搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

含自旋-轨道耦合的$ {{\bf{O}}}_{2}^{ - } $光谱常数计算

刘铭婕 田亚莉 王瑜 李晓筱 和小虎 宫廷 孙小聪 郭古青 邱选兵 李传亮

引用本文:
Citation:

含自旋-轨道耦合的$ {{\bf{O}}}_{2}^{ - } $光谱常数计算

刘铭婕, 田亚莉, 王瑜, 李晓筱, 和小虎, 宫廷, 孙小聪, 郭古青, 邱选兵, 李传亮

Calculation of $ {\mathrm{O}}^ -_2 $ spectroscopic constants with spin-orbit coupling

LIU Mingjie, TIAN Yali, WANG Yu, LI Xiaoxiao, HE Xiaohu, GONG Ting, SUN Xiaocong, GUO Guqing, QIU Xuanbing, LI Chuanliang
PDF
HTML
导出引用
  • 本文采用完全活性空间自洽场(complete active space self-consistent field, CASSCF)和加戴维森校正的多参考组态相互作用(multireference configuration interaction with Davidson correction, MRCI+Q)方法, 研究了超氧阴离子(${\text{O}}_{2}^{{ - }}$)的低激发电子态及自旋-轨道耦合(spin-orbit coupling, SOC)效应对电子态的影响. 使用aug-cc-pV5Z-dk基组, 计算了${\text{O}}_{2}^{{ - }}$第一和第二解离极限对应的42个Λ-S态的势能曲线(potential energy curves, PECs)以及束缚态的光谱常数. 同时考虑SOC效应, 计算了这42个Λ-S态分裂形成的84个Ω态的PECs和部分束缚态的光谱常数. 其中第一解离极限结果与已有文献高度一致, 第二解离极限结果为本文首次计算提供. 这些结果为研究${\text{O}}_{2}^{{ - }}$的电子结构和光谱性质提供了重要的理论依据. 针对${{\text{a}}^{4}}{{\Sigma }}_{\text{u}}^{{ - }}$态的双势阱现象, 本文通过比较不同基组下的计算结果, 证实了${{\text{a}}^{4}}{{\Sigma }}_{\text{u}}^{{ - }}$态的双势阱形成源于与${{2}^{4}}{{\Sigma }}_{\text{u}}^{{ - }}$态的避免交叉影响. 此外, 研究发现基组大小直接影响${{\text{a}}^{4}}{{\Sigma }}_{\text{u}}^{{ - }}$态的首个势阱深度, 这进一步表明基组选择对光谱常数计算的精确性至关重要. 本文数据集可在科学数据银行https://doi.org/10.57760/sciencedb.j00213.00076中访问获取.
    A comprehensive theoretical study on the low-energy electronic states of superoxide anion (${\text{O}}_{2}^{{ - }}$) is carried out, focusing on the influence of spin-orbit coupling (SOC) on these states. Utilizing the complete active space self-consistent field (CASSCF) method combined with the multireference configuration interaction method with Davidson correction (MRCI+Q) and employing the aug-cc-pV5Z-dk basis set that includes Douglas-Kroll relativistic corrections, the electron correlation and relativistic effects are accurately considered in this work. This work concentrates on the first and second dissociation limits of ${\text{O}}_{2}^{{ - }}$, calculating the potential energy curves (PECs) and spectroscopic constants of 42 Λ-S states. After introducing SOC, 84 Ω states are obtained through splitting, and their PECs and spectroscopic constants are calculated. Detailed data of the electronic states related to the second dissociation limit are provided. The results show excellent agreement with those in the existing literature, thus validating the reliability of the method. This work confirms through calculations with different basis sets that the double-well structure of the ${{\text{a}}^{4}}{{\Sigma }}_{\text{u}}^{{ - }}$ state originates from avoiding crossing with the ${{2}^{4}}{{\Sigma }}_{\text{u}}^{{ - }}$ state, and finds that the size of the basis set can significantly affect the depth of its potential well. After considering SOC, the total energy of the system decreases, especially for the states with high orbital angular momentum (such as the ${{1}^{2}}{{\Phi }}_{\text{u}}$ and ${{1}^{4}}{{{\Delta }}_{\text{g}}}$ states), leading to energy level splitting and energy reduction, while other spectroscopic constants remain essentially unchanged. These findings provide valuable theoretical insights into the electronic structure and spectroscopic properties of ${\text{O}}_{2}^{{ - }}$, present important reference data for future research in fields such as atmospheric chemistry, plasma physics, and molecular spectroscopy. The datasets provided in this work are available from https://doi.org/10.57760/sciencedb.j00213.00076.
  • 图 1  ${\text{O}}_{2}^{{ - }}$ Λ-S态PECs (a) 42个Λ-S态的PECs; (b)第一解离极限二重态的PECs; (c)第二解离极限二重态的PECs; (d) 第一解离极限四重态的PECs

    Fig. 1.  Λ-S states Potential energy curves for ${\text{O}}_{2}^{{ - }}$: (a) Potential energy curves of 42 Λ-S states; (b) potential energy curves for the first dissociation limit doublet state; (c) potential energy curves for the second dissociation limit doublet state; (d) potential energy curves for the first dissociation limit quartet state.

    图 2  ${\text{O}}_{2}^{{ - }}$ ${{1}^{2}}{{\Sigma }}_{\text{g}}^ + $与 ${{2}^{2}}{{\Sigma }}_{\text{g}}^ + $态PECs

    Fig. 2.  ${{1}^{2}}{{\Sigma }}_{\text{g}}^ + $ and ${{2}^{2}}{{\Sigma }}_{\text{g}}^ + $ potential energy curves of ${\text{O}}_{2}^{{ - }}$.

