搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

PS自由基X2Π态的势能曲线和光谱性质

刘慧 邢伟 施德恒 孙金锋 朱遵略

引用本文:
Citation:

PS自由基X2Π态的势能曲线和光谱性质

刘慧, 邢伟, 施德恒, 孙金锋, 朱遵略

Potential energy curve and spectroscopic properties of PS (X2Π) radical

Liu Hui, Xing Wei, Shi De-Heng, Sun Jin-Feng, Zhu Zun Lüe
PDF
导出引用
  • 采用Davidson修正的内收缩多参考组态相互作用方法(icMRCI+Q) 结合Dunning等的相关一致基计算了PS自由基X2Π 态势能曲线. 利用三阶Douglas-Kroll Hamilton近似结合cc-pV5Z相对论收缩基进行了相对论修正计算. 利用aug-cc-pCV5Z基组对势能曲线进行了核价相关修正计算, 并将总能量外推至完全基组极限. 拟合得到了X2Π态的主要光谱常数Re, ωe, ωexe, ωeye, Be, αe 和De, 与实验结果符合较好. 利用Breit-Pauli算符, 研究了旋轨耦合效应对势能曲线的影响, 得到了两条Ω 态的势能曲线. 详细分析了在旋轨耦合计算中, 核电子相关与冻结核近似对电子结构和光谱性质的影响. 在icMRCI+Q/56+DK+CV+SO理论水平上得到了两个Ω 态的主要光谱常数Te, Re, ωe, ωexe, ωeye, Be 和αe, 结果与实验结果一致. 在平衡位置处, 本文的X2Π态旋轨耦合能量分裂值为 323.73 cm-1, 与实验结果321.93 cm-1较为一致. 通过求解双原子分子核运动的径向Schrödinger方程, 找到了无转动PS自由基X2Π态及其两个Ω 态的全部振动态, 还分别计算了它们相应的振动能级和惯性转动常数等分子常数, 这些结果与已有的实验值一致.
    The potential energy curve (PEC) of ground X2Π state of PS radical is studied using highly accurate internally contracted multireference configuration interaction approach with the Davidson modification. The Dunning’s correlation-consistent basis sets are used for the present study.To improve the quality of PECs, scalar relativistic and core-valence correlation corrections are considered. Scalar relativistic correction calculations are performed using the third-order Douglas-Kroll Hamiltonian approximation at the level of a cc-pV5Z basis set. Core-valence correlation corrections are calculated with an aug-cc-pCV5Z basis set. All the PECs are extrapolated to the complete basis set limit. Using the PEC, the spectroscopic parameters (Re, ωe, ωexe, ωeye, Be, αe and De) of the X2Π state of PS are determined and compared with those reported in the literature. With the Breit-Pauli operator, the PECs of two Ω states of the ground Λ-S state are calculated. Based on these PECs, the spectroscopic parameters (Te, Re, ωe, ωexe, ωeye, Be and αe) of two Ω states of PS are obtained. Compared with those reported in the literature, the present results are accurate. The vibration manifolds are evaluated for each Ω and Λ-S state of non-rotation PS radical by numerically solving the radical Schrödinger equation of nuclear motion. For each vibrational state, the vibrational level and inertial rotation constants are obtained, which are in excellent accordance with the experimental findings.
    • 基金项目: 国家自然科学基金(批准号: 61077073)和河南省科技计划(批准号: 122300410303)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61077073) and the Science and Technology Program of Henan Province, China (Grant No. 122300410303).
    [1]

    Ohishi M, Yamamoto S, Saito S, Kawaguchi K, Suzuki H, Kaifu N, Ishikawa S I, Takano S, Tsuji T, Uno W 1988 Astrophys. J. 77 135

    [2]

    Dressler K, Miescher E 1955 Proc. Phys. Soc. A 68 542

    [3]

    Dressler K 1955 Helv. Phys. Acta 28 563

    [4]

    Narasimham N A, Balasubramanian T K 1971 J. Mol. Spectrosc. 37 371

    [5]

    Jenouvrier A, Pascat B 1978 Can. J. Phys. 56 1088

    [6]

    Lin K K, Balling L C, Wright J J 1987 Chem. Phys. Lett. 138 168

    [7]

    Kawaguchi K, Hirota E, Ohishi M, Suzuki H, Takano S, Yamamoto S, Saito S 1988 J. Mol. Spectrosc. 130 81

    [8]

    Kama S P, Bruna P J, Grein F 1988 J. Phys. B 21 1303

    [9]

    Woon D E, Dunning T H 1994 J. Chem. Phys. 101 8877

    [10]

    Moussaoui Y, Ouamerali O, De Maré G R 1998 J. Mol. Struct. (Theochem) 425 237

    [11]

    Kalcher J 2002 Phys. Chem. Chem. Phys. 4 3311

    [12]

