搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高温压电振动传感器及其压电材料研究进展

余慧芬 祁核 涂小牛 张海波 陈大力 吴捷 陈骏

引用本文:
Citation:

高温压电振动传感器及其压电材料研究进展

余慧芬, 祁核, 涂小牛, 张海波, 陈大力, 吴捷, 陈骏

Research progress of high-temperature piezoelectric vibration sensors and piezoelectric materials

Yu Hui-Fen, Qi He, Tu Xiao-Niu, Zhang Hai-Bo, Chen Da-Li, Wu Jie, Chen Jun
PDF
HTML
导出引用
  • 压电振动传感器与其他振动传感技术相比具有频率范围宽、动态范围大、结构简单、工作可靠、体积小等优点, 在核电行业、航空航天、轨道交通及国防军工等多个领域有着广泛的应用. 然而, 随着振动测试技术的飞速发展以及应用领域的不断拓宽, 对压电振动传感器在极端环境中长时服役的可靠性提出了更高要求, 如何提高压电振动传感器的服役温度满足极端环境下的应用需求是目前迫切解决的问题. 本文综述了高温压电传感技术应用场景和工作原理, 讨论了常见的高温压电陶瓷和晶体材料, 系统地总结了现有的压电振动传感器工作模式、不同类型压电振动传感器结构及传感器振动校准装置, 重点介绍了近年来国内外高温振动传感器的研究进展. 在此基础上, 探讨了高温压电振动传感器当前面临的问题及未来发展趋势, 为开发下一代极端环境应用的超高温振动传感器提供了思路, 有望促进国内高温压电振动传感技术的进一步研究.
    Vibration sensor technology, especially piezoelectric vibration sensor, has been widely applied in various fields. This type of sensor has excellent dynamic response, linearity, wide bandwidth, high sensitivity, large temperature range, simple structure, and stable performance, so it can be applied in many cases such as nuclear power, aerospace, rail transportation, and defense industries. However, most of piezoelectric vibration sensors are limited to operating temperatures below 500 ℃, which ;limits their applications in extreme high-temperature environments encountered in nuclear reactors, aircraft engines, missile systems, and internal combustion engines. These application scenarios put forward higher requirements for the reliability of long-term service of piezoelectric vibration sensors in extreme environments. How to improve the operating temperature of piezoelectric vibration sensors to meet their application requirements in extreme environments is an urgent problem that needs to be solved.High-temperature piezoelectric materials, as the core components of piezoelectric vibration sensors, play a decisive role in determining the overall performance of the sensor. Common high-temperature piezoelectric materials include piezoelectric ceramics and single crystals. To ensure stable operation and excellent sensitivity in extreme environments, it is essential to select piezoelectric materials with high Curie temperature, high piezoelectric coefficient, high resistivity, and low dielectric loss as the sensing elements of the sensor. There are usually three main types of piezoelectric vibration sensors: bending, compression, and shear. In addition to selecting the suitable piezoelectric material, it is also crucial to choose the optimal sensor structure suitable to the specific application scenarios.In view of the urgent demand for ultrahigh-temperature vibration sensors, this paper mainly reviews the current research progress of high-temperature piezoelectric materials and high-temperature piezoelectric vibration sensors, summarizes the structures, advantages and disadvantages, and application scenarios of different types of high-temperature piezoelectric vibration sensors, explores the current problems and future development trends of high-temperature piezoelectric vibration sensors, and provides ideas for developing the next- generation ultrahigh temperature vibration sensors for extreme environmental applications, which is expected to promote the further development of high-temperature piezoelectric vibration sensing technology.
  • 图 1  高温振动传感器应用场景

    Fig. 1.  Application scenarios of high-temperature vibration sensors.

    图 2  压电振动传感器的典型系统模型

    Fig. 2.  Typical system model of piezoelectric vibration sensors.

    图 3  压电振动传感器系统 (a) 电路图; (b) 等效电路图

    Fig. 3.  Piezoelectric vibration sensor system: (a) Circuit diagram; (b) equivalent circuit diagram.

    图 4  (a) ABO3钙钛矿结构示意图[40]; (b)钨青铜沿着c轴的结构示意图[40]; (c)铋层状结构氧化物的示意图[40]

    Fig. 4.  (a) Schematic representation of the structure of ABO3 perovskite[40]; (b) schematic representation of the structure of tungsten bronze along the c-axis[40]; (c) schematic representation of bismuth layered structural oxides[40].

    图 5  压电陶瓷的压电常数d33与居里温度TC关系图

    Fig. 5.  The relationship between piezoelectric coefficient d33 and Curie temperature TC of the piezoelectric ceramics.

    图 6  (a)单晶压电常数$ {d}_{33} $与居里温度/相变温度/熔点$ {T}_{{\mathrm{m}}{\mathrm{a}}{\mathrm{x}}} $关系图[122]; (b)不同压电材料最大使用温度范围[122]; (c), (d)高温压电晶体电阻率随温度的变化[120,121]

    Fig. 6.  (a) Plot of single crystal piezoelectric constant d33 versus Curie temperature/phase transition temperature/melting point Tmax[122]; (b) maximum operating temperature range of different piezoelectric materials[122]; (c), (d) variation of electrical resistivity of high-temperature piezoelectric crystals as a function of temperature[120,121].

    图 7  压电振动传感器三种基本结构

    Fig. 7.  Three basic structures of piezoelectric vibration sensors.

    图 8  弯曲模式压电振动传感器基本构型[34] (a)单悬臂梁; (b)不对称双悬臂梁; (c)对称双悬臂梁; (d)四对称悬臂梁

    Fig. 8.  Basic configurations of bending mode piezoelectric vibration sensors[34]: (a) Cantilever beam; (b) two cantilever beams; (c) two-symmetric-beam suspension; (d) four-symmetric-beam suspension.

    图 9  弯曲模式压电振动传感器 (a) LGS温度-三轴加速度传感器示意图[129]; (b) 四悬梁集成中心拾振微球结构传感器示意图[130]; (c) d33模式四悬臂梁压电振动传感器的三维结构和激光扫描共焦显微镜图[131]; (d) LGS(左)和GaPO4(右)单晶传感器实物图[132]; (e) 双U槽型压电加速度计原理图[133]; (f) 三轴加速度计结构示意图[134]

    Fig. 9.  Bending mode piezoelectric vibration sensors: (a) LGS temperature-triaxial accelerometer[129]; (b) four-suspended-beam integrated center vibration microsphere structure sensor[130]; (c) three-dimensional structure of the d33-mode four-cantilever-beam piezoelectric vibration sensor and laser-scanning confocal microscope diagram[131]; (d) LGS (left) and GaPO4 (right) monocrystalline sensors[132]; (e) double U-slot-type piezoelectric accelerometer[133]; (f) triaxial accelerometer[134].

    图 10  压缩模式压电振动传感器基本构型[135] (a)中心压缩式; (b)倒装压缩式

    Fig. 10.  Basic configuration of compressed mode piezoelectric vibration sensors[135]: (a) Central compressed type; (b) inverted compressed type.

    图 11  压缩模式压电振动传感器 (a) CNGS中心压缩式传感器示意图和实物图[136]; (b) AlN高温压电振动传感器结构示意图和实物图[137]; (c) 六自由度压缩式加速度传感器简化模型和样机实物图[138]; (d) 高温压缩式压电振动传感器实物图和内部结构图[139]

    Fig. 11.  Compression mode piezoelectric vibration sensors: (a) CNGS central compression sensor[136]; (b) AlN high-temperature piezoelectric vibration sensor[137]; (c) simplified model and prototype of the six-degree-of-freedom compression acceleration sensor[138]; (d) physical and internal structure diagram of high-temperature compression piezoelectric vibration sensor[139].