    图 3  不同基组及冻结电子情况下的下${{\text{a}}^{4}}{{\Sigma }}_{\text{u}}^{{ - }}$和${{2}^{4}}{{\Sigma }}_{\text{u}}^{{ - }}$ PECs的比较

    Fig. 3.  Comparison of the potential energy curves of ${{\text{a}}^{4}}{{\Sigma }}_{\text{u}}^{{ - }}$ and ${{2}^{4}}{{\Sigma }}_{\text{u}}^{{ - }}$ for different basis sets and frozen electrons.

    图 4  由42个Λ-S态产生的84个Ω态PECs (a) Ω = 7/2; (b) Ω = 5/2; (c) Ω = 3/2; (d) Ω = 1/2

    Fig. 4.  Potential energy curves for 84 Ω states generated by 42 Λ-S states: (a) Ω = 7/2; (b) Ω = 5/2; (c) Ω = 3/2; (d) Ω = 1/2.

    图 5  由4重Π态产生的4个Ω态的PECs (Ω = –1/2)

    Fig. 5.  Potential energy curves for 4 Ω states generated by quadruple Π state (Ω = –1/2).

    表 1  ${\text{O}}_{2}^{{ - }}$第一和第二解离极限对应的Λ-S态和Ω态

    Table 1.  Λ-S and Ω states corresponding to the first and second dissociation limits of ${\text{O}}_{2}^{{ - }}$.

