-
采用Davidson修正的内收缩多参考组态相互作用方法(icMRCI+Q) 结合Dunning等的相关一致基计算了PS自由基X2Π 态势能曲线. 利用三阶Douglas-Kroll Hamilton近似结合cc-pV5Z相对论收缩基进行了相对论修正计算. 利用aug-cc-pCV5Z基组对势能曲线进行了核价相关修正计算, 并将总能量外推至完全基组极限. 拟合得到了X2Π态的主要光谱常数Re, ωe, ωexe, ωeye, Be, αe 和De, 与实验结果符合较好. 利用Breit-Pauli算符, 研究了旋轨耦合效应对势能曲线的影响, 得到了两条Ω 态的势能曲线. 详细分析了在旋轨耦合计算中, 核电子相关与冻结核近似对电子结构和光谱性质的影响. 在icMRCI+Q/56+DK+CV+SO理论水平上得到了两个Ω 态的主要光谱常数Te, Re, ωe, ωexe, ωeye, Be 和αe, 结果与实验结果一致. 在平衡位置处, 本文的X2Π态旋轨耦合能量分裂值为 323.73 cm-1, 与实验结果321.93 cm-1较为一致. 通过求解双原子分子核运动的径向Schrödinger方程, 找到了无转动PS自由基X2Π态及其两个Ω 态的全部振动态, 还分别计算了它们相应的振动能级和惯性转动常数等分子常数, 这些结果与已有的实验值一致.The potential energy curve (PEC) of ground X2Π state of PS radical is studied using highly accurate internally contracted multireference configuration interaction approach with the Davidson modification. The Dunning’s correlation-consistent basis sets are used for the present study.To improve the quality of PECs, scalar relativistic and core-valence correlation corrections are considered. Scalar relativistic correction calculations are performed using the third-order Douglas-Kroll Hamiltonian approximation at the level of a cc-pV5Z basis set. Core-valence correlation corrections are calculated with an aug-cc-pCV5Z basis set. All the PECs are extrapolated to the complete basis set limit. Using the PEC, the spectroscopic parameters (Re, ωe, ωexe, ωeye, Be, αe and De) of the X2Π state of PS are determined and compared with those reported in the literature. With the Breit-Pauli operator, the PECs of two Ω states of the ground Λ-S state are calculated. Based on these PECs, the spectroscopic parameters (Te, Re, ωe, ωexe, ωeye, Be and αe) of two Ω states of PS are obtained. Compared with those reported in the literature, the present results are accurate. The vibration manifolds are evaluated for each Ω and Λ-S state of non-rotation PS radical by numerically solving the radical Schrödinger equation of nuclear motion. For each vibrational state, the vibrational level and inertial rotation constants are obtained, which are in excellent accordance with the experimental findings.
-
Keywords:
- spectroscopic parameter /
- molecular constant /
- potential energy curve /
- spin-orbital coupling
[1] Ohishi M, Yamamoto S, Saito S, Kawaguchi K, Suzuki H, Kaifu N, Ishikawa S I, Takano S, Tsuji T, Uno W 1988 Astrophys. J. 77 135
[2] Dressler K, Miescher E 1955 Proc. Phys. Soc. A 68 542
[3] Dressler K 1955 Helv. Phys. Acta 28 563
[4] Narasimham N A, Balasubramanian T K 1971 J. Mol. Spectrosc. 37 371
[5] Jenouvrier A, Pascat B 1978 Can. J. Phys. 56 1088
[6] Lin K K, Balling L C, Wright J J 1987 Chem. Phys. Lett. 138 168
[7] Kawaguchi K, Hirota E, Ohishi M, Suzuki H, Takano S, Yamamoto S, Saito S 1988 J. Mol. Spectrosc. 130 81