    图 12  剪切模式压电振动传感器基本构型[140] (a) 环形剪切式; (b)平面剪切式; (c)三角剪切式

    Fig. 12.  Basic configuration of shear mode piezoelectric vibration sensors[140]: (a) Annular shear mode; (b) planar shear mode; (c) triangular shear mode.

    图 13  剪切模式压电振动传感器 (a) 偏心剪切式压电加速度传感器结构图[142]; (b) 对称剪切式压电加速度传感器结构图[142]; (c) CTGS平面剪切式高温加速度传感器结构示意图[143]; (d) 三角剪切式压电振动传感器结构图[144]; (e) 平面剪切式加速度计和三角剪切式加速度计结构示意图[141]; (f) 环型剪切式压电振动传感器结构示意图[145]; (g) UHT-12TM晶体357D90型剪切式高温加速度计(左)和EX611A20型差动剪切式高温加速度计(右)实物图[146]

    Fig. 13.  Shear mode piezoelectric vibration sensors: (a) Eccentric shear piezoelectric accelerometer[142]; (b) symmetric shear piezoelectric accelerometer[142]; (c) CTGS planar shear high-temperature accelerometer[143]; (d) triangular shear piezoelectric vibration sensor[144]; (e) planar and triangular shear accelerometers[141]; (f) ring shear piezoelectric vibration sensor[145]; (g) physical drawings of UHT-12TM Crystal 357D90 shear type high-temperature accelerometer (left) and EX611A20 differential shear type high-temperature accelerometer (right)[146].

    图 14  传感器常温标定实验测试平台[144]

    Fig. 14.  Experimental test platform for calibration of sensors at room temperature[144].

    图 15  传感器高温测试实验装置图 (a) 振动比较法校准装置图[35]; (b) 绝对法校准装置图[147]

    Fig. 15.  Experimental setup diagram for high-temperature testing of sensors: (a) Vibration comparison method calibration device[35]; (b) absolute method calibration device[147].

    图 16  高温悬臂梁式加速度计结构 (a)加速度计俯视图[150]; (b)加速度计剖视图[150]; (c)横梁止动组件正视图[150]; (d)安装在横梁止动组件底座框架上的缓冲组件剖视图[150]; (e)横梁止动组件后视图[150]; (f)含插入横梁通道的质量块[150]

    Fig. 16.  High-temperature cantilever beam accelerometer: (a) Top view of accelerometer[150]; (b) cutaway view of accelerometer[150]; (c) front view of crossbeam stop component[150]; (d) cutaway view of cushioning component installed on the base frame of the crossbeam stop component[150]; (e) rear view of the crossbeam stop component[150]; (f) mass block with inserted crossbeam channel[150].

    图 17  (a)可温度补偿的悬臂梁加速度计工作原理图[151]; (b)矩形质量块的悬臂梁加速度计横向截面图[151]; (c)矩形质量块的悬臂梁加速度计纵向截面图[151]; (d)圆柱形质量块的悬臂梁加速度计横向截面图[151]; (e)圆柱形质量块的悬臂梁加速度计纵向截面图[151]; (f)方形质量块的悬臂梁加速度计横向截面图[151]; (g)方形质量块的悬臂梁加速度计纵向截面图[151]

    Fig. 17.  (a) Operating principle diagram of temperature-compensated cantilever beam accelerometer[151]; (b) transverse cross-section of cantilever beam accelerometer with rectangular mass block[151]; (c) longitudinal cross-section of cantilever beam accelerometer with rectangular mass block[151]; (d) transverse cross-section of cantilever beam accelerometer with cylindrical mass block[151]; (e) longitudinal cross-section of cantilever beam accelerometer with cylindrical mass block[151]; (f) transverse cross-section of cantilever beam accelerometer with square mass block[151]; (g) Longitudinal section of cantilever beam accelerometer with square mass block[151]

    图 18  B-LN低频振动传感器性能测试 (a) 传感器结构示意图(上)和传感器实物图(左下)及安装在激振器上的传感器(右下) [152]; (b) 传感器在不同位移幅值的正弦振动激励下产生的电压[152]; (c) 传感器频率响应情况[152]

    Fig. 18.  B-LN low-frequency vibration sensor performance test: (a) Schematic diagram of transducer structure (top), physical drawing of the transducer (bottom left), as well as the sensor installed on the exciter (bottom right)[152]; (b) voltages generated by transducer under sinusoidal vibration excitation with different displacement amplitudes[152]; (c) frequency response of the transducer[152].

    图 19  压缩式高温振动传感器测试 (a) 传感器结构示意图[153]; (b) 不同压电材料所制传感器灵敏度随温度的变化[153]; (c) BFBT25-Mn所制传感器灵敏度在不同温度下长时间工作可靠性测试[153]

    Fig. 19.  Compression mode high-temperature vibration sensor performance test: (a) Schematic of sensor structure[153]; (b) the sensitivity of sensors made of different piezoelectric materials varies with temperature[153]; (c) sensitivity reliability test of BFBT25-Mn sensor under long-term operation at different temperatures[153].

    图 20  KI100压缩式加速度计高温稳定性测试 (a)加速度计实物图[154]; (b)加速度计在不同老化阶段后灵敏度随温度变化情况[154]; (c)加速度计在不同老化阶段后绝缘电阻随温度变化情况[154]

    Fig. 20.  High temperature stability test of KI100 compression accelerometer: (a) Physical image of accelerometer[154]; (b) the sensitivity of accelerometers changes with temperature after different aging stages[154]; (c) variation of insulation resistance with temperature after different ageing stages of the accelerometer[154].

    图 21  BTS压缩式压电振动传感器性能测试 (a)传感器组件的展开视图[155]; (b)传感器实物图[155]; (c)不同预紧扭矩下传感器的灵敏度温度稳定性[155]; (d)传感器灵敏度在500 ℃时长时间工作的可靠性测试[155]

    Fig. 21.  BTS compression piezoelectric vibration sensor performance test: (a) Unfolded view of the sensor component[155]; (b) physical image of sensor[155]; (c) temperature stability of the sensor sensitivity at different preload torques[155]; (d) reliability test of the sensor sensitivity for long-term operation at 500 ℃[155].

    图 22  倒装装配的BTS高温振动加速度传感器性能测试 (a)高温振动加速度传感器的装配示意图[156]; (b)传感器的温度响应[156]; (c)传感器在高温下(600 ℃和650 ℃)下的工作状况[156]

    Fig. 22.  Performance test of BTS high-temperature vibration acceleration sensor with inverted assembly: (a) Assembly schematic of the sensor[156]; (b) temperature response of the sensor[156]; (c) operation of the sensor at elevated temperatures (600 ℃ and 650 ℃)[156]

    图 23  BTS压缩式压电振动传感器性能测试 (a)传感器结构模型[157]; (b)传感器电荷随加速度的变化[157]; (c)不同频率下传感器灵敏度随温度的变化[157]; (d)传感器在600 ℃和650 ℃时灵敏度与持续工作时长的关系[157]

    Fig. 23.  BTS piezoelectric vibration sensor performance test: (a) Structure model of the sensor[157]; (b) variation of sensor charge with acceleration[157]; (c) variation of sensor sensitivity with temperature at different frequencies[157]; (d) relationship between sensor sensitivity and duration of continuous operation at 600 ℃ and 650 ℃[157].