    原子态 能级/cm–1 Λ-S态 Ω态
    本文 NIST[32]
    O(2s22p4 3Pg)+O(2s22p5 2Pu) 0 0 ${\text{X}}{}^{2}{{{\Pi }}_{\text{g}}}$ ${\text{X}}{}^{2}{{{\Pi }}_{{\text{g, 3/2}}}}$ , ${\text{X}}{}^{2}{{{\Pi }}_{{\text{g, 1/2}}}}$
    ${2}{}^{2}{{{\Pi }}_{\text{g}}}$ ${2}{}^{2}{{{\Pi }}_{{\text{g, 3/2}}}}$ , ${2}{}^{2}{{{\Pi }}_{{\text{g, 1/2}}}}$
    ${1}{}^{2}{{{\Delta }}_{\text{g}}}$ ${1}{}^{2}{{{\Delta }}_{{\text{g, 5/2}}}}$ , ${1}{}^{2}{{{\Delta }}_{{\text{g, 3/2}}}}$
    ${{1}^{2}}{{\Sigma }}_{\text{g}}^{+}$ ${{1}^{2}}{{\Sigma }}_{{\text{g, 1/2}}}^{+}$
    ${{1}^{2}}{{\Sigma }}_{\text{g}}^{{ - }}$ ${{1}^{2}}{{\Sigma }}_{{\text{g, 1/2}}}^{{ - }}$
    ${{2}^{2}}{{\Sigma }}_{\text{g}}^{{ - }}$ ${{2}^{2}}{{\Sigma }}_{{\text{g, 1/2}}}^{{ - }}$
    ${\text{A}}{}^{2}{{{\Pi }}_{\text{u}}}$ ${\text{A}}{}^{2}{{{\Pi }}_{{\text{u, 1/2}}}}$ , ${\text{A}}{}^{2}{{{\Pi }}_{{\text{u, 3/2}}}}$
    ${2}{}^{2}{{{\Pi }}_{\text{u}}}$ ${2}{}^{2}{{{\Pi }}_{{\text{u, 1/2}}}}$ , ${2}{}^{2}{{{\Pi }}_{{\text{u, 3/2}}}}$
    ${1}{}^{2}{\Delta _{\text{u}}}$ ${1}{}^{2}{\Delta _{{\text{u, 5/2}}}}$ , ${1}{}^{2}{\Delta _{{\text{u, 3/2}}}}$
    ${{1}^{2}}{{\Sigma }}_{\text{u}}^{+}$ ${{1}^{2}}{{\Sigma }}_{{\text{u, 1/2}}}^{+}$
    ${{1}^{2}}{{\Sigma }}_{\text{u}}^{{ - }}$ ${{1}^{2}}{{\Sigma }}_{{\text{u, 1/2}}}^{{ - }}$
    ${{2}^{2}}{{\Sigma }}_{\text{u}}^{{ - }}$ ${{2}^{2}}{{\Sigma }}_{{\text{u, 1/2}}}^{{ - }}$
    ${1}{}^{4}{{{\Pi }}_{\text{g}}}$ ${1}{}^{4}{{{\Pi }}_{{\text{g, 5/2}}}}$ , ${1}{}^{4}{{{\Pi }}_{{\text{g, 3/2}}}}$ , ${1}{}^{4}{{{\Pi }}_{{\text{g, 1/2}}}}$ , ${1}{}^{4}{{{\Pi }}_{{\text{g, - 1/2}}}}$
    ${2}{}^{4}{{{\Pi }}_{\text{g}}}$ ${2}{}^{4}{{{\Pi }}_{{\text{g, 5/2}}}}$ , ${2}{}^{4}{{{\Pi }}_{{\text{g, 3/2}}}}$ , ${2}{}^{4}{{{\Pi }}_{{\text{g, 1/2}}}}$ , ${2}{}^{4}{{{\Pi }}_{{\text{g, - 1/2}}}}$
    ${1}{}^{4}{{{\Delta }}_{\text{g}}}$ ${1}{}^{4}{{{\Delta }}_{{\text{g, 7/2}}}}$ , ${1}{}^{4}{{{\Delta }}_{{\text{g, 5/2}}}}$ , ${1}{}^{4}{{{\Delta }}_{{\text{g, 3/2}}}}$ , ${1}{}^{4}{{{\Delta }}_{{\text{g, 1/2}}}}$
    $ {{1}^{4}}{{\Sigma }}_{\text{g}}^{+} $ $ {{1}^{4}}{{\Sigma }}_{{\text{g, 1/2}}}^{+} $ , $ {{1}^{4}}{{\Sigma }}_{{\text{g, 3/2}}}^{+} $
    $ {{1}^{4}}{{\Sigma }}_{\text{g}}^{{ - }} $ $ {{1}^{4}}{{\Sigma }}_{{\text{g, 1/2}}}^{{ - }} $ , $ {{1}^{4}}{{\Sigma }}_{{\text{g, 3/2}}}^{{ - }} $
    $ {{2}^{4}}{{\Sigma }}_{\text{g}}^{{ - }} $ $ {{2}^{4}}{{\Sigma }}_{{\text{g, 1/2}}}^{{ - }} $ , $ {{2}^{4}}{{\Sigma }}_{{\text{g, 3/2}}}^{{ - }} $
    ${1}{}^{4}{{{\Pi }}_{\text{u}}}$ ${1}{}^{4}{{{\Pi }}_{{\text{u, 5/2}}}}$ , ${1}{}^{4}{{{\Pi }}_{{\text{u, 3/2}}}}$ , ${1}{}^{4}{{{\Pi }}_{{\text{u, 1/2}}}}$ , ${1}{}^{4}{{{\Pi }}_{{\text{u, - 1/2}}}}$
    ${2}{}^{4}{{{\Pi }}_{\text{u}}}$ ${2}{}^{4}{{{\Pi }}_{{\text{u, 5/2}}}}$ , ${2}{}^{4}{{{\Pi }}_{{\text{u, 3/2}}}}$ , ${2}{}^{4}{{{\Pi }}_{{\text{u, 1/2}}}}$ , ${2}{}^{4}{{{\Pi }}_{{\text{u, - 1/2}}}}$
    ${1}{}^{4}{{{\Delta }}_{\text{u}}}$ 14Δu, 7/2 , 14Δu, 5/2 , 14Δu, 3/2 , 14Δu, 1/2
    $ {{1}^{4}}{{\Sigma }}_{\text{u}}^{+} $ $ {1}^{4}{\text{Σ}}_{\text{u}, \text{1/2}}^{+} $ , $ {1}^{4}{\text{Σ}}_{\text{u}, \text{3/2}}^{+} $
    ${{\text{a}}^{4}}{{\Sigma }}_{\text{u}}^{{ - }}$ $ {\text{a}}^{4}{\text{Σ}}_{\text{u}, \text{1/2}}^{-} $ , $ {\text{a}}^{4}{\text{Σ}}_{\text{u}, \text{3/2}}^{-} $
    ${{2}^{4}}{{\Sigma }}_{\text{u}}^{{ - }}$ $ {2}^{4}{\text{Σ}}_{\text{u}, \text{1/2}}^{-} $ , $ {2}^{4}{\text{Σ}}_{\text{u}, \text{3/2}}^{-} $
    O(2s22p4 1Dg)+O(2s22p5 2Pu) 15878.24 15867.86 ${3}{}^{2}{{{\Pi }}_{\text{g}}}$ ${3}{}^{2}{{{\Pi }}_{{\text{g, 3/2}}}}$ , ${3}{}^{2}{{{\Pi }}_{{\text{g, 1/2}}}}$
    ${4}{}^{2}{{{\Pi }}_{\text{g}}}$ ${4}{}^{2}{{{\Pi }}_{{\text{g, 3/2}}}}$ , ${4}{}^{2}{{{\Pi }}_{{\text{g, 1/2}}}}$
    ${5}{}^{2}{{{\Pi }}_{\text{g}}}$ $5{}^{2}{{{\Pi }}_{{\text{g, 3/2}}}}$ , ${5}{}^{2}{{{\Pi }}_{{\text{g, 1/2}}}}$
    ${1}{}^{2}{{\Phi }}_{\text{g}}$ ${1}{}^{2}{{\Phi }}_{{\text{g, 7/2}}}$ , ${1}{}^{2}{{\Phi }}_{{\text{g, 5/2}}}$
    ${2}{}^{2}{{{\Delta }}_{\text{g}}}$ ${2}{}^{2}{{{\Delta }}_{{\text{g, 5/2}}}}$ , ${2}{}^{2}{{{\Delta }}_{{\text{g, 3/2}}}}$
    ${3}{}^{2}{{{\Delta }}_{\text{g}}}$ ${3}{}^{2}{{{\Delta }}_{{\text{g, 5/2}}}}$ , ${3}{}^{2}{{{\Delta }}_{{\text{g, 3/2}}}}$
    ${{2}^{2}}{{\Sigma }}_{\text{g}}^{+}$ $ {2}^{2}{\text{Σ}}_{\text{g}, \text{1/2}}^{+} $
    ${{3}^{2}}{{\Sigma }}_{\text{g}}^{+}$ $ {3}^{2}{\text{Σ}}_{\text{g}, \text{1/2}}^{+} $
    ${{3}^{2}}{{\Sigma }}_{\text{g}}^{{ - }}$ $ {3}^{2}{\text{Σ}}_{\text{g}, \text{1/2}}^{-} $
    ${3}{}^{2}{{{\Pi }}_{\text{u}}}$ ${3}{}^{2}{{{\Pi }}_{{\text{u, 3/2}}}}$ , ${3}{}^{2}{{{\Pi }}_{{\text{u, 1/2}}}}$
    ${4}{}^{2}{{{\Pi }}_{\text{u}}}$ ${4}{}^{2}{{{\Pi }}_{{\text{u, 3/2}}}}$ , ${4}{}^{2}{{{\Pi }}_{{\text{u, 1/2}}}}$
    ${5}{}^{2}{{{\Pi }}_{\text{u}}}$ ${5}{}^{2}{{{\Pi }}_{{\text{u, 3/2}}}}$ , ${5}{}^{2}{{{\Pi }}_{{\text{u, 1/2}}}}$
    ${1}{}^{2}{{\Phi }}_{\text{u}}$ ${1}{}^{2}{{\Phi }}_{{\text{u, 7/2}}}$ , ${1}{}^{2}{{\Phi }}_{{\text{u, 5/2}}}$
    ${2}{}^{2}{{{\Delta }}_{\text{u}}}$ ${2}{}^{2}{{{\Delta }}_{{\text{u, 5/2}}}}$ , ${2}{}^{2}{{{\Delta }}_{{\text{u, 3/2}}}}$
    ${3}{}^{2}{{{\Delta }}_{\text{u}}}$ ${3}{}^{2}{{{\Delta }}_{{\text{u, 5/2}}}}$ , ${3}{}^{2}{{{\Delta }}_{{\text{u, 3/2}}}}$
    ${{2}^{2}}{{\Sigma }}_{\text{u}}^{+}$ $ {2}^{2}{\text{Σ}}_{\text{u}, \text{1/2}}^{+} $
    ${{3}^{2}}{{\Sigma }}_{\text{u}}^{+}$ $ {3}^{2}{\text{Σ}}_{\text{u}, \text{1/2}}^{+} $
    ${{3}^{2}}{{\Sigma }}_{\text{u}}^{{ - }}$ $ {3}^{2}{\text{Σ}}_{\text{u}, \text{1/2}}^{-} $
    下载: 导出CSV

