搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

SiS低激发态势能曲线和光谱性质的全电子组态相互作用方法研究

李瑞 张晓美 李奇楠 罗旺 金明星 徐海峰 闫冰

引用本文:
Citation:

SiS低激发态势能曲线和光谱性质的全电子组态相互作用方法研究

李瑞, 张晓美, 李奇楠, 罗旺, 金明星, 徐海峰, 闫冰

All-electron configuration interaction study on potential energy curves of low-lying excited states and spectroscopic properties of SiS

Li Rui, Zhang Xiao-Mei, Li Qi-Nan, Luo Wang, Jin Ming-Xing, Xu Hai-Feng, Yan Bing
PDF
导出引用
  • 基于全电子的相关一致极化4-(aug-cc-pwCVQZ-DK)基组,采用高精度的多参考组态相互作用方法计算了SiS自由基与最低的解离极限Si(3Pg)+S(3Pg)对应的18个-S电子态的势能曲线. 计算中考虑了标量相对论效应以及Si(2s22p6)和S(2s22p6)内壳层电子产生的关联效应. 基于计算的势能曲线,拟合出了束缚态的光谱参数,包括平衡核间距Re,绝热激发能Te,振动常数e和ee,平衡转动常数Be;并分析了束缚态在不同键长位置处的电子组态. 计算了18个-S态的电偶极矩函数,阐明了电子态的组态变化对电偶极矩的影响. 给出了包含b3和A1态的自旋-轨道矩阵元随核间距变化的曲线,分析了邻近的电子激发态对b3和A1态的扰动. 计算了A1-X1+和E1+X1+跃迁的跃迁偶极矩和Franck-Condon因子,讨论了A1和E1+的最低五个振动能级的辐射寿命.
    The 18 -S states correlated to the lowest dissociation (Si(3Pg)+S(3Pg)) limit are computed with high-level multireference configuration interaction (MRCI(SD)) approach through utilizing all-electron aug-cc-pwCVQZ-DK basis set. The scalar relativistic effect and the core-valence correlation effect of Si (2s22p6) and S (2s22p6) are taken into account. On the basis of calculated potential energy curves, the spectroscopic constants of the bound states are fitted, including equilibrium distance Re, adiabatic transition energies Te, harmonic vibrational frequencies e, anharmonic terms exe, and rotational constant Be. The electronic configurations at different bond lengths are given. The electronic dipole moments of 18 -S states are calculated, illuminating the influence of electronic configuration variation on electronic dipole moment. With the help of nonvanishing spin-orbit matrix elements including b3 and A1 as a function of the internuclear distance, the nearby state perturbations to b3 and A1 are discussed in detail. Finally, the transition dipole moments and Franck-Condon factors of A1X1+ and E1+X1+ transitions are obtained, and radiative lifetimes of five lowest vibrational levels of the two singlet excited states are evaluated.
    • 基金项目: 国家自然科学基金(批准号:11074095,11274140)、齐齐哈尔市科学技术计划项目(批准号:GYGG-201209-1)和黑龙江省自然基金(批准号:F201335)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11074095, 11274140), the Scientific and Technological Research Foundation of Qiqihar (Grant Nos. GYGG-201209-1), and the Natural Science Foundation of Heilongjiang Province (Grant No. F201335).
    [1]

    Yan B, Pan S F, Wang Z G, Yu J H 2006 Acta Phys. Sin. 55 1736 (in Chinese)[闫冰, 潘守甫, 王志刚, 于俊华 2006 物理学报 55 1736]

    [2]

    Yan B, Pan S F 2008 Chin. Phys. B 17 1501

    [3]

    Yan B, Zhang Y J 2013 Chin. Phys. B 22 023103

    [4]

    Gao X Y, You K, Zhang X M, Liu Y L, Liu Y F 2013 Acta Phys. Sin. 62 233302 (in Chinese)[高雪艳, 尤凯, 张晓美, 刘彦磊, 刘玉芳 2013 物理学报 62 233302]

    [5]

    Glassgold A E 1996 Annu. Rev. Astron. Astrophys. 34 241

    [6]

    Ziurys L M 2006 Proc. Natl. Acad. Sci. 103 12274

    [7]