    图 24  单片压缩模式加速度计性能测试 (a)加速度计组件示意图[158]; (b)加速度计灵敏度随频率和温度的变化情况[158]; (c) 900 ℃下不同频率的灵敏度与持续工作时长的关系[158]

    Fig. 24.  Monolithic compression mode accelerometer performance test: (a) Schematic of the accelerometer components[158]; (b) variation of accelerometer sensitivity with frequency and temperature[158]; (c) sensitivity versus duration of continuous operation at 900 ℃ for different frequencies[158].

    图 25  压缩模式高温压电振动传感器 (a)带螺帽紧固部的高温振动传感器整体结构示意图[159]; (b)带螺帽紧固部的高温振动传感器剖视图[159]; (c)高温450 ℃压电加速度计剖视图[160]; (d)耐高温高压的差分式压电加速度传感器结构示意图[161]; (e)耐高温高压的差分式压电加速度传感器内部放大示意图[161]; (f)带温度补偿的高温压电加速度传感器示意图[162]

    Fig. 25.  Compression mode high-temperature piezoelectric vibration sensors: (a) Schematic of the overall structure of high-temperature vibration sensor with nut fastening part[159]; (b) cutaway view of high-temperature vibration sensor with nut fastening part[159]; (c) cutaway view of high-temperature 450 ℃ piezoelectric accelerometer[160]; (d) structure of high-temperature and high-pressure-resistant differential piezoelectric acceleration sensor[161]; (e) internal enlarged schematic diagram of differential piezoelectric accelerometer resistant to high temperature and high pressure[161]; (f) high-temperature piezoelectric accelerometer with temperature compensation[162].

    图 26  电荷剪切型压电加速度计的性能测试 (a)电荷剪切型压电加速度计的结构[163]; (b)电荷剪切型压电加速度计有无补偿电容元件的灵敏度温度依赖性[163]; (c)电荷剪切型压电加速度计的频率依赖性[163]

    Fig. 26.  Charge-shear piezoelectric accelerometer performance test: (a) Structure of charge-shear piezoelectric accelerometers[163]; (b) temperature dependence of the sensitivity of charge-shear piezoelectric accelerometers with and without compensating capacitive elements[163]; (c) frequency dependence of charge-shear piezoelectric accelerometers[163].

    图 27  全温区近恒预紧力压电加速度传感器 (a)传感器整体示意图[164]; (b)传感器截面示意图[164]; (c)传感器螺栓预紧力随温度变化的示意图[164]

    Fig. 27.  Near-constant preload piezoelectric acceleration sensor at full temperature: (a) Schematic of sensor[164]; (b) schematic of sensor cross-section[164]; (c) schematic of sensor bolt preload as a function of temperature[164].

    图 28  横向振动型剪切式加速度传感器性能测试 (a)传感器结构模型与实物图[165]; (b)传感器室温频率响应[165]; (c) 160 Hz时不同温度下传感器输出电荷与加速度的函数关系[165]

    Fig. 28.  Transverse vibration shear mode accelerometer performance test: (a) Sensor structure model and physical diagram[165]; (b) room temperature frequency response of sensor[165]; (c) sensor output charge as a function of acceleration for different temperatures at 160 Hz[165].

    图 29  剪切式YCOB高温振动传感器性能测试 (a)高温工作后传感器实物图[166]; (b)传感器灵敏度在不同频率时随温度的变化情况[166]; (c) 1250 ℃测试10 h传感器的平均灵敏度及高温测试前后传感器的室温灵敏度(附图)[166]

    Fig. 29.  Shear type YCOB high-temperature vibration sensor performance test: (a) Physical image of the sensor after high-temperature operation[166]; (b) sensor sensitivity varies with temperature at different frequencies[166]; (c) average sensitivity of sensor tested at 1250 ℃ for 10 h and the room temperature sensitivity of sensor before and after high-temperature testing (attached figure)[166].

    图 30  AlN剪切式高温加速度计 (a)加速度计实物图和模型图[167]; (b)不同温度时传感器的频率响应情况[167]; (c)传感器在不同温度和频率下的响应[167]; (d)长期高温下传感器灵敏度变化情况[167]; (e)传感器在11.2 kGy(1 Gy = 1 J/kg)照射后的灵敏度[167]

    Fig. 30.  AlN shear mode high-temperature accelerometer: (a) Physical (left) and modeled (right) diagrams of accelerometer[167]; (b) frequency response of accelerometer at different temperatures[167]; (c) sensitivity response of accelerometer at different temperatures and frequencies[167]; (d) sensitivity changes of accelerometer under long-term high temperature conditions[167]; (e) sensitivity of accelerometer after irradiation at 11.2 kGy (1 Gy = 1 J/kg)[167].

    图 31  高温AlN多轴加速度计性能测试 (a)加速度计实物图(左)和模型图(右)[168]; (b)多轴加速度计对x方向1 g加速度的频率响应[168]; (c)多轴加速度计在每个轴都承受1 g加速度时的性能[168]

    Fig. 31.  High-temperature AlN multi-axis accelerometer performance test: (a) Physical (left) and modeled (right) diagrams of accelerometer[168]; (b) frequency response of multi-axis accelerometer to 1 g acceleration in the x-direction[168]; (c) performance of multi-axis accelerometer under 1 g acceleration on each axis[168].

    图 32  剪切模式高温压电振动传感器 (a)环形剪切式IEPE高温振动传感器内部结构示意图[169]; (b)铌酸锂双边剪切高温压电加速度计结构示意图[170]; (c)铌酸锂单边剪切高温压电加速度计结构示意图[170]; (d)带有银窗的高温压电加速度计整体结构示意图[171]; (e)带银窗的高温压电加速度计剖视图[171]; (f)650 ℃小型高温振动传感器结构示意图[172]

    Fig. 32.  Shear mode high-temperature piezoelectric vibration sensors: (a) Ring shear IEPE high-temperature vibration sensor[169]; (b) lithium niobate bilateral shear high-temperature piezoelectric accelerometer[170]; (c) lithium niobate unilateral shear high-temperature piezoelectric accelerometer [170]; (d) schematic of the overall structure of high-temperature piezoelectric accelerometer with silver window[171]; (e) cutaway view of high-temperature piezoelectric accelerometer with silver window[171]; (f) structure of a 650 ℃ compact high-temperature vibration sensor[172].

    表 1  不同结构类型加速度计的优缺点

    Table 1.  Advantages and disadvantages of different construction types of accelerometers.

    加速度计
    结构
    优点缺点应用场景
    弯曲式重量轻、灵敏度高、响应速度快、分辨率高、背底噪声低、易于微型化集成
    频率范围窄、结构脆弱、抗冲击能力差、存在固有电荷泄露微米级尺度的微弱信号的实时检测, 低频、低加速度信号测量等
    压缩式结构简单、加工便捷、制作成本低、强度和刚度大、共振频率高、频带宽、可以承受高水平瞬态振动
    对力和温度变化敏感, 底座弯曲或热膨胀易引起较大测量误差、背底噪声高、横向灵敏度大、抗干扰能力较差冲击测试等
    剪切式信号噪声低、应变小、抗干扰能力强、热性能稳定、电荷输出高、灵敏度高结构复杂、固有频率低、可用频率带宽窄微地震监测、钢水与钢渣、熔渣分离等
    下载: 导出CSV

    表 2  高温压电加速度计性能比较

    Table 2.  Performance comparison of high-temperature piezoelectric accelerometers.