    表 2  第一和第二解离极限束缚Λ-S态在其Re处的主要电子组态

    Table 2.  Main electronic configurations of bound Λ-S states at Re in the first and second dissociation limits.

    Λ-S态 Λ-S态在Re处的主要组态
    ${\text{X}}{}^{2}{{{\Pi }}_{\text{g}}}$ g2u4g3u0 (98.05%)
    ${{1}^{2}}{{\Sigma }}_{\text{g}}^{+}$ g1u4g4u0 (96.32%)
    ${{1}^{2}}{{\Sigma }}_{\text{g}}^{{ - }}$ g2u3g3u1 (97.30%)
    ${\text{A}}{}^{2}{{{\Pi }}_{\text{u}}}$ g2u4g3u0 (92.88%)
    ${1}{}^{2}{\Delta _{\text{u}}}$ g2u4g2u1 (60.17%) 3σg2u2g4u1 (34.59%)
    ${{1}^{2}}{{\Sigma }}_{\text{u}}^{{ - }}$ g2u4g2u1 (73.86%)
    ${1}{}^{4}{{{\Pi }}_{\text{g}}}$ g1u3g4u1 (99.97%)
    ${1}{}^{4}{\Delta _{\text{g}}}$ g2u3g3u1 (70.71%)
    ${{1}^{4}}{{\Sigma }}_{\text{g}}^{+}$ g2u3g3u1 (70.71%)
    ${{1}^{4}}{{\Sigma }}_{\text{g}}^{{ - }}$ g1u4g2u2 (69.48%) 3σg2u3g3u1 (48.39%)
    ${1}{}^{4}{{{\Pi }}_{\text{u}}}$ g1u4g3u1 (99.85%)
    ${2}{}^{4}{{{\Pi }}_{\text{u}}}$ g2u3g2u2 (99.87%)
    ${{\text{a}}^{4}}{{\Sigma }}_{\text{u}}^{{ - }}$(1st well) g2u4g2u1 (97.21%)
    (2 nd well) g2u4g2u1 (61.53%) 3σg2u3g4u1 (32.34%)
    ${3}{}^{2}{{{\Pi }}_{\text{g}}}$ g1u3g4u1 (63.92%)
    ${2}{}^{2}{\Delta _{\text{g}}}$ g1u4g2u2 (50.21%) 3σg2u3g3u1 (35.45%)
    ${{2}^{2}}{{\Sigma }}_{\text{g}}^{+}$ g2u3g3u1 (85.66%)
    ${{3}^{2}}{{\Sigma }}_{\text{g}}^{+}$ g2u3g3u1 (42.42%) 3σg1u2g4u2 (35.42%) 3σg1u4g2u2 (29.42%)
    ${3}{}^{2}{{{\Pi }}_{\text{u}}}$ g1u4g3u1 (73.79%) 3σg2u3g4u0 (30.12%)
    ${1}{}^{2}{{\Phi }}_{\text{u}}$ g2u3g2u2 (50.00%)
    ${2}{}^{2}{\Delta _{\text{u}}}$ g1u3g3u2 (49.87%) 3σg2u4g2u1 (28.13%) 3σg2u2g4u1 (21.31%)
    ${{3}^{2}}{{\Sigma }}_{\text{u}}^{+}$ g1u3g3u2 (40.05%) 3σg2u4g2u1 (37.78%) 3σg2u2g4u1 (30.08%)
    下载: 导出CSV

    表 3  ${{\text{X}}^{2}}{{{\Pi }}_{\text{g}}}$态和${{\text{A}}^{2}}{{{\Pi }}_{\text{u}}}$态的光谱常数

    Table 3.  Spectroscopic constants for the ${{\text{X}}^{2}}{{{\Pi }}_{\text{g}}}$ and ${{\text{A}}^{2}}{{{\Pi }}_{\text{u}}}$ states.

    Te/cm–1Re/nmωe/cm–1ωeχe/cm–1Be/cm–1102αe/cm–1De/eV
    ${{\text{X}}^{2}}{{{\Pi }}_{\text{g}}}$本文0.000.13501073.67.81.15261.454.2284
    Cal.[27]0.000.13461122.28.81.16011.314.2764
    Exp.[35]0.000.1348(8)1108(20)[9]1.16104.1724
    Exp.[6]0.004.2484
    Exp.[34]0.000.1351090.08.0(1)4.1573
    Exp.[4]0.000.1347(5)1073(50)
    Cal.[21]0.000.1441010.04.0000
    Cal.[24]0.000.13481132.04.0762
    Cal.[35]0.000.13561112.0
    Cal.[36]0.000.13561098.09.01.13501.514.1290
    Cal.[18]0.000.13521130.012.71.14301.564.2100
    Cal.[5]0.000.13541163.09.2
    Cal.[20]0.000.13653.9300
    Cal.[37]0.000.13731065.08.8
    Cal.[22]0.000.13621107.213.01.13611.374.0560
    ${{\text{A}}^{2}}{{{\Pi }}_{\text{u}}}$本文25775.210.1790547.26.90.65620.911.0327
    Cal.[27]25707.720.1787553.26.80.67211.450.9731
    Exp.[34](25300.00)(574.5)(7.1)
    Exp.[15]27310.000.1730592.06.0
    Exp.[6]0.16800.77±0.15
    Cal.[36]0.1828484.611.10.62601.370.7550
    Cal.[18]27400.000.1817506.310.40.63301.270.8130
    Cal.[19]23632.040.1920452.14.00.57000.791.2300
    Cal.[5]28580.000.1743604.06.0
    Cal.[35]27342.180.1758557.0
    Cal.[25]25003.180.1806535.08.9
    Cal.[20]0.18470.7500
    下载: 导出CSV

