搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Na2+离子较低电子态势能曲线和光谱常数的理论研究

魏长立 廖浩 罗太盛 任银拴 闫冰

引用本文:
Citation:

Na2+离子较低电子态势能曲线和光谱常数的理论研究

魏长立, 廖浩, 罗太盛, 任银拴, 闫冰

Theoretical study on potential curves and spectroscopic constants of low-lying electronic states of Na2+ cation

Wei Chang-Li, Liao Hao, Luo Tai-Sheng, Ren Yin-Shuan, Yan Bing
PDF
导出引用
  • 通过多组态相互作用方法,结合原子有效芯势与极化势,利用非收缩的高斯基函数,计算了Na2+分子对应最低9个解离限的36个电子态的势能曲线.基于计算获得的束缚态势能曲线,拟合给出了相应的光谱常数,并与已有的实验和理论结果进行了比较.同时,给出了部分电子态的振动-转动能级和一些同类态避免交叉点的信息.计算获得的光谱信息对冷原子分子光谱与动力学的研究具有参考价值.
    In this paper, high-level ab initio calculations by using multi-configuration self-consistent field method with atomic effective core potential, polarization potential, and uncontracted Gaussian basis function, are performed to compute the potential energy curves of a total of 36 low-lying ∧-S states with ∑g,u, Πg,u, △g,u symmetries of Na2+ cation associated with the lowest 9 dissociation limits Na (3s, 3p, 4s, 3d, 4p, 5s, 4d, 4f, 5p)+Na+. On the basis of the potential energy curves, the spectroscopic constants (Te, Re, ωe, ωeχe, Be, α e, De) of the bound states are determined, which are in good agreement with the existing available experimental and theoretical values. Our results indicate that 52g+-72g+, 32u+-72u+, 22Πg, 42Πg, 12u and 22u states are repulsive, which supports Berriche's results, and we report 10 electron states for the first time, that is, 82g, u+-92g, u+, 52Πg, u-72Πg, u and 32g, u. The vibrational-rotational spectroscopic constants and lowest vibrational-rotational energy levels (ν=0-20) of the bound states are also presented. Moreover, in order to illustrate the strong state interactions of adjacent states with same symmetry, the information about the avoided crossing points is shown in detail. Finally, the transition dipole moments from a few low-lying excited states (12Πu-32Πu) to the ground state X2g+ are computed. Therefore, it is expected that our computational results in the present calculations are significant for the molecular spectroscopy, ion-atom interaction and molecular cold collision fields.
    [1]

    Magnier S, Persico M, Rahman N 1997 Chem. Phys. Lett. 279 361

    [2]

    Magnier S, Persico M, Rahman N 1999 J. Phys. Chem. A 103 10691

    [3]

    Magnier S, Persico M, Rahman N 1999 Phys. Rev. Lett. 83 2159

    [4]

    Bewicz A, Musial M, Kucharski S A 2017 Mol. Phys. 115 2649

    [5]

    Berriche H 2013 Int. J. Quantum Chem. 113 2405

    [6]

    Patil S H, Tang K T 2000 J. Phys. Chem. 113 676

    [7]

    Magnier S, Masnou-Seeuws F 1996 Mol. Phys. 89 711

    [8]

    Henriet A 1985 J. Phys. B: At. Mol. Phys. 18 3085

    [9]

    Müller W, Meyer W 1984 J. Chem. Phys. 80 3311

    [10]

    Bähring A, Hertel I V, Meyer E, Meyer W, Spies N, Schmidt H 1984 J. Phys. B: At. Mol. Phys. 17 2859

    [11]

    Henriet A, Masnou-Seeuws F 1983 Chem. Phys. Lett. 101 535

    [12]

    Fuentealba P, Preuss H, Stoll H, von Szentpály L 1982 Chem. Phys. Lett. 89 418

    [13]

    Bardsley J N, Junker B R, Norcross D W 1976 Chem. Phys. Lett. 37 502

    [14]

    Cerjan C J, Docken K K, Dalgarno A 1976 Chem. Phys. Lett. 38 401

    [15]

    Berriche H 2013 Int. J. Quantum Chem. 113 2405

    [16]

    Werner H J, Knowles P, Knizia G, Manby F R, Schütz M, Celani P, Korona T, Lindh R, Mitrushenkov A, Rauhut G 2010 Molpro Version 2010.1: A Package of ab initio Programs

    [17]

    Werner H J, Knowles P J, Knizia G, Manby F R, Schütz M 2012 WIREs Comput. Mol. Sci. 2 242

    [18]

    Knowles P J, Werner H J 1985 Chem. Phys. Lett. 115 259

    [19]

    Werner H J, Knowles P J 1985 J. Chem. Phys. 82 5053

    [20]

    LeRoy R J 2007 LEVEL 8.0: A Computer Program for Solving the Radial Schrö dinger Equation for Bound and Quasibound Levels, Chemical Physics: Research Report CP-663 (Ontario, Canada: University of Waterloo).