    压电材料 加速度计结构 最高服役温度/℃ 灵敏度/(pC·g-1) 频响范围/Hz 参考文献
    PbZr0.51Ti0.49O3 平面剪切式 300 42 1—8000 [163]
    LGT 平面剪切式 350 3.82 100—2000 [165]
    BFBT25-Mn 压缩式 450 49 200—1000 [153]
    CNGS 压缩式 600 0.722 60—2000 [136]
    CTGS 平面剪切式 600 2.56 100—2000 [143]
    BTS 倒装压缩式 600 约12.5 [156]
    UHT-12TM 平面剪切式 649 10 [146]
    BTS 压缩式 650 2.62 120—3000 [157]
    YCOB 压缩式 900 约2.4 100—600 [158]
    AlN 平面剪切式 1000 9.2 40—600 [167]
    YCOB 平面剪切式 1000 约5.9 1—335 [35]
    YCOB 平面剪切式 1250 约1.26 1—320 [166]
    下载: 导出CSV
  • [1]

    吕泉 2006现代传感器原理及应用(北京: 清华大学出版社)

    Lü Q 2006 Principles and Applications of Modern Sensors (Beijing: Tsinghua University Press

    [2]

    Giuliani A, Drera L, Arancio D, Mukhopadhyay B, Ngo H D 2014 Procedia Eng. 87 720Google Scholar

    [3]

    Vandeparre H, Watson D, Lacour S 2013 Appl. Phys. Lett. 103 20

    [4]

    Tavakkoli H, Momen H G, Sani E A, Yazgi M 2017 proceedings of the 2017 10th International Conference on Electrical and Electronics Engineering Bursa, Turkey, November 30-December 02, 2017 p459

    [5]

    Yao Z, Liang T, Jia P G, Hong Y P, Qi L, Lei C, Zhang B, Xiong J J 2016 Sensors 16 913Google Scholar

    [6]

    Roessig T A, Howe R T, Pisano A P, Smith J H 1997 proceedings of the Proceedings of International Solid State Sensors and Actuators Conference Chicago, United States, June 19, 1997 p859

    [7]

    Kim N I, Chang Y L, Chen J, Barbee T, Wang W, Kim J Y, Kwon M K, Shervin S, Moradnia M, Pouladi S, Khatiwada D, Selvamanickam V, Ryou J H 2020 Sens. Actuators, A 305 111940Google Scholar

    [8]

    Jiang X N, Kim K, Zhang S J, Johnson J, Salazar G 2013 Sensors 14 144Google Scholar

    [9]

    Yu F P, Zhang S J, Zhao X, Yuan D R, Qin L F, Wang Q M, Shrout T R 2011 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 58 868Google Scholar

    [10]

    Shrout T R, Yu F P, Zhang S J, Wang Q M, Fei Y, Chai B 2011 proceedings of the 2011 Joint Conference of the IEEE International Frequency Control and the European Frequency and Time Forum (FCS) Proceedings San Francisco, United States, May 1-5, 2011 p82

    [11]

    Salazar G, Kim K, Zhang S J, Jiang X N 2012 Nondestructive Characterization for Composite Materials, Aerospace Engineering, Civil Infrastructure, and Homeland Security 2012 San Diego, United States, March 12-15, 2012 p8347

    [12]

    Yu F P, Duan X, Zhang S J, Lu Q, Zhao X 2014 Crystals 4 241Google Scholar

    [13]

    袁宇鹏, 梅勇, 齐良才, 张祖伟, 李小飞, 王登攀 2022 压电与声光 44 940Google Scholar

    Yuan Y P, Mei Y, Qi L C, Zhang Z W, Li X F, Wang P D 2022 Piezoelectrics & Acoustooptics 44 940Google Scholar

    [14]

    吴宗岱 1988 实验力学 3 329

    Wu Z D 1988 J. Exp. Mech. 3 329

    [15]

    张永峰 2003 硕士学位论文 (西安: 西北工业大学)

    Zhang Y F 2003 M. S. Thesis (Xi'an: Northwestern Polytechnical University

    [16]

    Hall C L, Leary S, Lapierre L, Hess A, Bladen K 2001 proceedings of the 2001 IEEE Aerospace Conference Proceedings Montana, United States, March 10-17, 2001 p3069

    [17]

    张福学 1990 航空电子技术 1 1

    Zhang X F 1990 Avionics Technol. 1 1

    [18]

    周俊 2016 硕士学位论文 (武汉: 华中科技大学)

    Zhou J 2016 M. S. Thesis (Wuhan: Huazhong University of Science and Technology

    [19]

    吴大方, 赵寿根, 潘兵, 王岳武, 王杰, 牟朦, 朱林 2013 力学学报 45 598

    Wu D F, Zhao S G, Pan B, Wang Y W, Wang J, Mou M, Zhu L 2013 Acta Mech. Sin. 45 598

    [20]

    Crawley E F 1994 AIAA J. 32 1689Google Scholar

    [21]

    High-temperature modal survey of a hot-structure control surface, Spivey N D https://ntrs.nasa.gov/citations/20110023803[2011-6-1]

    [22]

    孙明晓, 季俊云, 史岩峰, 陈玉玲, 张巧寿 2019 强度与环境 49 54

    Sun M X, Ji J Y, Shi Y F, Chen Y L, Zhang Q S 2019 Struct. Environ. Eng. 49 54

    [23]

    Turner R, Fuierer P A, Newnham R, Shrout T R 1994 Appl. Acoust. 41 299Google Scholar

    [24]

    Fleming W J 2001 IEEE Sens. J. 1 296Google Scholar

    [25]

    袁宇鹏, 王登攀, 李小飞, 李军, 胡杨, 曾翔豹, 王音心, 张祖伟 压电与声光 41 49

    Yuan Y P, Wang D P, Li X F, Li J, Hu Y, Zeng X B, Wang Y X, Zhang Z W 2019 Piezoelectrics & Acoustooptics 41 49

    [26]

    Bulst W E, Fischerauer G, Reindl L 1998 proceedings of the IECON'98 Proceedings of the 24th Annual Conference of the IEEE Industrial Electronics Society Aachen, Germany, August 31-September 04, 1998 p265

    [27]

    王寿荣 2000 硅微型惯性器件理论及应用 (南京: 东南大学出版社)

    Wang S R 2000 Theory and Applications of Silicon Miniature Inertial Devices (Nanjing: Southeast University Press

    [28]

    Kazys R, Vaskeliene V 2021 Sensors 21 3200Google Scholar

    [29]

    Frame P I, Spring 2004 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 50 762

    [30]

    Yu F P, Duan X L, Zhang S J, Yu Y G, Ma T F, Zhao X T 2012 proceedings of the 2012 Symposium on Piezoelectricity, Acoustic Waves, and Device Applications Shanghai, China, November 23-25 2012 p293

    [31]

    王天资, 周志勇, 李伟, 董显林, 张磊 2020 传感器与微系统 39 1

    Wang T Z, Zhou Z Y, Li W, Dong X L, Zhang L 2020 Transducer Microsyst. Technol. 39 1

    [32]

    单成祥 1999 传感器的理论与设计基础及其应用 (北京: 国防工业出版社)

    Shan C X 1999 Theoretical and design basis of sensors and their applications (Beijing: National Defense Industry Press

    [33]

    Bilgunde P N, Bond L J 2018 Ultrasonics 87 103Google Scholar

    [34]

    Yu J C, Lan C B 2001 Sens. Actuator, A 88 178Google Scholar

    [35]