    表 4  第一解离极限5个束缚二重态的光谱常数

    Table 4.  Spectroscopic constants for five bound doublet states in the first dissociation limit.

    Te /cm–1Re /nmωe /cm–1ωeχe/cm–1Be /cm–1102αe/cm–1De /eV
    ${{1}^{2}}{{{\Delta }}_{\text{u}}}$本文25773.250.1949423.26.70.55351.011.0501
    Cal.[27]25744.150.1948426.46.40.55581.031.0636
    Cal.[19]22664.170.1980524.74.80.54000.651.3500
    ${{1}^{2}}{{\Sigma }}_{\text{g}}^ + $本文37694.720.1761530.93.70.67791.850.1445
    Cal.[27]
    (1st well)36812.480.1758526.72.50.69775.050.1019
    (2 nd well)34143.010.63438.91.30.04840.190.0074
    Cal.[19]39682.460.1950603.224.10.55001.951.1400
    Cal.[25]38391.980.1776538.05.0
    ${{1}^{2}}{{\Sigma }}_{\text{u}}^ + $本文27050.770.2039366.86.00.50560.990.8917
    Cal.[27]27043.010.2027366.22.10.51210.920.9121
    Cal.[19]23228.760.2000514.44.90.52000.631.2800
    ${{1}^{2}}{{\Sigma }}_{\text{g}}^{{ - }}$本文27485.000.2156361.35.80.45230.880.8379
    Cal.[27]27540.340.2161358.95.70.45110.950.8087
    Cal.[19]24357.930.2180451.53.50.44000.451.1400
    ${{1}^{2}}{{\Sigma }}_{\text{u}}^{{ - }}$本文29701.210.1914434.88.20.57380.940.5633
    Cal.[27]29783.150.1912447.17.20.57621.010.3411
    Cal.[36]0.2010439.010.00.51901.000.4000
    Cal.[19]30407.090.1990484.412.90.53001.040.3900
    下载: 导出CSV

    表 5  第一解离极限7个束缚四重态的光谱常数

    Table 5.  Spectroscopic constants of seven bound quartet states in the first dissociation limit.

    Te /cm–1Re /nmωe /cm–1ωeχe/cm–1Be /cm–1102αe/cm–1De /eV
    ${{\text{a}}^{4}}{{\Sigma }}_{\text{u}}^{{ - }}$(1st well)16385.200.12001612.79.31.45911.641.0826
    Cal.[27]9661.490.11941612.39.92.169450.241.8791
    (2 nd well)18779.710.1837546.36.20.62260.461.2756
    Cal.[27]18854.630.1832546.16.00.62840.861.6961
    Cal.[36]19357.300.1850582.09.60.60801.001.6700
    Cal.[19]16534.360.1880604.83.40.60000.612.0700
    Cal.[5]22540.000.1846572.05.6
    Cal.[35]19357.300.1808569.0
    Cal.[25]16534.360.1880604.83.40.60000.612.1100
    ${{1}^{4}}{{{\Delta }}_{\text{g}}}$本文25061.910.2132390.33.40.46250.821.1346
    Cal.[27]25032.620.2126397.25.70.46640.811.1131
    Cal.[19]20970.410.2120503.72.90.47000.391.5300
    ${{1}^{4}}{{\Sigma }}_{\text{g}}^{+}$本文25289.440.2143383.85.50.45790.811.1064
    Cal.[27]25324.300.2134391.75.50.46280.811.1371
    Cal.[19]21051.060.2130504.13.00.46000.371.5500
    ${{1}^{4}}{{{\Pi }}_{\text{u}}}$本文31129.290.2408233.05.70.36261.010.3675
    Cal.[27]31221.580.2389240.65.70.36951.010.3806
    Exp.[34]97800.001044.010.0
    Cal.[19]31052.330.2480345.68.90.34000.040.3100
    ${{1}^{4}}{{\Sigma }}_{\text{g}}^{{ - }}$本文33621.360.2792112.16.70.26961.530.0684
    Cal.[27]33784.610.2784118.26.70.27291.410.0385
    ${{2}^{4}}{{{\Pi }}_{\text{u}}}$本文33819.650.304594.55.40.22681.270.0398
    Cal.[27]33914.100.4770151.142.60.081341.480.0443
    ${{1}^{4}}{{{\Pi }}_{\text{g}}}$本文34022.340.47691.14.20.09253.280.0088
    Cal.[27]34163.640.458655.68.30.09951.230.0134
    下载: 导出CSV

    表 6  第二解离极限8个束缚态的光谱常数

    Table 6.  Spectroscopic constants of eight bound states in the second dissociation limit.