    Woodall J, Agúndez M, Markwick-Kemper A J, Millar T J 2007 Astron. Astrophys. 466 1197

    [8]

    Barrow R F, Jevons W 1938 Proc. R. Soc. A: Math. Phys. Eng. Sci. 169 45

    [9]

    Robinson S J Q, Barrow R F 1954 Proc. Phys. Soc. Sect. A 67 95

    [10]

    Nilheden G 1956 Ark. Fys. 10 19

    [11]

    Bredohl H, Cornet R, Dubois I, Wilderia D 1975 J. Phys. B At. Mol. Phys. 8 259

    [12]

    Katti P H, Korwar V M 1975 Acta Phys. Acad. Sci. Hung. 39 145

    [13]

    Linton C 1980 J. Mol. Spectrosc. 80 279

    [14]

    Harris S M, Gottscho R A, Field R W, Barrow R F 1982 J. Mol. Spectrosc. 91 35

    [15]

    Sanz M E, McCarthy M C, Thaddeus P 2003 J. Chem. Phys. 119 11715

    [16]

    Mller H S P, McCarthy M C, Bizzocchi L, Gupta H, Esser S, Lichau H, Caris M, Lewen F, Hahn J, Degli Esposti C, Schlemmer S, Thaddeus P 2007 Phys. Chem. Chem. Phys. 9 1579

    [17]

    Li S, Moncrieff D, Zhao J, Brown F B 1988 Chem. Phys. Lett. 151 403

    [18]

    Chattopadhyaya S, Chattopadhyay A, Das K K 2002 J. Phys. Chem. A 106 833

    [19]

    Coriani S, Marchesan D, Gauss J, Hättig C, Helgaker T, J ørgensen P 2005 J. Chem. Phys. 123 184107

    [20]

    Li C, Deng L, Zhang Y, Wu L, Yang X, Chen Y 2011 J. Phys. Chem. A 115 2978

    [21]

    Li R, Wei C L, Sun Q X, Sun E P, Xu H F, Yan B 2013 J. Phys. Chem. A 117 2373

    [22]

    Werner H J, Knowles P J, Knizia G, Manby F R, Schtz M, Celani P, Korona T, Lindh R, Mitrushenkov A, Rauhut G, Shamasundar K R, Adler T B, Amos R D, Bernhardsson A, Berning A, Cooper D L, Deegan M J O, Dobbyn A J, Eckert F, Goll E, Hampel C, Hesselmann A, Hetzer G, Hrenar T, Jansen G, Köppl C, Liu Y, Lloyd A W, Mata R A, May A J, McNicholas S J, Meyer W, Mura M E, Nicklass A, Neill D P, Palmieri P, Peng D, Pflger K, Pitzer R, Reiher M, Shiozaki T, Stoll H, Stone A J, Tarroni R, Thorsteinsson T, Wang M 2010 MOLPRO: a package of ab initio programs

    [23]

    Woon D E, Dunning T H 1993 J. Chem. Phys. 98 1358

    [24]

    Werner H J, Knowles P J 1985 J. Chem. Phys. 82 5053

    [25]

    Knowles P J, Werner H J 1985 Chem. Phys. Lett. 115 259

    [26]

    Werner H J, Knowles P J 1988 J. Chem. Phys. 89 5803

    [27]

    Knowles P J, Werner H J 1988 Chem. Phys. Lett. 145 514

    [28]

    Langhoff S R, Davidson E R 1974 Int. J. Quantum Chem. 8 61

    [29]

    Douglas M, Kroll N M 1974 Ann. Phys. 82 89

    [30]

    Hess B A 1986 Phys. Rev. A 33 3742

    [31]

    Berning A, Schweizer M, Werner H J, Knowles P J, Palmieri P 2000 Mol. Phys. 98 1823

    [32]

    Le Roy R J 2002 LEVEL 7.5: a Computer Program for Solving the Radial Schröinger Equation for Bound and Quasibound Levels (University of Waterloo, Chemical Physics Research Report CP-655)

    [33]

    Huber K P, Herzberg G 1979 Molecular Spectra and Molecular Structure IV: Constants of Diatomic Molecules (New York: Van Nostrand Reinhold) pp608-609

    [34]