    Kim K, Zhang S J, Salazar G, Jiang X N 2012 Sens. Actuator, A 178 40Google Scholar

    [36]

    王丹钰, 王安玖, 王五松, 李荔, 张垚宾, 翟继卫 2021 陶瓷学报 42 376

    Wang D Y, Wang A J, Wang W S, Li L, Zhang Y B, Zhai J W 2021 J. Ceram. 42 376

    [37]

    栾桂冬, 张金铎, 王仁乾 2005 压电换能器和换能器阵 (北京: 北京大学出版社)

    Luan G D, Zhang J D, Wang R Q 2005 Piezoelectric transducers and transducer arrays (Beijing: Peking University Press

    [38]

    李庆利, 曹建新, 赵丽媛, 吕剑明, 范冠锋 2008 化工进展 27 16

    Li Q L, Cao J X, Zhao L Y, Lv J M, Fan G F 2008 Chem. Ind. Eng. Prog. 27 16

    [39]

    Zhang F Q, Li Y X 2014 J. Inorg. Mater. 29 449

    [40]

    Chen L, Liu H, Qi H, Chen J 2022 Prog. Mater. Sci. 127 100944Google Scholar

    [41]

    Jaffe B, Roth R, Marzullo S 1954 J. Appl. Phys. 25 809Google Scholar

    [42]

    Kumar A, Bhanu Prasad V V, James Raju K C, James A R 2015 J. Mater. Sci. -Mater. Electron. 26 3757Google Scholar

    [43]

    Eitel R E, Randall C A, Shrout T R, Rehrig P W, Hackenberger W, Park S E 2001 Jpn. J. Appl. Phys. 40 5999Google Scholar

    [44]

    Dong Y Z, Zou K, Liang R H, Zhou Z Y 2023 Prog. Mater. Sci. 132 101026Google Scholar

    [45]

    Zou T T, Wang X H, Wang H, Zhong C F, Li L T, Chen I W 2008 Appl. Phys. Lett. 93 19

    [46]

    Zhao H Y, Hou Y D, Yu X L, Zheng M P, Zhu M K 2018 J. Appl. Phys. 124 19

    [47]

    Kim Y M, Kumar A, Hatt A, Morozovska A N, Tselev A, Biegalski M D, Ivanov I, Eliseev E A, Pennycook S J, Rondinelli J M, Kalinin S V, Borisevich A Y 2013 Adv. Mater. 25 2497Google Scholar

    [48]

    Dho J H, Qi X D, Kim H, MacManus-Driscoll J L, Blamire M G 2006 Adv. Mater. 18 1445Google Scholar

    [49]

    Leontsev S O, Eitel R E 2009 J. Am. Ceram. Soc. 92 2957Google Scholar

    [50]

    Kim S, Miyauchi R, Sato Y, Nam H, Fujii I, Ueno S 2023 Adv. Mater. 35 11

    [51]

    Yang H B, Sun Y Y, Gao H Y, Zhou X Y, Tan H, Shu C 2022 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 69 3102Google Scholar

    [52]

    Lee M H, Kim D J, Park J S, Kim S W, Song T K, Kim M H 2015 Adv. Mater. 27 6976Google Scholar

    [53]

    Hu H, Zhuang J, Weng Y X, Zhang N, Wang B Y, Wang D W, Feng G B, Ren W 2023 J. Eur. Ceram. Soc. 43 6815Google Scholar

    [54]

    Hu W, Tan X L, Rajan K 2011 J. Eur. Ceram. Soc. 31 801Google Scholar

    [55]

    Sun S D, Liu Y, Zhang Y Y, Wang L, Huo C R, Deng S Q, Liu H, Ren Y, Wu J, Oi H, Chen J 2022 Acta Mater. 239 118285Google Scholar

    [56]

    Wang K, Yao F Z, Jo W, Gobeljic D, Shvartsman V V, Lupascu D C, Li J F, ROEDEL J 2013 Adv. Funct. Mater. 23 4079Google Scholar

    [57]

    Yao F Z, Wang K, Jo W, Webber K G, Comyn T P, Ding J X, Xu B, Cheng L Q, Zheng M P, Hou Y D, Li J F 2016 Adv. Funct. Mater. 26 1217Google Scholar

    [58]

    Zhang M H, Wang K, Du Y J, Dai G, Sun W, Li G, Hu D, Thong H C, Zhao C L, Xi X Q, Yue Z X, Li J F 2017 J. Am. Chem. Soc. 139 3889Google Scholar

    [59]

    Li P, Zhai J W, Shen B, Zhang S J, Li X L, Zhu F Y, Zhang X M 2018 Adv. Mater. 30 1705171Google Scholar

    [60]

    Egerton L, Dillon D M 1959 J. Am. Ceram. Soc. 42 438Google Scholar

    [61]

    Zuo R Z, Fu J 2011 J. Am. Ceram. Soc. 94 1467Google Scholar

    [62]

    Zhang B Y, Wu J G, Cheng X J, Wang X P, Xiao D Q, Zhu J G, Wang X J, Lou X J 2013 ACS Appl. Mater. Interfaces 5 7718Google Scholar

    [63]

    Wu J G, Wang X P, Cheng X J, Zheng T, Zhang B Y, Xiao D Q, Zhu J G, Luo X J 2014 J. Appl. Phys. 115 114104Google Scholar

    [64]

    Rubio-Marcos F, Lopez-Juarez R, Rojas-Hernandez R E, del Campo A, Razo-Perez N, Fernandez J F 2015 ACS Appl. Mater. Interfaces 7 23080Google Scholar

    [65]

    Zhang M H, Wang K, Du Y J, Dai G, Sun W, Li G, Hu D, Thong H C, Zhao C L, Xi X Q, Yue Z X, Li J F 2017 J. Am. Chem. Soc. 139 3889Google Scholar

    [66]

    陈秀峰, 张大军 2014 现代技术陶瓷 4 28

    Chen X F, Zhang D J 2014 Adv. Ceram. 4 28

    [67]

    Chen J, Liu H H, Yu D Y, Li Q N, Yuan C L, Xu J W, Cheng S, Zhao J T, Zhou C R, Rao G H 2024 Chem. Eng. J. 480 148202Google Scholar

    [68]

    李月明, 张玉平, 廖润华, 程亮 2006 陶瓷学报 27 205

    Li Y M, Zhang Y P, Liao R H, Chen L 2006 J. Ceram. 27 205

    [69]

    Cai K, Jiang F, Deng P Y, Ma J T, Guo D 2015 J. Am. Ceram. Soc. 98 3165Google Scholar

    [70]

    Zhao X M, Liu C, Zhang D N, Huang D, Liu K, Zhang H W 2022 Ceram. Int. 48 35461Google Scholar

    [71]

    周静, 赵然, 陈文 2005 陶瓷学报 26 202Google Scholar

    Zhou J, Zhao R, Chen W 2005 J. Ceram. 26 202Google Scholar

    [72]

    Fang R R, Zhou Z Y, Liang R H, Dong X L 2020 Ceram. Int. 46 23505Google Scholar

    [73]

    Ray S, Günther E, Ritzhaupt-Kleissl H J 2000 J. Mater. Sci. 35 6221Google Scholar

    [74]

    Vasant Kumar C, Sayer M, Pascual R 1992 Appl. Phys. Lett. 60 2207Google Scholar

    [75]

    Jin R Q, Ren X D, Xu Z, Yan Y K 2023 Ceram. Int. 49 39516Google Scholar

    [76]

    Hagh N M, Nonaka K, Allahverdi M, Safari A 2005 J. Am. Ceram. Soc. 88 3043Google Scholar