    Te /cm–1 Re /nm ωe /cm–1 ωeχe/cm–1 Be /cm–1 102αe/cm–1 De /eV
    ${{3}^{2}}{{{\Pi }}_{\text{g}}}$ 48109.82 0.2896 160.7 3.8 0.2508 0.62 0.2048
    ${{2}^{2}}{{{\Delta }}_{\text{g}}}$ 48397.03 0.2812 131.1 2.2 0.2659 0.59 0.1839
    ${{2}^{2}}{{\Sigma }}_{\text{g}}^{+}$ 37199.41 0.1760 508.0 5.4 0.6787 1.12 1.5565
    ${{3}^{2}}{{\Sigma }}_{\text{g}}^{+}$ 48872.32 0.3153 128.7 3.9 0.2115 0.72 0.1573
    ${{3}^{2}}{{{\Pi }}_{\text{u}}}$ 45234.02 0.2303 296.8 4.9 0.3965 1.01 0.5552
    ${{1}^{2}}{{\Phi }}_{\text{u}}$ 49874.49 0.3158 73.4 5.6 0.2109 1.68 0.0258
    ${{2}^{2}}{{{\Delta }}_{\text{u}}}$ 49752.52 0.6162 54.6 1.6 0.0554 0.44 0.0290
    ${{3}^{2}}{{\Sigma }}_{\text{u}}^{+}$ 48753.89 0.3139 135.9 3.9 0.2134 0.67 0.1268
    下载: 导出CSV

    表 7  由${\text{O}}_{2}^{{ - }}$第一解离极限5个Π态产生的16个Ω态的光谱常数

    Table 7.  Spectroscopic constants of the 16 Ω states generated by the 5 Π states in the first dissociation limit of the ${\text{O}}_{2}^{{ - }}$.

    Te /cm–1Re /nmωe /cm–1Be /cm–1De /eV
    ${{\text{X}}^{2}}{{{\Pi }}_{{\text{g, 3/2}}}}$本文0.000.13541083.071.14714.2520
    Cal.[27]0.000.13531123.344.2663
    ${{\text{X}}^{2}}{{{\Pi }}_{{\text{g, 1/2}}}}$本文166.720.13531078.971.14814.2405
    Cal.[27]154.290.13531093.644.2485
    ${{\text{A}}^{2}}{{{\Pi }}_{{\text{u, 1/2}}}}$本文26008.900.1810547.040.64121.0273
    Cal.[27]25725.940.1785550.500.9681
    ${{\text{A}}^{2}}{{{\Pi }}_{{\text{u, 3/2}}}}$本文26131.120.1811547.200.64101.0213
    Cal.[27]25844.450.1785551.400.9754
    ${{1}^{4}}{{{\Pi }}_{{\text{g, 5/2}}}}$本文33938.020.486216.800.08890.0121
    Cal.[27]34153.980.457352.430.0135
    ${{1}^{4}}{{{\Pi }}_{{\text{g, 3/2}}}}$本文33985.590.486016.450.08900.0122
    Cal.[27]34217.410.458050.490.0136
    ${{1}^{4}}{{{\Pi }}_{{\text{g, 1/2}}}}$本文34033.170.481519.320.09070.0122
    Cal.[27]34255.160.458450.870.0134
    ${{1}^{4}}{{{\Pi }}_{{\text{g, - 1/2}}}}$本文34080.740.481419.090.09070.0122
    Cal.[27]34267.450.458652.360.0135
    ${{1}^{4}}{{{\Pi }}_{{\text{u, - 1/2}}}}$本文31043.470.2408233.140.36270.3399
    Cal.[27]31224.440.2388240.870.3844
    ${{1}^{4}}{{{\Pi }}_{{\text{u, 1/2}}}}$本文31092.180.2408233.090.36260.3397
    Cal.[27]31273.820.2388240.290.3820
    ${{1}^{4}}{{{\Pi }}_{{\text{u, 3/2}}}}$本文31140.890.2408233.050.36260.3396
    Cal.[27]31322.320.2384237.180.3808
    ${{1}^{4}}{{{\Pi }}_{{\text{u, 5/2}}}}$本文31189.600.2408233.000.36260.3395
    Cal.[27]31371.480.2384237.230.3799
    ${{2}^{4}}{{{\Pi }}_{{\text{u, - 1/2}}}}$本文33993.000.301992.790.23060.0484
    Cal.[27]33933.850.4765151.630.0442
    ${{2}^{4}}{{{\Pi }}_{{\text{u, 1/2}}}}$本文34036.110.309688.010.21940.0485
    Cal.[27]33946.630.4786150.730.0432
    ${{2}^{4}}{{{\Pi }}_{{\text{u, 3/2}}}}$本文34079.230.303193.860.22890.0434
    Cal.[27]33967.940.4774153.220.0438
    ${{2}^{4}}{{{\Pi }}_{{\text{u, 5/2}}}}$本文34122.350.303093.970.22890.0432
    Cal.[27]34000.350.4769149.840.0445
    下载: 导出CSV

    表 8  由${\text{O}}_{2}^{{ - }}$第一解离极限5个Δ态产生的6个Ω态的光谱常数

    Table 8.  Spectroscopic constants of the six Ω states generated by the five Δ states in the first dissociation limit of the ${\text{O}}_{2}^{{ - }}$.

    Te /cm–1Re /nmωe /cm–1Be /cm–1De /eV
    ${{1}^{2}}{{{\Delta }}_{{\text{u, 5/2}}}}$本文26005.190.1960414.180.54711.0476
    Cal.[27]25820.310.1948426.271.0660
    ${{1}^{2}}{{{\Delta }}_{{\text{u, 3/2}}}}$本文26017.400.1960414.320.54721.0525
    Cal.[27]25894.060.1943423.621.0613
    ${{1}^{4}}{{{\Delta }}_{{\text{g, 7/2}}}}$本文25190.590.2129388.260.46361.1344
    Cal.[27]25013.300.2125397.391.1184
    ${{1}^{4}}{{{\Delta }}_{{\text{g, 5/2}}}}$本文25281.540.2127387.980.46471.1345
    Cal.[27]25091.220.2126397.311.1146
    ${{1}^{4}}{{{\Delta }}_{{\text{g, 3/2}}}}$本文25372.490.2129390.390.46401.1345
    Cal.[27]25211.930.2125395.571.1133
    ${{1}^{4}}{{{\Delta }}_{{\text{g, 1/2}}}}$本文25463.440.2127388.440.46471.1346
    Cal.[27]25290.280.2126393.751.1115
    下载: 导出CSV

    表 9  由${\text{O}}_{2}^{{ - }}$第二解离极限4个Λ-S态产生的8个Ω态的光谱常数

    Table 9.  Spectroscopic constants of the eight Ω states generated by the four Λ-S states in the second dissociation limit of the ${\text{O}}_{2}^{{ - }}$.