    Green G J, Gole J L 1980 Chem. Phys. 46 67

    [35]

    Murty A N, Curl Jr. R F 1969 J. Mol. Spectrosc. 30 102

    [36]

    Sunanda K, Gopal S, Shetty B J, Lakshminarayana G 1989 J. Quant. Spectrosc. Radiat. Transf. 42 631

  • [1]

    Yan B, Pan S F, Wang Z G, Yu J H 2006 Acta Phys. Sin. 55 1736 (in Chinese)[闫冰, 潘守甫, 王志刚, 于俊华 2006 物理学报 55 1736]

    [2]

    Yan B, Pan S F 2008 Chin. Phys. B 17 1501

    [3]

    Yan B, Zhang Y J 2013 Chin. Phys. B 22 023103

    [4]

    Gao X Y, You K, Zhang X M, Liu Y L, Liu Y F 2013 Acta Phys. Sin. 62 233302 (in Chinese)[高雪艳, 尤凯, 张晓美, 刘彦磊, 刘玉芳 2013 物理学报 62 233302]

    [5]

    Glassgold A E 1996 Annu. Rev. Astron. Astrophys. 34 241

    [6]

    Ziurys L M 2006 Proc. Natl. Acad. Sci. 103 12274

    [7]

    Woodall J, Agúndez M, Markwick-Kemper A J, Millar T J 2007 Astron. Astrophys. 466 1197

    [8]

    Barrow R F, Jevons W 1938 Proc. R. Soc. A: Math. Phys. Eng. Sci. 169 45

    [9]

    Robinson S J Q, Barrow R F 1954 Proc. Phys. Soc. Sect. A 67 95

    [10]

    Nilheden G 1956 Ark. Fys. 10 19

    [11]

    Bredohl H, Cornet R, Dubois I, Wilderia D 1975 J. Phys. B At. Mol. Phys. 8 259

    [12]

    Katti P H, Korwar V M 1975 Acta Phys. Acad. Sci. Hung. 39 145

    [13]

    Linton C 1980 J. Mol. Spectrosc. 80 279

    [14]

    Harris S M, Gottscho R A, Field R W, Barrow R F 1982 J. Mol. Spectrosc. 91 35

    [15]

    Sanz M E, McCarthy M C, Thaddeus P 2003 J. Chem. Phys. 119 11715

    [16]

    Mller H S P, McCarthy M C, Bizzocchi L, Gupta H, Esser S, Lichau H, Caris M, Lewen F, Hahn J, Degli Esposti C, Schlemmer S, Thaddeus P 2007 Phys. Chem. Chem. Phys. 9 1579

    [17]

    Li S, Moncrieff D, Zhao J, Brown F B 1988 Chem. Phys. Lett. 151 403

    [18]

    Chattopadhyaya S, Chattopadhyay A, Das K K 2002 J. Phys. Chem. A 106 833

    [19]

    Coriani S, Marchesan D, Gauss J, Hättig C, Helgaker T, J ørgensen P 2005 J. Chem. Phys. 123 184107

    [20]

    Li C, Deng L, Zhang Y, Wu L, Yang X, Chen Y 2011 J. Phys. Chem. A 115 2978

    [21]

    Li R, Wei C L, Sun Q X, Sun E P, Xu H F, Yan B 2013 J. Phys. Chem. A 117 2373

    [22]

    Werner H J, Knowles P J, Knizia G, Manby F R, Schtz M, Celani P, Korona T, Lindh R, Mitrushenkov A, Rauhut G, Shamasundar K R, Adler T B, Amos R D, Bernhardsson A, Berning A, Cooper D L, Deegan M J O, Dobbyn A J, Eckert F, Goll E, Hampel C, Hesselmann A, Hetzer G, Hrenar T, Jansen G, Köppl C, Liu Y, Lloyd A W, Mata R A, May A J, McNicholas S J, Meyer W, Mura M E, Nicklass A, Neill D P, Palmieri P, Peng D, Pflger K, Pitzer R, Reiher M, Shiozaki T, Stoll H, Stone A J, Tarroni R, Thorsteinsson T, Wang M 2010 MOLPRO: a package of ab initio programs

    [23]