    [77]

    Fang R R, Zhou Z Y, Liang R H, Dong X L 2021 Ceram. Int. 47 26942Google Scholar

    [78]

    吴金根, 高翔宇, 陈建国, 王春明, 张树君, 董蜀湘 2018 物理学报 67 207701Google Scholar

    Wu J G, Gao X Y, Chen J G, Wang C M, Zhang S J, Dong S X 2018 Acta Phys. Sin. 67 207701Google Scholar

    [79]

    Chen H B, Zhai J W 2012 J. Electron. Mater. 41 2238Google Scholar

    [80]

    Long C B, Fan H Q, Li M M 2013 Dalton Trans. 42 3561Google Scholar

    [81]

    Li T, Li X L, Zhao Z H, Ji H M, Dai Y J 2015 Integr. Ferroelectr. 162 1Google Scholar

    [82]

    Pan C B, Zhao G C, Li S M, Wang X L, Wang J M Z, Tao M, Zhang X K, Yang C, Xu J P, Yin W, Yin L H, Song W H, Tong P, Zhu X B, Yang J, Sun Y P 2022 J. Mater. Chem. C 10 15851Google Scholar

    [83]

    Zhang H X 2007 proceedings of the 2007 Sixteenth IEEE International Symposium on the Applications of Ferroelectrics Nara, Japan, May 27-31, 2007 p751

    [84]

    Zhang S J, Alberta E, Eitel R E, Rehrig P W, Hackenberger W, Randall C A, Shrout T R 2005 proceedings of the Smart Structures and Materials 2005: Active Materials: Behavior and Mechanics, California, United States, March 07-10, 2005 p279

    [85]

    Dong Y Z, Zou K, Liang R H, Zhou Z Y 2023 Progress in Materials Science 132 101026Google Scholar

    [86]

    Zhao H Y, Hou Y D, YU X L, Zheng M P, Zhu M K 2020 J. Mater. Chem. C 8 1562Google Scholar

    [87]

    Zhang S J, Yu F P 2011 J. Am. Ceram. Soc. 94 3153Google Scholar

    [88]

    Belavic D, Bradesko A, Zarnik M S, Rojac T 2015 Metrol. Meas. Syst. 22 331Google Scholar

    [89]

    Wu J G, Gao X Y, Chen J G, Wang C M, Zhang S J, Dong S X 2018 Acta Phys. Sin. 67 207701Google Scholar

    [90]

    龚美霞 2001 国外电子元器件 1 9

    Gong M X 2001 Int. Electron. Ele 1 9

    [91]

    Philippot E, Palmier D, Pintard M, Goiffon A 1996 J. Solid State Chem. 123 1Google Scholar

    [92]

    London D 2001 Can. Mineral. 49 117

    [93]

    Shen C Y, Zhang S J, Cao W W, Cong H J, Yu H H, Wang J Y, Zhang H J 2015 Appl. Phys. 117 064106Google Scholar

    [94]

    Shen C Y, Zhang S J, Wang D L, Xu T X, Yu H H, Cao W W, Wang J Y, Zhang H J 2015 Crystengcomm 17 1791Google Scholar

    [95]

    Takeda H, Hagiwara M, Noguchi H, Hoshina T, Takahashi T, Kodama N 2013 Appl. Phys. Lett. 102 242907Google Scholar

    [96]

    Zhang Y Y, Yin X, Yu H H, Cong H J, Zhang H J, Wang J Y, Boughtont R I 2012 Cryst. Growth Des. 12 622Google Scholar

    [97]

    Haines J, Cambon O, Prudhomme N, Fraysse G, Keen D A, Chapon L C, Tucker M G 2006 Phys. Rev. B 73 14103Google Scholar

    [98]

    Fachberger R, Bruckner G, Knoll G, Hauser R, Biniasch J, Reindl L 2004 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 51 1427Google Scholar

    [99]

    Giurgiutiu V, Xu B L, Liu W P 2010 Struct. Health Monit. 9 513Google Scholar

    [100]

    陈林, 陈异, 肖定全, 朱建国 2005 四川大学学报 42 150

    Chen L, Chen Y, Xiao D Q, Zhu J G 2005 J. Sichuan Univ. 42 150

    [101]

    Bouchy S, Zednik R J, Bélanger P 2022 Materials 15 4716Google Scholar

    [102]

    Kim N I, Yarali M, Moradnia M, Aqib M, Liao C H, AlQatari F, Nong M T, Li X H, Ryou J H 2023 Adv. Funct. Mater. 33 2212538Google Scholar

    [103]

    Sotnikov A V, Schmidt H, Weihnacht M, Smirnova E P, Chemekova T Y, Makarov Y N 2010 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 57 808Google Scholar

    [104]

    赵超亮, 宋波, 张幸红, 韩杰才 2012 材料导报 26 11

    Zhao C L, Song B, Zhang X H, Han J C 2012 Mater. Rep. 26 11

    [105]

    Oreshko A P, Ovchinnikova E N, Rogalev A, Wilhelm F, Mill B V, Dmitrienko V E 2018 J. Synchrotron Radiat. 25 222Google Scholar

    [106]

    Bohm J, Chilla E, Flannery C, Fröhlich H J, Hauke T, Heimann R B, Hengst M, Straube U 2000 J. Cryst. Growth 216 293Google Scholar

    [107]

    Sato J, Takeda H, Morikoshi H, Shimamura K, Rudolph P, Fukuda T 1998 J. Cryst. Growth 191 746Google Scholar

    [108]

    Nakao H, Nishida M, Shikida T, Shimizu H, Takeda H, Shiosaki T 2006 J. Alloys Compd. 408 582

    [109]

    Zhang S, Yoshikawa A, Kamada K, Frantz E, Xia R, Snyder D W, Fukuda T, Shrout T R 2008 Solid State Commun. 148 213Google Scholar

    [110]

    Takeda H, Shimamura K, Chani V, Kato T, Fukuda T 1999 Cryst. Res. Technol. 34 1141Google Scholar

    [111]

    Takeda H, Fukuda T, Kawanaka H, Onozato N 2001 J. Mater. Sci. -Mater. Electron. 12 199Google Scholar

    [112]

    Ren C K, Yin L B, Wang S, Chen W R, Wang S, Xiong K N, Tu X N, Bao N Z, Zheng Y Q, Chen J, Shi E W 2024 J. Rare Earths (received

    [113]

    Shen C Y, Zhang H J, Cong H J, Yu H H, Wang J Y, Zhang S J 2014 Appl. Phys. 116 4

    [114]

    Taylor N T, Davies F H, Hepplestone S 2017 Mater. Res. Express 4 125904Google Scholar

    [115]

    Zhong D G, Teng B, Kong W J, Ji S H, Zhang S M, Li J H, Cao L F, Jing H L, He L X 2017 J. Alloys Compd. 692 413Google Scholar

    [116]

    Takeda H, Nakao H, Izukawa S, Shimizu H, Nishida T, Okamura S, Shiosaki T 2006 J. Alloys Compd. 408 474

    [117]

    Fei Y, Chai B H, Ebbers C, Liao Z, Schaffers K I, Thelin P 2006 J. Cryst. Growth 290 301Google Scholar

    [118]

    Zhang S J, Fei Y T, Frantz E, Snyder D W, Chai B H T, Shrout T R 2008 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 55 2703Google Scholar

    [119]

    Yu F P, Zhang S J, Zhao X, Guo S Y, Duan X L, Yuan D R, Shrout T R 2011 J. Phys. D: Appl. Phys. 44 135405Google Scholar