    Yaghlane S B, Francisco J S, Hochlaf M 2012 J. Chem. Phys. 136 244309

    [13]

    Werner H J, Knowles P J 1988 J. Chem. Phys. 89 5803

    [14]

    Knowles P J, Werner H J 1988 Chem. Phys. Lett. 145 514

    [15]

    Wang J M, Feng H Q, Sun J F, Shi D H 2012 Chin. Phys. B 21 023102

    [16]

    Zhang X N, Shi D H, Sun J F, Zhu Z L 2011 Chin. Phys. B 20 043105

    [17]

    Langhoff S R, Davidson E R 1974 Int. J. Quantum Chem. 8 61

    [18]

    Richartz A, Buenker R J, Peyerimhoff S D 1978 Chem. Phys. 28 305

    [19]

    Dunning T H 1989 J. Chem. Phys. 90 1007

    [20]

    van Mourik T, Dunning T H 2000 Int. J. Quantum Chem. 76 205

    [21]

    De Jong W A, Harrison R J, Dixon D A 2001 J. Chem. Phys. 114 48

    [22]

    Reiher M, Wolf A 2004 J. Chem. Phys. 121 2037

    [23]

    Wolf A, Reiher M, Hess B A 2002 J. Chem. Phys. 117 9215

    [24]

    Liu H, Shi D H, Sun J F, Zhu Z L 2013 J. Quant. Spectrosc. Rad. Transfer. 121 9

  • [1]

    Ohishi M, Yamamoto S, Saito S, Kawaguchi K, Suzuki H, Kaifu N, Ishikawa S I, Takano S, Tsuji T, Uno W 1988 Astrophys. J. 77 135

    [2]

    Dressler K, Miescher E 1955 Proc. Phys. Soc. A 68 542

    [3]

    Dressler K 1955 Helv. Phys. Acta 28 563

    [4]

    Narasimham N A, Balasubramanian T K 1971 J. Mol. Spectrosc. 37 371

    [5]

    Jenouvrier A, Pascat B 1978 Can. J. Phys. 56 1088

    [6]

    Lin K K, Balling L C, Wright J J 1987 Chem. Phys. Lett. 138 168

    [7]

    Kawaguchi K, Hirota E, Ohishi M, Suzuki H, Takano S, Yamamoto S, Saito S 1988 J. Mol. Spectrosc. 130 81

    [8]

    Kama S P, Bruna P J, Grein F 1988 J. Phys. B 21 1303

    [9]

    Woon D E, Dunning T H 1994 J. Chem. Phys. 101 8877

    [10]

    Moussaoui Y, Ouamerali O, De Maré G R 1998 J. Mol. Struct. (Theochem) 425 237

    [11]

    Kalcher J 2002 Phys. Chem. Chem. Phys. 4 3311

    [12]

    Yaghlane S B, Francisco J S, Hochlaf M 2012 J. Chem. Phys. 136 244309

    [13]

    Werner H J, Knowles P J 1988 J. Chem. Phys. 89 5803

    [14]

    Knowles P J, Werner H J 1988 Chem. Phys. Lett. 145 514

    [15]

    Wang J M, Feng H Q, Sun J F, Shi D H 2012 Chin. Phys. B 21 023102

    [16]

    Zhang X N, Shi D H, Sun J F, Zhu Z L 2011 Chin. Phys. B 20 043105

    [17]

    Langhoff S R, Davidson E R 1974 Int. J. Quantum Chem. 8 61

    [18]

    Richartz A, Buenker R J, Peyerimhoff S D 1978 Chem. Phys. 28 305

    [19]

    Dunning T H 1989 J. Chem. Phys. 90 1007

    [20]

    van Mourik T, Dunning T H 2000 Int. J. Quantum Chem. 76 205

    [21]

    De Jong W A, Harrison R J, Dixon D A 2001 J. Chem. Phys. 114 48

    [22]

    Reiher M, Wolf A 2004 J. Chem. Phys. 121 2037

    [23]

    Wolf A, Reiher M, Hess B A 2002 J. Chem. Phys. 117 9215

    [24]