    [21]

    NIST Chemistry WebBook 2018 https://webbook.nist.gov/chemistry/ [2018-9-10]

    [22]

    Bordas C, Broyer M, Vialle J L 1990 J. Chem. Phys. 92 4030

    [23]

    Bordas C, Labastie P, Chevaleyre J, Broyer M 1989 Chem. Phys. 129 21

    [24]

    Magnier S, Aubert-Frécon M 2001 J. Phys. Chem. A 105 165

    [25]

    Spiegelmann F, Pavolini D 1988 J. Chem. Phys. 89 4954

    [26]

    Partridge H, Bauschlicher C W 1992 Theor. Chim. Acta 83 201

  • [1]

    Magnier S, Persico M, Rahman N 1997 Chem. Phys. Lett. 279 361

    [2]

    Magnier S, Persico M, Rahman N 1999 J. Phys. Chem. A 103 10691

    [3]

    Magnier S, Persico M, Rahman N 1999 Phys. Rev. Lett. 83 2159

    [4]

    Bewicz A, Musial M, Kucharski S A 2017 Mol. Phys. 115 2649

    [5]

    Berriche H 2013 Int. J. Quantum Chem. 113 2405

    [6]

    Patil S H, Tang K T 2000 J. Phys. Chem. 113 676

    [7]

    Magnier S, Masnou-Seeuws F 1996 Mol. Phys. 89 711

    [8]

    Henriet A 1985 J. Phys. B: At. Mol. Phys. 18 3085

    [9]

    Müller W, Meyer W 1984 J. Chem. Phys. 80 3311

    [10]

    Bähring A, Hertel I V, Meyer E, Meyer W, Spies N, Schmidt H 1984 J. Phys. B: At. Mol. Phys. 17 2859

    [11]

    Henriet A, Masnou-Seeuws F 1983 Chem. Phys. Lett. 101 535

    [12]

    Fuentealba P, Preuss H, Stoll H, von Szentpály L 1982 Chem. Phys. Lett. 89 418

    [13]

    Bardsley J N, Junker B R, Norcross D W 1976 Chem. Phys. Lett. 37 502

    [14]

    Cerjan C J, Docken K K, Dalgarno A 1976 Chem. Phys. Lett. 38 401

    [15]

    Berriche H 2013 Int. J. Quantum Chem. 113 2405

    [16]

    Werner H J, Knowles P, Knizia G, Manby F R, Schütz M, Celani P, Korona T, Lindh R, Mitrushenkov A, Rauhut G 2010 Molpro Version 2010.1: A Package of ab initio Programs

    [17]

    Werner H J, Knowles P J, Knizia G, Manby F R, Schütz M 2012 WIREs Comput. Mol. Sci. 2 242

    [18]

    Knowles P J, Werner H J 1985 Chem. Phys. Lett. 115 259

    [19]

    Werner H J, Knowles P J 1985 J. Chem. Phys. 82 5053

    [20]

    LeRoy R J 2007 LEVEL 8.0: A Computer Program for Solving the Radial Schrö dinger Equation for Bound and Quasibound Levels, Chemical Physics: Research Report CP-663 (Ontario, Canada: University of Waterloo).

    [21]

    NIST Chemistry WebBook 2018 https://webbook.nist.gov/chemistry/ [2018-9-10]

    [22]

    Bordas C, Broyer M, Vialle J L 1990 J. Chem. Phys. 92 4030

    [23]

    Bordas C, Labastie P, Chevaleyre J, Broyer M 1989 Chem. Phys. 129 21

    [24]

    Magnier S, Aubert-Frécon M 2001 J. Phys. Chem. A 105 165

    [25]

    Spiegelmann F, Pavolini D 1988 J. Chem. Phys. 89 4954

    [26]