    [120]

    Zhang S J, Yu F P, Xia R, Fei Y T, Frantz E, Zhao X, Yuan D R, Chai B H T, Snyder D, Shrout T R 2011 J. Cryst. Growth 318 884Google Scholar

    [121]

    Yu F P, Hou S, Zhao X, Zhang S J 2014 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 61 1344Google Scholar

    [122]

    Zhang S J, Frantz E, Xia R, Everson W, Randi J, Snyder D W, Shrout T R 2008 Appl. Phys. 104 8Google Scholar

    [123]

    严纯华, 黄小卫 2024 中国稀土学报 42 381

    Yan C H, Huang X W 2024 J. Chin. Soc. Rare Earths 42 381

    [124]

    Stephan A, Gaulden T, Brown A D, Smith M, Miller L, Thundat T 2002 Rev. Sci. Instrum. 73 36Google Scholar

    [125]

    Cao M S, Ye L, Zhou L M, Su Z Q, Bai R B 2011 Mech. Syst. Sig. Process. 25 630Google Scholar

    [126]

    Zang H Y, Zhang X M, Zhu B L, Fatikow S 2019 Sens. Actuator, A 296 155Google Scholar

    [127]

    Havelock D I, Kuwano S, Vorlander M 2008 Handbook of signal processing in acoustics (New York: Springer

    [128]

    Wu J G, Shi H D, Zhao T L, Yu Y, Dong S X 2016 Adv. Funct. Mater. 26 7186Google Scholar

    [129]

    郭欣榕 2021 硕士学位论文 (山西: 中北大学)

    Guo X R 2021 M. S. Thesis (Shanxi: North Central University

    [130]

    石树正, 耿文平, 刘勇, 毕开西, 李芬, 丑修建 2022 兵工学报 43 1998

    Shi S Z, Geng W P, Liu Y, Bi K X, Li F, Chou J X 2022 Acta Armament. 43 1998

    [131]

    Xu M H, Zhou H, Zhu L H, Shen J N, Zeng Y B, Feng Y J, Guo H 2019 Microsyst. Technol. 25 4465Google Scholar

    [132]

    Le Traon O, Masson S, Chartier C, Janiaud D 2010 Solid State Sci. 12 318Google Scholar

    [133]

    Li D N, Fan Q Q, Li J H, Ren W, Wu L, Sun B, Yang Z 2019 proceedings of the 2019 13th Symposium on Piezoelectrcity, Acoustic Waves and Device Applications Harbin, China, January 11-14, 2019 2019-01-01

    [134]

    Han J Q, Zhu Y S, Tao G H, Zhao Z Q, Yin Y J, Niu W J, Dong L Z 2019 IEEE Sens. J. 19 6602Google Scholar

    [135]

    曾宏川 2021 硕士学位论文 (四川: 电子科技大学)

    Zeng H C 2021 M. S. Thesis (Sichuan: University of Electronic Science and Technology

    [136]

    Wang Y M, Liu X L, Bai L Y, Cheng R, Jiang C, Li Y Z, Zhang J Q, Chen H, Li Y L, Yu F P, Guo S Y 2023 J. Alloys Compd. 937 168449Google Scholar

    [137]

    陈丽洁, 徐兴烨, 雷亚辉, 杨月, 朴胜春, 张丽 2020 中国电子科学研究院学报 15 1212

    Chen L J, Xu X Y, Lei Y H, Yang Y, Piao S C, Zhang L 2020 J. CAEIT 15 1212

    [138]

    Zhang D Z, Liu J, Qin L, Liu J C, Li M 2020 IEEE Sens. J. 20 7129Google Scholar

    [139]

    潘睿 2019 硕士学位论文 (济南: 山东大学)

    Pan R 2019 M. S. Thesis (Jinan: Shandong University

    [140]

    朱瑞浩 2019 硕士学位论文 (成都: 电子科技大学)

    Zhu R J 2019 M. S. Thesis (Chengdu: University of Electronic Science and Technology

    [141]

    Wu T Q, You D, Gao H Y, Lian P H, Ma W G, Zhou X Y, Wang C M, Luo J H, Zhang H B, Tan H 2023 Crystals 13 1363Google Scholar

    [142]

    丁明鹏 2020 硕士学位论文 (济南: 山东大学)

    Ding M P 2020 M. S. Thesis (Jinan: Shandong University

    [143]

    曾宏川, 彭斌, 张万里 2021 压电与声光 43 320

    Zeng H C, Peng B, Zhang W L 2021 Piezoelectrics & Acoustooptics 43 320

    [144]

    Shi Y N, Jiang S S, Liu Y, Wang Y Y, Qi P L 2022 Geofluids 2022 3964502

    [145]

    Kapusuz H, Güvenc M A, Mistikoglu S 2019 Int. Adv. Res. Eng. J. 3 144Google Scholar

    [146]

    Metz B 2014 proceedings of the 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference Cleveland, United States, July 28-30, 2014 p3974

    [147]

    王佳豪, 左爱斌, 彭月祥 2022 计量学报 43 1634

    Wang J H, Zuo A B, Peng Y X 2022 Acta Metrol. Sin. 43 1634

    [148]

    Zhu G, Yang X W, Liu X 2018 J. Phys. Conf. Ser. 1065 222003Google Scholar

    [149]

    2015-03-04] [朱刚, 杨晓伟, 闫磊, 刘鑫, 武东健 中国专利 CN204188258U [2014-03-04]

    Zhu G, Yang X W, Yan L, Liu X, Wu D J Patent CN204188258U

    [150]

    Beckman P, Gerding B F, Jain P K U. S. Patent 3 884 085 [1975-04-05]

    [151]

    Norling B L, Norling L B U. S. Patent 4 750 363 [1988-06-14]

    [152]

    Kubasov I V, Kislyuk A M, Turutin A V, Bykov A S, Kiselev D A, Temirov A A, Zhukov R N, Sobolev N A, Malinkovich M D, Parkhomenko Y N 2019 Sensors 19 614Google Scholar

    [153]

    Chen J G, Wu J E, Lu Y, Wang Y, Cheng J R 2022 Appl. Phys. Lett. 121 23Google Scholar

    [154]

    Sommer R, Cavalloni C, Waser M 2011 9th Eurppean Conference on Turbomachinery-Fluid Dynamics and Thermodynamics Istanbul, Turkey, March 21-25, 2011 p1555

    [155]

    Liu X L, Jiang C, Tian S W, Fang H R, Yu F P, Xian Z 2019 proceedings of the 2019 14th Symposium on Piezoelectrcity, Acoustic Waves and Device Applications Shijiazhuang, China November 01-04, 2019 p214

    [156]

    2021-07-13 ] [于法鹏, 刘学良, 姜超, 房浩然, 杨勇, 赵显 中国专利 CN111579815B [2021-07-13]

    Yu F P, Liu X L, Jiang C, Fang H R, Yang Y, Zhao X CN Patent CN111579815B

    [157]

    Jiang C, Liu X L, Yu F P, Zhang S J, Fang H R, Cheng X F, Zhao X 2020 IEEE Trans. Ind. Electron. 68 12850

    [158]

    Zhang S J, Jiang X N, Lapsley M, Moses P, Shrout T R 2010 Appl Phys Lett. 96 1Google Scholar

    [159]

    2020-04-07] [任政, 苏刚, 王红战, 闫长新 中国专利 CN210269907U [2020-04-07]

