冯婷2023 CN219996335U]
[170] Howard C. Epstein, South Pasadena, Calif 1973US Patent 3727084
[171] Varak D, Ferreiro P 2012US Patent 8375793B2
[172] Gu B L, Huang J M, Zhao Z P, Chen J B, Yan S J, Pan W 2013Patent CN203534825U (in Chinese) [ 顾宝龙, 黄建民, 赵振平, 陈佳壁, 晏生剑, 潘威2013 CN203534825U]
[173] Walter P L 1997Sound Vib. 31 16
计量
- 文章访问数: 102
- PDF下载量: 5
- 被引次数: 0