    Te / cm–1 Re /nm ωe / cm–1 Be / cm–1 De /eV
    ${{3}^{2}}{{{\Pi }}_{{\text{g, 1/2}}}}$ 48084.30 0.2916 155.27 0.2472 0.1952
    ${{3}^{2}}{{{\Pi }}_{{\text{g, 3/2}}}}$ 48109.85 0.2907 158.14 0.2487 0.2017
    ${{3}^{2}}{{{\Pi }}_{{\text{u, 1/2}}}}$ 45212.53 0.2316 291.66 0.3920 0.5514
    ${{3}^{2}}{{{\Pi }}_{{\text{u, 3/2}}}}$ 45226.50 0.2319 291.93 0.3910 0.5587
    ${{1}^{2}}{{\Phi }}_{{\text{u, 5/2}}}$ 49926.23 0.3158 73.24 0.2108 0.0257
    ${{1}^{2}}{{\Phi }}_{{\text{u, 7/2}}}$ 50055.56 0.3156 73.49 0.2111 0.0259
    ${{2}^{2}}{{{\Delta }}_{{\text{g, 3/2}}}}$ 48942.47 0.2841 126.81 0.2605 0.1671
    ${{2}^{2}}{{{\Delta }}_{{\text{g, 5/2}}}}$ 48997.29 0.2814 130.77 0.2655 0.1672
    下载: 导出CSV
  • [1]

    Burch D S, Smith S J, Branscomb L M 1958 Phys. Rev. 112 171Google Scholar

    [2]

    Celotta R J, Bennett R A, Hall J L, Siegel M W, Levine J 1972 Phys. Rev. A 6 631Google Scholar

    [3]

    Reid G C 1976 Adv. At. Mol. Phys. 12 375

    [4]

    Travers M J, Cowles D C, Ellison G B 1989 Chem. Phys. Lett. 164 449Google Scholar

    [5]

    Ewig C S, Tellinghuisen J 1991 J. Chem. Phys. 95 1097Google Scholar

    [6]

    Lavrich D J, Buntine M A, Serxner D, Johnson M A 1993 J. Chem. Phys. 99 5910Google Scholar

    [7]

    Karpinska B, Foyer C H, Mhamdi A 2024 J. Exp. Bot. 75 4599Google Scholar

    [8]

    郭金玲, 李常燕, 胡长峰, 沈岳年 2014 化学通报 77 146

    Guo J L, Li C Y, Hu C F, Shen Y N 2014 Chemistry 77 146

    [9]

    戴一佳, 赵亮 2024 食品工业科技 45 388

    Dai Y J, Zhao L 2024 Sci. Technol. Food Ind. 45 388

    [10]

    王兆丰, 代华, 高义霞, 李昭, 杜石勇 2024 南方农业学报 55 578Google Scholar

    Wang Z F, Dai H, Gao Y X, Li Z, Du S Y 2024 J. South. Agric. 55 578Google Scholar

    [11]

    温晓芳 2019 硕士学位论文 (河北: 河北科技大学)

    Wen X F 2019 M. S. Thesis (Hebei: Hebei University of Science and Technology

    [12]

    Wang Q Q, Wu S P, Yang J H, Li J, Sun X Y, Yang T T, Mao G J 2024 Microchem. J. 200 110288Google Scholar

    [13]

    Neuman E W 1934 J. Chem. Phys. 2 31Google Scholar

    [14]

    Land J E, Raith W 1974 Phys. Rev. A 9 1592Google Scholar

    [15]

    Rolfe J 1979 J. Chem. Phys. 70 2463Google Scholar

    [16]

    Chen E S, Wentworth W E, Chen E C M 2002 J. Mol. Struct. 606 1Google Scholar

    [17]

    Dinu L, Groenenboom G C, van der Zande W J 2003 J. Chem. Phys. 119 8864Google Scholar

    [18]

    Das G, Zemke W T, Stwalley W C 1980 J. Chem. Phys. 72 2327Google Scholar

    [19]

    Michels H H 1981 Adv. Chem. Phys. (John Wiley & Sons, Ltd) pp225-340

    [20]

    Børve K J, Siegbahn P E M 1990 Theor. Chim. Acta 77 409Google Scholar

    [21]

    Nakatsuji H, Nakai H 1992 Chem. Phys. Lett. 197 339Google Scholar

    [22]

    González-Luque R, Merchán M, Fülscher M P, Roos B O 1993 Chem. Phys. Lett. 204 323Google Scholar

    [23]

    Chandrasekher C A, Griffith K S, Gellene G I 1996 Int. J. Quantum Chem. 58 29Google Scholar

    [24]

    Sordo J A 2001 J. Chem. Phys. 114 1974Google Scholar

    [25]

    Bruna P J, Grein F 1999 Mol. Phys. 97 321

    [26]

    Stampfuß P, Wenzel W 2003 Chem. Phys. Lett. 370 478Google Scholar

    [27]

    Liu H, Shi D H, Sun J F, Zhu Z L 2016 Mol. Phys. 114 3150Google Scholar

    [28]

    Wang Q X, Wang Y M, Ma R, Yan B 2019 Chin. Phys. B 28 073101Google Scholar

    [29]

    Kreplin D A, Knowles P J, Werner H J 2019 J. Chem. Phys. 150

    [30]

    Knowles P J, Werner H J 1992 Theor. Chim. Acta 84 95Google Scholar

    [31]