    Ren Z, Su G, Wang H Z, Yan C XCN Patent CN210269907U

    [160]

    胡子俭, 李承恩, 周家光, 李毅, 晏海学, 王志超 中国专利 CN1226681[1999-08-25 [Hu Z J, Li C E, Zhou J G, Li Y, Yan H X, Wang Z C CN Patent CN1226681 [1999-08-25 ] [胡子俭, 李承恩, 周家光, 李毅, 晏海学, 王志超 中国专利 CN1226681]

    1999-08-25

    [161]

    2023-06-23] [徐昱根, 朱万霞, 孙磊, 郇正利, 沈双全, 李朋洲, 黄彦平, 乔红威 中国专利 CN116298388A [2023-06-23]

    Xu Y G, Zhu W X, Sun L, Xun Z L, Shen S Q, Li P Z, Huang Y P, Qiao H W CN Patent CN116298388A

    [162]

    2023-08-29] [张振海, 刘石豪, 何光, 吴缪斯, 张文一, 滕飞 中国专利 CN116660578A [2023-08-29]

    Zhang Z H, Liu S H, He G, Wu L S, Zhang W Y, Teng F CN Patent CN116660578A

    [163]

    Ochiai T 1998 Jpn. J. Appl. Phys. 37 1964Google Scholar

    [164]

    2023-05-12] [秦利锋, 夏虎, 李宁, 杨淳 中国专利 CN219016353U [2023-05-12]

    Qin L F, Xia H, Li N, Yang C CN Patent CN219016353U

    [165]

    Liu X L, Yu F P, Li F L, Tian S W, Cheng X F, Zhao X 2019 proceedings of the 2019 13th Symposium on Piezoelectrcity, Acoustic Waves and Device Applications Harbin, China, January 11-14, 2019

    [166]

    Salazar G, Kim K, Zhang S J, Jiang X N 2012 Proceedings of SPIE-The International Society for Optical Engineering 8347 40

    [167]

    Kim H, Kerrigan S, Bourham M, Jiang X N 2021 IEEE Trans. Ind. Electron. 68 5346

    [168]

    Kerrigan S P 2023 Development, Fabrication, and Characterization of Piezoelectric Non-Intrusive Wireless Vibration Sensors for Nuclear Power Plant Applications

    [169]

    2023-11-10] [余快, 赵聪, 彭鹏, 黄伟, 金城, 冯婷, 李菊红 中国专利 CN219996335U [2023-11-10]

    Yu K, Zhao C, Peng P, Huang W, Jin C, Feng T, Li J H CN Patent CN219996335U

    [170]

    Howard C, E, South P C U. S. Patent 3727084 [1973-01-05]

    [171]

    Varak D, Ferreiro P U. S. Patent 8375793B2 [ ]

    [172]

    2014-04-09] [ 顾宝龙, 黄建民, 赵振平, 陈佳壁, 晏生剑, 潘威 中国专利 CN203534825U [2014-04-09]

    Gu B L, Huang J M, Zhao Z P, Chen J B, Yan S J, Pan W CN Patent CN203534825U

    [173]

    Walter P L 1997 Sound Vib. 31 16

  • [1] 王怡, 陈诚, 林书玉. 声黑洞楔形结构振动模式转换超声换能器. 物理学报, doi: 10.7498/aps.74.20241326
    [2] 文艺, 伍康, 王力军. 绝对重力测量中振动传感器振动补偿性能的分析. 物理学报, doi: 10.7498/aps.71.20211686
    [3] 秦晓玲, 朱栩量, 曹靖雯, 王浩诚, 张鹏. 冰的氢键振动研究. 物理学报, doi: 10.7498/aps.70.20210013
    [4] 文艺, 伍康, 王力军. 绝对重力测量中振动传感器振动补偿性能的分析. 物理学报, doi: 10.7498/aps.70.20211686
    [5] 吴金根, 高翔宇, 陈建国, 王春明, 张树君, 董蜀湘. 高温压电材料、器件与应用. 物理学报, doi: 10.7498/aps.67.20181091
    [6] 李鑫, 赵岩, 靳颖辉, 王晓锐, 余谢秋, 武媚, 韩昱行, 杨勇刚, 李昌勇, 贾锁堂. 对甲氧基苯甲腈的单色共振双光子电离光谱. 物理学报, doi: 10.7498/aps.66.093301
    [7] 闫微, 马淼, 戴泽林, 谷雨, 朱宏钊, 刘禹彤, 许向东, 韩守胜, 彭勇. 全反式-胡萝卜素太赫兹光谱的实验及理论研究. 物理学报, doi: 10.7498/aps.66.037801
    [8] 周海亮, 顾庆天, 张清华, 刘宝安, 朱丽丽, 张立松, 张芳, 许心光, 王正平, 孙洵, 赵显. NH4H2PO4和ND4D2PO4晶体微结构的拉曼光谱研究. 物理学报, doi: 10.7498/aps.64.197801
    [9] 张季, 张德明, 王迪, 张庆礼, 孙敦陆, 殷绍唐. Bi2ZnOB2O6单晶偏振拉曼光谱. 物理学报, doi: 10.7498/aps.62.237802
    [10] 张季, 王迪, 张德明, 张庆礼, 万松明, 孙敦陆, 殷绍唐. 正磷酸盐晶体Ba3(PO4)2和Sr3(PO4)2高温拉曼光谱研究. 物理学报, doi: 10.7498/aps.62.097802
    [11] 张季, 王迪, 张德明, 张庆礼, 万松明, 孙敦陆, 殷绍唐. BaBPO5晶体晶格振动光谱研究与第一性原理计算. 物理学报, doi: 10.7498/aps.62.037802
    [12] 杨岳彬, 左文龙, 保延翔, 刘树郁, 李龙飞, 张进修, 熊小敏. 力学共振吸收谱探测耦合振动模式. 物理学报, doi: 10.7498/aps.61.200509
    [13] 张海燕, 曹亚萍, 于建波, 陈先华. 采用单个压电传感器的单模式兰姆波激发频率的选择. 物理学报, doi: 10.7498/aps.60.114301
    [14] 华宝成, 钱建强, 王曦, 姚骏恩. 应用于扫描探针显微镜的石英音叉机械模型研究. 物理学报, doi: 10.7498/aps.60.040702
    [15] 赵啦啦, 刘初升, 闫俊霞, 蒋小伟, 朱艳. 不同振动模式下颗粒分离行为的数值模拟. 物理学报, doi: 10.7498/aps.59.2582
    [16] 俞阿龙. 基于小波神经网络的振动速度传感器幅频特性补偿研究. 物理学报, doi: 10.7498/aps.56.3166
    [17] 姜泽辉, 王运鹰, 吴 晶. 窄振动颗粒床中的运动模式. 物理学报, doi: 10.7498/aps.55.4748
    [18] 彭永进, 张慧鹏, 金庆华, 王玉芳, 李宝会, 丁大同. 单壁手性碳纳米管Γ点E1和E2振动模式. 物理学报, doi: 10.7498/aps.55.2860
    [19] 武煜宇, 邹崇文, 徐彭寿. ZnO中H导致的缺陷态的局域振动模式研究. 物理学报, doi: 10.7498/aps.55.5466
    [20] 张慧鹏, 金庆华, 王玉芳, 李宝会, 丁大同. 单壁碳纳米管手性角对声子振动频率的影响. 物理学报, doi: 10.7498/aps.54.4279
计量
  • 文章访问数:  482
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-30
  • 修回日期:  2024-11-12
  • 上网日期:  2024-12-10

/

返回文章
返回