    Partridge H, Bauschlicher C W 1992 Theor. Chim. Acta 83 201

  • [1] 刘铭婕, 田亚莉, 王瑜, 李晓筱, 和小虎, 宫廷, 孙小聪, 郭古青, 邱选兵, 李传亮. 含自旋-轨道耦合的O-2光谱常数计算. 物理学报, 2025, 74(2): . doi: 10.7498/aps.74.20241435
    [2] 朱宇豪, 李瑞. 基于组态相互作用方法对AuB分子低激发态电子结构和光学跃迁性质的研究. 物理学报, 2024, 73(5): 053101. doi: 10.7498/aps.73.20231347
    [3] 刘晓军, 苗凤娟, 李瑞, 张存华, 李奇楠, 闫冰. GeO分子激发态的电子结构和跃迁性质的组态相互作用方法研究. 物理学报, 2015, 64(12): 123101. doi: 10.7498/aps.64.123101
    [4] 王杰敏, 王希娟, 陶亚萍. 75As32S+和75As34S+离子的光谱常数与分子常数. 物理学报, 2015, 64(24): 243101. doi: 10.7498/aps.64.243101
    [5] 王杰敏, 冯恒强, 孙金锋, 施德恒, 李文涛, 朱遵略. SiN自由基X2+, A2和B2+ 电子态的光谱常数研究. 物理学报, 2013, 62(1): 013105. doi: 10.7498/aps.62.013105
    [6] 邢伟, 刘慧, 施德恒, 孙金锋, 朱遵略. MRCI+Q理论研究SiSe分子X1Σ+和A1Π电子态的光谱常数和分子常数. 物理学报, 2013, 62(4): 043101. doi: 10.7498/aps.62.043101
    [7] 朱遵略, 郎建华, 乔浩. SF分子基态及低激发态势能函数与光谱常数的研究. 物理学报, 2013, 62(16): 163103. doi: 10.7498/aps.62.163103
    [8] 李松, 韩立波, 陈善俊, 段传喜. SN-分子离子的势能函数和光谱常数研究. 物理学报, 2013, 62(11): 113102. doi: 10.7498/aps.62.113102
    [9] 王杰敏, 孙金锋, 施德恒, 朱遵略, 李文涛. PH, PD和PT分子常数理论研究. 物理学报, 2012, 61(6): 063104. doi: 10.7498/aps.61.063104
    [10] 刘冬梅, 张树东. BeCl分子电子激发态的多参考组态相互作用计算. 物理学报, 2012, 61(3): 033101. doi: 10.7498/aps.61.033101
    [11] 王杰敏, 张蕾, 施德恒, 朱遵略, 孙金锋. AsO+同位素离子X2+和A2电子态的多参考组态相互作用方法研究. 物理学报, 2012, 61(15): 153105. doi: 10.7498/aps.61.153105
    [12] 施德恒, 牛相宏, 孙金锋, 朱遵略. BF自由基X1+和a3态光谱常数和分子常数研究. 物理学报, 2012, 61(9): 093105. doi: 10.7498/aps.61.093105
    [13] 邢伟, 刘慧, 施德恒, 孙金锋, 朱遵略. SO+离子b4∑-态光谱常数和分子常数研究. 物理学报, 2012, 61(24): 243102. doi: 10.7498/aps.61.243102
    [14] 刘慧, 邢伟, 施德恒, 朱遵略, 孙金锋. 用MRCI方法研究CS+同位素离子X2Σ+和A2Π态的光谱常数与分子常数. 物理学报, 2011, 60(4): 043102. doi: 10.7498/aps.60.043102
    [15] 刘慧, 施德恒, 孙金锋, 朱遵略. MRCI方法研究CSe(X1Σ+)自由基的光谱常数和分子常数. 物理学报, 2011, 60(6): 063101. doi: 10.7498/aps.60.063101
    [16] 王杰敏, 孙金锋. 采用多参考组态相互作用方法研究AsN( X1 + )自由基的光谱常数与分子常数. 物理学报, 2011, 60(12): 123103. doi: 10.7498/aps.60.123103
    [17] 陈恒杰, 程新路, 唐海燕, 王全武, 苏欣纺. LiC分子基态及其低电子激发态的多参考组态相互作用方法研究. 物理学报, 2010, 59(7): 4556-4563. doi: 10.7498/aps.59.4556
    [18] 施德恒, 刘玉芳, 孙金锋, 张金平, 朱遵略. 基态O和D原子的低能弹性碰撞及OD(X2Π)自由基的准确解析势与分子常数. 物理学报, 2009, 58(4): 2369-2375. doi: 10.7498/aps.58.2369
    [19] 施德恒, 张金平, 孙金锋, 刘玉芳, 朱遵略. 基态S和D原子的低能弹性碰撞及SD(X2Π)自由基的准确相互作用势与分子常数. 物理学报, 2009, 58(11): 7646-7653. doi: 10.7498/aps.58.7646
    [20] 钱 琪, 杨传路, 高 峰, 张晓燕. 多参考组态相互作用方法计算研究XOn(X=S, Cl;n=0,±1)的解析势能函数和光谱常数. 物理学报, 2007, 56(8): 4420-4427. doi: 10.7498/aps.56.4420
计量
  • 文章访问数:  6124
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-09-11
  • 修回日期:  2018-10-27
  • 刊出日期:  2019-12-20

/

返回文章
返回