    Woon D E, Dunning T H 1993 J. Chem. Phys. 98 1358

    [24]

    Werner H J, Knowles P J 1985 J. Chem. Phys. 82 5053

    [25]

    Knowles P J, Werner H J 1985 Chem. Phys. Lett. 115 259

    [26]

    Werner H J, Knowles P J 1988 J. Chem. Phys. 89 5803

    [27]

    Knowles P J, Werner H J 1988 Chem. Phys. Lett. 145 514

    [28]

    Langhoff S R, Davidson E R 1974 Int. J. Quantum Chem. 8 61

    [29]

    Douglas M, Kroll N M 1974 Ann. Phys. 82 89

    [30]

    Hess B A 1986 Phys. Rev. A 33 3742

    [31]

    Berning A, Schweizer M, Werner H J, Knowles P J, Palmieri P 2000 Mol. Phys. 98 1823

    [32]

    Le Roy R J 2002 LEVEL 7.5: a Computer Program for Solving the Radial Schröinger Equation for Bound and Quasibound Levels (University of Waterloo, Chemical Physics Research Report CP-655)

    [33]

    Huber K P, Herzberg G 1979 Molecular Spectra and Molecular Structure IV: Constants of Diatomic Molecules (New York: Van Nostrand Reinhold) pp608-609

    [34]

    Green G J, Gole J L 1980 Chem. Phys. 46 67

    [35]

    Murty A N, Curl Jr. R F 1969 J. Mol. Spectrosc. 30 102

    [36]

    Sunanda K, Gopal S, Shetty B J, Lakshminarayana G 1989 J. Quant. Spectrosc. Radiat. Transf. 42 631