    Liu H, Shi D H, Sun J F, Zhu Z L 2013 J. Quant. Spectrosc. Rad. Transfer. 121 9

  • [1] 郭状, 欧阳峰, 卢志舟, 王梦宇, 谭庆贵, 谢成峰, 魏斌, 何兴道. 氟化镁微瓶腔光频梳光谱分析及优化. 物理学报, 2024, 0(0): 0-0. doi: 10.7498/aps.73.20231126
    [2] 齐刚, 黄印博, 凌菲彤, 杨佳琦, 黄俊, 杨韬, 张雷雷, 卢兴吉, 袁子豪, 曹振松. 多微管阵列结构腔-原子吸收光谱测量Rb同位素比. 物理学报, 2023, 72(5): 053201. doi: 10.7498/aps.72.20221963
    [3] 蒋东镔, 张颖, 姜大朋, 朱斌, 李纲, 孙立, 黄征, 卢峰, 谢娜, 周凯南, 粟敬钦. Nd, Gd:SrF2晶体材料在宽带放大中的光谱增益特性. 物理学报, 2023, 72(22): 224208. doi: 10.7498/aps.72.20230972
    [4] 钟国华, 林海青. 芳香超导体: 电-声耦合与电子关联. 物理学报, 2023, 72(23): 237403. doi: 10.7498/aps.72.20231751
    [5] 蔡荣根, 李理, 王少江. 哈勃常数危机. 物理学报, 2023, 72(23): 239801. doi: 10.7498/aps.72.20231270
    [6] 李斌, 张国峰, 陈瑞云, 秦成兵, 胡建勇, 肖连团, 贾锁堂. 单量子点光谱与激子动力学研究进展. 物理学报, 2022, 71(6): 067802. doi: 10.7498/aps.71.20212050
    [7] 徐又捷, 郭迎春, 王兵兵. 多原子分子简正振动频率的量化计算. 物理学报, 2022, 71(9): 093101. doi: 10.7498/aps.71.20212108
    [8] 牛明丽, 王月明, 李志坚. 基于量子Fisher信息的耗散相互作用光-物质耦合常数的估计. 物理学报, 2022, 71(9): 090601. doi: 10.7498/aps.71.20212029
    [9] 李子龙, 万源. 强关联电子体系二维相干光谱的理论研究评述. 物理学报, 2021, 70(23): 230308. doi: 10.7498/aps.70.20211556
    [10] 刘尚阔, 王涛, 李坤, 曹昆, 张玺斌, 周艳, 赵建科, 姚保利. 光源光谱特性对空间相机调制传递函数检测的影响. 物理学报, 2021, 70(13): 134208. doi: 10.7498/aps.70.20201575
    [11] 刘强, 何军, 王军民. 室温铯原子气室窄线宽相干布居振荡光谱. 物理学报, 2021, 70(16): 163202. doi: 10.7498/aps.70.20210405
    [12] 白素英, 白景旭, 韩小萱, 焦月春, 赵建明. 超冷长程Rydberg-基态分子. 物理学报, 2021, 70(12): 123201. doi: 10.7498/aps.70.20202229
    [13] 尹俊豪, 杨涛, 印建平. 基于${{\bf{A}}}^{{\boldsymbol{2}}}{{{\boldsymbol{\Pi}} }}_{{\boldsymbol{1/2}}}{\boldsymbol{\leftarrow }}{{\bf{X}}}^{{\boldsymbol{2}}}{{{\boldsymbol{\Sigma }}}}_{{\boldsymbol{1/2}}}$跃迁的CaH分子激光冷却光谱理论研究. 物理学报, 2021, 70(16): 163302. doi: 10.7498/aps.70.20210522
    [14] 郑健捷, 朱文越, 刘强, 马宏亮, 刘锟, 钱仙妹, 陈杰, 杨韬. 1 μm波段水分子吸收光谱双光程同步测量方法研究. 物理学报, 2021, 70(16): 163301. doi: 10.7498/aps.70.20210100
    [15] 徐自强, 吴晓庆, 许满满, 毕翠翠, 韩永, 邵士勇. 海洋上空折射率结构常数廓线估算. 物理学报, 2021, 70(24): 244204. doi: 10.7498/aps.70.20211201
    [16] 张旭, 曹佳慧, 艾保全, 高天附, 郑志刚. 摩擦不对称耦合布朗马达的定向输运. 物理学报, 2020, 69(10): 100503. doi: 10.7498/aps.69.20191961
    [17] 王琼, 王凯歌, 孟康康, 孙聃, 韩仝雨, 高爱华. 基于单分子成像技术研究λ-DNA分子穿越微米通道端口的电动力学特性. 物理学报, 2020, 69(16): 168202. doi: 10.7498/aps.69.20200074
    [18] 王朝辉, 李勇祥, 朱帅. 基于超表面的旋向选择吸波体. 物理学报, 2020, 69(23): 234103. doi: 10.7498/aps.69.20200511
    [19] 丁学利, 贾冰, 李玉叶. 利用相位响应曲线解释抑制性反馈增强神经电活动. 物理学报, 2019, 68(18): 180502. doi: 10.7498/aps.68.20190197
    [20] 杜建宾, 冯志芳, 张倩, 韩丽君, 唐延林, 李奇峰. 外电场作用下MoS2的分子结构和电子光谱. 物理学报, 2019, 68(17): 173101. doi: 10.7498/aps.68.20190781
计量
  • 文章访问数:  4503
  • PDF下载量:  737
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-06-04
  • 修回日期:  2013-07-07
  • 刊出日期:  2013-10-05

/

返回文章
返回