-
基于相关一致极化4zeta(aug-cc-pVQZ)基组, 应用量子化学从头计算中高水平的多参考组态相互作用方法计算了BCl+ 两个离解极限B+(1Sg)+Cl(2Pu)和B (2Pu)+Cl+ (3Pg)的14个-S态势能曲线. 在计算中考虑了Davidson修正(+Q)和标量相对论效应, 并首次在计算中考虑了BCl+ 的旋轨耦合效应, 获得了由能量最低的4个-S态分裂出的7个 态. 计算结果表明相同对称性的 态的势能曲线存在着非常明显的避免交叉. 通过分析-S态的电子结构, 得到了各态的电子跃迁特性, 并确认了电子态的多组态性质. 使用LEVEL程序通过求解径向的Schrdinger方程得到了束缚-S 和态的光谱参数De, Re, Te, e, ee和Be. 通过和已有的-S态X2+ 的实验数据进行对比发现, 本文所得的计算结果与实验结果非常一致. 而文中其他电子态的光谱参数均为首次报道.
-
关键词:
- 势能曲线 /
- 光谱参数 /
- 多参考组态相互作用方法 /
- 旋轨耦合
The high level quantum chemistry ab initio multi-reference configuration interaction method with reasonably large aug-cc-pVQZ basis sets is used to calculate the potential energy curves of 14 -S states of BCl+ radical correlated to the dissociation limit B+(1Sg)+Cl(2Pu) and B(2Pu) +Cl+(3Pg). In order to get the better potential energy curves, the Davidson correction and scalar relativistic effect are taken into consideration. The spin-orbit interaction is first considered, which makes the lowest 4 -S states split to 7 states. The calculational results show that the avoided crossing rule exists between the states of the same symmetry. The analyses of the electronic structures of -S states determine the electronic transition of each state and demonstrates that the -S electronic states are multi-configurational in nature. Then the spectroscopic constants of the bound -S and states are obtained by solving the radial Schrdinger equation. By comparison with experimental results, the spectroscopic constants of ground states are in good agreement with the observed values. The remaining computational results are reported for the first time.-
Keywords:
- potential energy curve /
- spectroscopic constant /
- multi-reference configuration interaction method /
- spin-orbit coupling
[1] Flamm D L 1993 Solid State Technol. 36 49
[2] Patron S J, Hobson W S, Abernathy C R, Ren F, Fullowan T R, Katz A, Perle A P 1993 Plasma Chem. Plasma Proc. 13 311
[3] Huber K P, Herzberg G 1979 Molecular Spectra and Molecular Structure IV: Constants of Diatomic Molecules (New York: VanNostrand Reinhold)
[4] Maki A G, Lovas F J, Suenram R D 1982 J. Mol. Spectrosc. 91 424
[5] Bredohl H, Dubois I, Houbrechts Y, Nzohabonayo P 1984 J. Phys. B: At. Mol. Phys. 17 209
[6] Bredohl H, Dubois I, Mélen F 1987 J. Mol. Spectrosc. 121 135
[7] Verma R D 1995 J. Mol. Spectrosc. 169 295
[8] Liu Y F, Zhang X M, Yu K 2012 Computat. Theor. Chem. 991 82
[9] Hildenbrand D L 1996 J. Chem. Phys. 105 10507
[10] Bauschlicher C W, Ricca A 1999 J. Phys. Chem. A 103 4313
[11] Irikura K K, Johnson R D, Hudgens J W 2000 J. Phys. Chem. A 104 3800
[12] Wang X Y, Ding S L 2004 Acta Phys. Sin. 53 423 (in Chinese) [王晓艳, 丁世良 2004 物理学报 53 423]