  • [1] 高峰, 张红, 张常哲, 赵文丽, 孟庆田. SiH+(X1Σ+)的势能曲线、光谱常数、振转能级和自旋-轨道耦合理论研究. 物理学报, 2021, 70(15): 153301. doi: 10.7498/aps.70.20210450
    [2] 管林强, 邓昊, 姚路, 聂伟, 许振宇, 李想, 臧益鹏, 胡迈, 范雪丽, 杨晨光, 阚瑞峰. 基于可调谐激光吸收光谱技术的二硫化碳中红外光谱参数测量. 物理学报, 2019, 68(8): 084204. doi: 10.7498/aps.68.20182140
    [3] 李晨曦, 郭迎春, 王兵兵. O2分子B3u-态势能曲线的从头计算. 物理学报, 2017, 66(10): 103101. doi: 10.7498/aps.66.103101
    [4] 黄多辉, 万明杰, 王藩侯, 杨俊升, 曹启龙, 王金花. GeS分子基态和低激发态的势能曲线与光谱性质. 物理学报, 2016, 65(6): 063102. doi: 10.7498/aps.65.063102
    [5] 黄多辉, 王藩侯, 杨俊升, 万明杰, 曹启龙, 杨明超. SnO分子的X1Σ+, a3Π和A1Π态的势能曲线与光谱性质. 物理学报, 2014, 63(8): 083102. doi: 10.7498/aps.63.083102
    [6] 陈恒杰. LiAl分子基态、激发态势能曲线和振动能级. 物理学报, 2013, 62(8): 083301. doi: 10.7498/aps.62.083301
    [7] 朱遵略, 郎建华, 乔浩. SF分子基态及低激发态势能函数与光谱常数的研究. 物理学报, 2013, 62(16): 163103. doi: 10.7498/aps.62.163103
    [8] 李松, 韩立波, 陈善俊, 段传喜. SN-分子离子的势能函数和光谱常数研究. 物理学报, 2013, 62(11): 113102. doi: 10.7498/aps.62.113102
    [9] 刘慧, 邢伟, 施德恒, 孙金锋, 朱遵略. PS自由基X2Π态的势能曲线和光谱性质. 物理学报, 2013, 62(20): 203104. doi: 10.7498/aps.62.203104
    [10] 郭雨薇, 张晓美, 刘彦磊, 刘玉芳. BP+基态和激发态的势能曲线和光谱性质的研究. 物理学报, 2013, 62(19): 193301. doi: 10.7498/aps.62.193301
    [11] 于坤, 张晓美, 刘玉芳. 从头计算研究BCl+基态和激发态的势能曲线和光谱性质. 物理学报, 2013, 62(6): 063301. doi: 10.7498/aps.62.063301
    [12] 高雪艳, 尤凯, 张晓美, 刘彦磊, 刘玉芳. 多参考组态相互作用方法研究BS+离子的势能曲线和光谱性质. 物理学报, 2013, 62(23): 233302. doi: 10.7498/aps.62.233302
    [13] 王杰敏, 张蕾, 施德恒, 朱遵略, 孙金锋. AsO+同位素离子X2+和A2电子态的多参考组态相互作用方法研究. 物理学报, 2012, 61(15): 153105. doi: 10.7498/aps.61.153105
    [14] 刘慧, 邢伟, 施德恒, 朱遵略, 孙金锋. 用MRCI方法研究CS+同位素离子X2Σ+和A2Π态的光谱常数与分子常数. 物理学报, 2011, 60(4): 043102. doi: 10.7498/aps.60.043102
    [15] 刘慧, 施德恒, 孙金锋, 朱遵略. MRCI方法研究CSe(X1Σ+)自由基的光谱常数和分子常数. 物理学报, 2011, 60(6): 063101. doi: 10.7498/aps.60.063101
    [16] 王杰敏, 孙金锋. 采用多参考组态相互作用方法研究AsN( X1 + )自由基的光谱常数与分子常数. 物理学报, 2011, 60(12): 123103. doi: 10.7498/aps.60.123103
    [17] 王新强, 杨传路, 苏涛, 王美山. BH分子基态和激发态解析势能函数和光谱性质. 物理学报, 2009, 58(10): 6873-6878. doi: 10.7498/aps.58.6873
    [18] 高 峰, 杨传路, 张晓燕. 多参考组态相互作用方法研究ZnHg低激发态(1∏,3∏)的势能曲线和解析势能函数. 物理学报, 2007, 56(5): 2547-2552. doi: 10.7498/aps.56.2547
    [19] 钱 琪, 杨传路, 高 峰, 张晓燕. 多参考组态相互作用方法计算研究XOn(X=S, Cl;n=0,±1)的解析势能函数和光谱常数. 物理学报, 2007, 56(8): 4420-4427. doi: 10.7498/aps.56.4420
    [20] 黄 萍, 朱正和. CrHn(n=0,+1,+2)分子及离子的势能函数. 物理学报, 2006, 55(12): 6302-6307. doi: 10.7498/aps.55.6302
计量
  • 文章访问数:  2734
  • PDF下载量:  425
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-01-09
  • 修回日期:  2014-04-02
  • 刊出日期:  2014-06-05

SiS低激发态势能曲线和光谱性质的全电子组态相互作用方法研究

  • 1. 齐齐哈尔大学理学院, 齐齐哈尔 161006;
  • 2. 吉林大学原子与分子物理研究所, 长春 130012
    基金项目: 国家自然科学基金(批准号:11074095,11274140)、齐齐哈尔市科学技术计划项目(批准号:GYGG-201209-1)和黑龙江省自然基金(批准号:F201335)资助的课题.

摘要: 基于全电子的相关一致极化4-(aug-cc-pwCVQZ-DK)基组,采用高精度的多参考组态相互作用方法计算了SiS自由基与最低的解离极限Si(3Pg)+S(3Pg)对应的18个-S电子态的势能曲线. 计算中考虑了标量相对论效应以及Si(2s22p6)和S(2s22p6)内壳层电子产生的关联效应. 基于计算的势能曲线,拟合出了束缚态的光谱参数,包括平衡核间距Re,绝热激发能Te,振动常数e和ee,平衡转动常数Be;并分析了束缚态在不同键长位置处的电子组态. 计算了18个-S态的电偶极矩函数,阐明了电子态的组态变化对电偶极矩的影响. 给出了包含b3和A1态的自旋-轨道矩阵元随核间距变化的曲线,分析了邻近的电子激发态对b3和A1态的扰动. 计算了A1-X1+和E1+X1+跃迁的跃迁偶极矩和Franck-Condon因子,讨论了A1和E1+的最低五个振动能级的辐射寿命.

English Abstract

参考文献 (36)

目录

    /

    返回文章
    返回