[8] Kama S P, Bruna P J, Grein F 1988 J. Phys. B 21 1303
[9] Woon D E, Dunning T H 1994 J. Chem. Phys. 101 8877
[10] Moussaoui Y, Ouamerali O, De Maré G R 1998 J. Mol. Struct. (Theochem) 425 237
[11] Kalcher J 2002 Phys. Chem. Chem. Phys. 4 3311
[12] Yaghlane S B, Francisco J S, Hochlaf M 2012 J. Chem. Phys. 136 244309
[13] Werner H J, Knowles P J 1988 J. Chem. Phys. 89 5803
[14] Knowles P J, Werner H J 1988 Chem. Phys. Lett. 145 514
[15] Wang J M, Feng H Q, Sun J F, Shi D H 2012 Chin. Phys. B 21 023102
[16] Zhang X N, Shi D H, Sun J F, Zhu Z L 2011 Chin. Phys. B 20 043105
[17] Langhoff S R, Davidson E R 1974 Int. J. Quantum Chem. 8 61
[18] Richartz A, Buenker R J, Peyerimhoff S D 1978 Chem. Phys. 28 305
[19] Dunning T H 1989 J. Chem. Phys. 90 1007
[20] van Mourik T, Dunning T H 2000 Int. J. Quantum Chem. 76 205
[21] De Jong W A, Harrison R J, Dixon D A 2001 J. Chem. Phys. 114 48
[22] Reiher M, Wolf A 2004 J. Chem. Phys. 121 2037
[23] Wolf A, Reiher M, Hess B A 2002 J. Chem. Phys. 117 9215
[24] Liu H, Shi D H, Sun J F, Zhu Z L 2013 J. Quant. Spectrosc. Rad. Transfer. 121 9
-
[1] Ohishi M, Yamamoto S, Saito S, Kawaguchi K, Suzuki H, Kaifu N, Ishikawa S I, Takano S, Tsuji T, Uno W 1988 Astrophys. J. 77 135
[2] Dressler K, Miescher E 1955 Proc. Phys. Soc. A 68 542
[3] Dressler K 1955 Helv. Phys. Acta 28 563
[4] Narasimham N A, Balasubramanian T K 1971 J. Mol. Spectrosc. 37 371
[5] Jenouvrier A, Pascat B 1978 Can. J. Phys. 56 1088
[6] Lin K K, Balling L C, Wright J J 1987 Chem. Phys. Lett. 138 168
[7] Kawaguchi K, Hirota E, Ohishi M, Suzuki H, Takano S, Yamamoto S, Saito S 1988 J. Mol. Spectrosc. 130 81
[8] Kama S P, Bruna P J, Grein F 1988 J. Phys. B 21 1303
[9] Woon D E, Dunning T H 1994 J. Chem. Phys. 101 8877
[10] Moussaoui Y, Ouamerali O, De Maré G R 1998 J. Mol. Struct. (Theochem) 425 237
[11] Kalcher J 2002 Phys. Chem. Chem. Phys. 4 3311
[12] Yaghlane S B, Francisco J S, Hochlaf M 2012 J. Chem. Phys. 136 244309
[13] Werner H J, Knowles P J 1988 J. Chem. Phys. 89 5803
[14] Knowles P J, Werner H J 1988 Chem. Phys. Lett. 145 514
[15] Wang J M, Feng H Q, Sun J F, Shi D H 2012 Chin. Phys. B 21 023102
[16] Zhang X N, Shi D H, Sun J F, Zhu Z L 2011 Chin. Phys. B 20 043105
[17] Langhoff S R, Davidson E R 1974 Int. J. Quantum Chem. 8 61
[18] Richartz A, Buenker R J, Peyerimhoff S D 1978 Chem. Phys. 28 305
[19] Dunning T H 1989 J. Chem. Phys. 90 1007
[20] van Mourik T, Dunning T H 2000 Int. J. Quantum Chem. 76 205
[21] De Jong W A, Harrison R J, Dixon D A 2001 J. Chem. Phys. 114 48
[22] Reiher M, Wolf A 2004 J. Chem. Phys. 121 2037
[23] Wolf A, Reiher M, Hess B A 2002 J. Chem. Phys. 117 9215
[24] Liu H, Shi D H, Sun J F, Zhu Z L 2013 J. Quant. Spectrosc. Rad. Transfer. 121 9
计量
- 文章访问数: 6356
- PDF下载量: 746
- 被引次数: 0