[13] Han H X, Peng Q, Wen Z Y, Wang Y B 2005 Acta Phys. Sin. 54 78 (in Chinese) [韩慧仙, 彭谦, 文振翼, 王育彬 2005 物理学报 54 78]
[14] Le Roy R J 2007 LEVEL 8.0: A Computer Program for Solving the Radial Schrödinger Equation for Bound and Quasibound Levels. University of Waterloo Chemical Physics Research Report CP-663
[15] Werner H J, Knowles P J 1985 J. Chem. Phys. 82 5053
[16] Knowles P J, Werner H J 1985 Chem. Phys. Lett. 115 259
[17] Werner H J, Knowles P J 1988 J. Chem. Phys. 89 5803
[18] Knowles P J, Werner H J 1988 Chem. Phys. Lett. 145 514
[19] Yan B, Pan S F, Wang Z G, Yu J H 2005 Acta Phys. Sin. 54 5618 (in Chinese) [闫冰, 潘守甫, 王志刚, 于俊华 2005 物理学报 54 5618]
[20] Li R, Lian K Y, Li Q N, Miao F J, Yan Bing, Jin M X 2012 Chin. Phys. B 21 123102
[21] Moore C E 1971 Atomic Energy Levels (Washington, DC: National Bureau of Standards)
-
[1] Flamm D L 1993 Solid State Technol. 36 49
[2] Patron S J, Hobson W S, Abernathy C R, Ren F, Fullowan T R, Katz A, Perle A P 1993 Plasma Chem. Plasma Proc. 13 311
[3] Huber K P, Herzberg G 1979 Molecular Spectra and Molecular Structure IV: Constants of Diatomic Molecules (New York: VanNostrand Reinhold)
[4] Maki A G, Lovas F J, Suenram R D 1982 J. Mol. Spectrosc. 91 424
[5] Bredohl H, Dubois I, Houbrechts Y, Nzohabonayo P 1984 J. Phys. B: At. Mol. Phys. 17 209
[6] Bredohl H, Dubois I, Mélen F 1987 J. Mol. Spectrosc. 121 135
[7] Verma R D 1995 J. Mol. Spectrosc. 169 295
[8] Liu Y F, Zhang X M, Yu K 2012 Computat. Theor. Chem. 991 82
[9] Hildenbrand D L 1996 J. Chem. Phys. 105 10507
[10] Bauschlicher C W, Ricca A 1999 J. Phys. Chem. A 103 4313
[11] Irikura K K, Johnson R D, Hudgens J W 2000 J. Phys. Chem. A 104 3800
[12] Wang X Y, Ding S L 2004 Acta Phys. Sin. 53 423 (in Chinese) [王晓艳, 丁世良 2004 物理学报 53 423]
[13] Han H X, Peng Q, Wen Z Y, Wang Y B 2005 Acta Phys. Sin. 54 78 (in Chinese) [韩慧仙, 彭谦, 文振翼, 王育彬 2005 物理学报 54 78]
[14] Le Roy R J 2007 LEVEL 8.0: A Computer Program for Solving the Radial Schrödinger Equation for Bound and Quasibound Levels. University of Waterloo Chemical Physics Research Report CP-663
[15] Werner H J, Knowles P J 1985 J. Chem. Phys. 82 5053
[16] Knowles P J, Werner H J 1985 Chem. Phys. Lett. 115 259
[17] Werner H J, Knowles P J 1988 J. Chem. Phys. 89 5803
[18] Knowles P J, Werner H J 1988 Chem. Phys. Lett. 145 514
[19] Yan B, Pan S F, Wang Z G, Yu J H 2005 Acta Phys. Sin. 54 5618 (in Chinese) [闫冰, 潘守甫, 王志刚, 于俊华 2005 物理学报 54 5618]
[20] Li R, Lian K Y, Li Q N, Miao F J, Yan Bing, Jin M X 2012 Chin. Phys. B 21 123102
[21] Moore C E 1971 Atomic Energy Levels (Washington, DC: National Bureau of Standards)
计量
- 文章访问数: 6621
- PDF下载量: 749
- 被引次数: 0