    Werner H J, Knowles P J, Manby F R, Black J A, Doll K, Heßelmann A, Kats D, Köhn A, Korona T, Kreplin D A, Ma Q, Miller T F, Mitrushchenkov A, Peterson K A, Polyak I, Rauhut G, Sibaev M 2020 J. Chem. Phys. 152 144107Google Scholar

    [32]

    Moore C E 1971 Atomic Energy Levels as Derived From the Analyses of Optical Spectra: : Volume I. 1H to 23V (Gaithersburg, MD: National Institute of Standards and Technology

    [33]

    Le Roy R J 2017 J. Quant. Spectrosc. Radiat. Transfer 186 167Google Scholar

    [34]

    Huber K P, Herzberg G 1979 Molecular Spectra and Molecular Structure (Vol. 4) (New York: Springer New York) pp15–716

    [35]

    Ervin K M, Anusiewicz I, Skurski P, Simons J, Lineberger W C 2003 J. Phys. Chem. A 107 8521Google Scholar

    [36]

    Das G, Wahl A C, Zemke W T, Stwalley W C 1978 J. Chem. Phys. 68 4252Google Scholar

    [37]

    Schiedt J, Weinkauf R 1999 Rev. Sci. Instrum. 70 2277Google Scholar

  • [1] 邢伟, 李胜周, 孙金锋, 曹旭, 朱遵略, 李文涛, 李悦毅, 白春旭. AlH分子10个Λ-S态和26个Ω态光谱性质的理论研究. 物理学报, doi: 10.7498/aps.72.20230615
    [2] 马赟娥, 乔鑫, 高瑞, 梁俊成, 张爱霞, 薛具奎. 可调自旋-轨道耦合玻色-爱因斯坦凝聚体的隧穿动力学. 物理学报, doi: 10.7498/aps.71.20220697
    [3] 孙海明. Bi2Te3(111)和Al2O3(0001)衬底对Bi(111)双原子层的电子结构及拓扑性质的影响. 物理学报, doi: 10.7498/aps.71.20220060
    [4] 周永香, 薛迅. 自旋-轨道耦合系统的电子涡旋. 物理学报, doi: 10.7498/aps.71.20220751
    [5] 邢伟, 李胜周, 孙金锋, 李文涛, 朱遵略, 刘锋. BH分子8个Λ-S态和23个Ω态光谱性质的理论研究. 物理学报, doi: 10.7498/aps.71.20220038
    [6] 高峰, 张红, 张常哲, 赵文丽, 孟庆田. SiH+(X1Σ+)的势能曲线、光谱常数、振转能级和自旋-轨道耦合理论研究. 物理学报, doi: 10.7498/aps.70.20210450
    [7] 邢伟, 孙金锋, 施德恒, 朱遵略. icMRCI+Q理论研究BF+离子电子态的光谱性质和预解离机理. 物理学报, doi: 10.7498/aps.67.20172114
    [8] 魏长立, 廖浩, 罗太盛, 任银拴, 闫冰. Na2+离子较低电子态势能曲线和光谱常数的理论研究. 物理学报, doi: 10.7498/aps.67.20181690
    [9] 邢伟, 刘慧, 施德恒, 孙金锋, 朱遵略. icMRCI+Q理论研究CF+离子12个-S态和23个态的光谱性质. 物理学报, doi: 10.7498/aps.65.033102
    [10] 王文宝, 于坤, 张晓美, 刘玉芳. 从头计算研究BP分子的势能曲线和光谱性质. 物理学报, doi: 10.7498/aps.63.073302
    [11] 刘慧, 邢伟, 施德恒, 孙金锋, 朱遵略. PS自由基X2Π态的势能曲线和光谱性质. 物理学报, doi: 10.7498/aps.62.203104
    [12] 王杰敏, 冯恒强, 孙金锋, 施德恒, 李文涛, 朱遵略. SiN自由基X2+, A2和B2+ 电子态的光谱常数研究. 物理学报, doi: 10.7498/aps.62.013105
    [13] 邢伟, 刘慧, 施德恒, 孙金锋, 朱遵略. MRCI+Q理论研究SiSe分子X1Σ+和A1Π电子态的光谱常数和分子常数. 物理学报, doi: 10.7498/aps.62.043101
    [14] 刘慧, 邢伟, 施德恒, 孙金锋, 朱遵略. 理论研究B2分子X3g-和A3u态的光谱性质. 物理学报, doi: 10.7498/aps.61.203101
    [15] 刘新浩, 林景波, 刘艳辉, 金迎九. Full-Heusler合金X2YGa(X=Co,Fe,Ni;Y=V,Cr,Mn)的电子结构、磁性及半金属特性的第一性原理研究. 物理学报, doi: 10.7498/aps.60.107104
    [16] 刘慧, 施德恒, 孙金锋, 朱遵略. MRCI方法研究CSe(X1Σ+)自由基的光谱常数和分子常数. 物理学报, doi: 10.7498/aps.60.063101
    [17] 刘慧, 邢伟, 施德恒, 朱遵略, 孙金锋. 用MRCI方法研究CS+同位素离子X2Σ+和A2Π态的光谱常数与分子常数. 物理学报, doi: 10.7498/aps.60.043102
    [18] 施德恒, 张金平, 孙金锋, 刘玉芳, 朱遵略. 基态S和D原子的低能弹性碰撞及SD(X2Π)自由基的准确相互作用势与分子常数. 物理学报, doi: 10.7498/aps.58.7646
    [19] 施德恒, 刘玉芳, 孙金锋, 张金平, 朱遵略. 基态O和D原子的低能弹性碰撞及OD(X2Π)自由基的准确解析势与分子常数. 物理学报, doi: 10.7498/aps.58.2369
    [20] 徐海峰, 郭颖, 李奇峰, 戴静华, 刘世林, 马兴孝. N2O+离子A2Σ+电子态的光谱研究. 物理学报, doi: 10.7498/aps.53.1027
计量
  • 文章访问数:  238
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-10-14
  • 修回日期:  2024-11-28
  • 上网日期:  2024-12-02

/

返回文章
返回