搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

自驱动柔性生物医学传感器的研究进展

谈溥川 赵超超 樊瑜波 李舟

引用本文:
Citation:

自驱动柔性生物医学传感器的研究进展

谈溥川, 赵超超, 樊瑜波, 李舟

Research progress of self-powered flexible biomedical sensors

Tan Pu-Chuan, Zhao Chao-Chao, Fan Yu-Bo, Li Zhou
PDF
HTML
导出引用
  • 柔性传感器是生物医学领域的研究热点, 受到了广泛的关注. 然而, 柔性传感器需要外部电池供能, 续航时间短, 这成为了制约其发展的瓶颈. 自驱动电子器件概念的提出, 为解决续航问题提供了重要思路. 本文梳理了自驱动柔性生物医学传感器的最新研究进展, 从原理、材料、器件和生物医学应用等角度出发, 概述了不同自驱动技术在人体生理信号传感方面的技术特点与研究现状, 重点介绍了部分穿戴式和植入式自驱动柔性传感器在人体的呼吸、脉搏、温度监测和人工感觉器官中的代表性研究工作. 最后, 本文还对自驱动柔性生物医学传感器当前的挑战和未来的发展趋势进行了展望和总结.
    In recent years, flexible biomedical sensors have received extensive attention and achieved great development. However, the battery life of flexible biomedical sensors is limited, which has become a bottleneck restricting the development of flexible biomedical sensors. The concept of self-powered flexible biomedical sensor provides an important idea for solving battery life problem. This review summarizes the research progress of self-powered flexible biomedical sensors over the years. Besides, this review discusses several self-powered flexible biomedical sensors based on different power generation technologies and different materials, as well as their respective advantages and scope of application. Further, some representative research works are selected and discussed in detail. Self-powered flexible biomedical sensors can be divided into wearable self-powered flexible biomedical sensors and implantable self-powered flexible biomedical sensors according to their working positions, which can be used to collect important physiological indicators such as human respiration, pulse, temperature, etc. Finally, this paper also predicts and evaluates the future research direction of self-powered flexible biomedical sensors.
      通信作者: 樊瑜波, yubofan@buaa.edu.cn ; 李舟, zli@binn.cas.cn
    • 基金项目: 国家级-国家重点研发计划(2016YFA0202703)
      Corresponding author: Fan Yu-Bo, yubofan@buaa.edu.cn ; Li Zhou, zli@binn.cas.cn
    [1]

    Zhao L M, Li H, Meng J P, Li Z 2020 Infomat. 2 212Google Scholar

    [2]

    Lou Z, Li L, Wang L L, Shen G Z 2017 Small 13 1791Google Scholar

    [3]

    Liu Z, Li H, Shi B J, Fan Y B, Wang Z L, Li Z 2019 Adv. Funct. Mater. 29 8820Google Scholar

    [4]

    Hong Y, Cheng X L, Liu G J, Hong D S, He S S, Wang B J, Sun X M, Peng H S 2019 Chin. J. Polym. Sci. 37 737Google Scholar

    [5]

    Shi B J, Liu Z, Zheng Q, Meng J P, Ouyang H, Zou Y, Jiang D J, Qu X C, Yu M, Zhao L M, Fan Y B, Wang Z L, Li Z 2019 ACS Nano 13 6017Google Scholar

    [6]

    Xu J, Ku Z L, Zhang Y Q, Chao D L, Fan H J 2016 Adv. Mater. Technol-Us 1 74Google Scholar

    [7]

    Jinno H, Fukuda K, Xu X M, Park S, Suzuki Y, Koizumi M, Yokota T, Osaka I, Takimiya K, Someya T 2017 Nat Energy 2 780Google Scholar

    [8]

    Wang X, Wang S, Yang Y, Wang Z L 2015 ACS Nano 9 4553Google Scholar

    [9]

    Bandodkar A J, Wang J 2016 Electroanalysis 28 1188Google Scholar

    [10]

    Leonov V, Van Hoof C, Vullers R J M 2009 Sixth International Workshop on Wearable and Implantable Body Sensor Networks, Berkeley, CA, USA, June 3–5, 2009 195

    [11]

    Cha S, Kim S M, Kim H, Ku J, Sohn J I, Park Y J, Song B G, Jung M H, Lee E K, Choi B L, Park J J, Wang Z L, Kim J M, Kim K 2011 Nano Lett. 11 5142Google Scholar

    [12]

    Tan P C, Zheng Q, Zou Y, Shi B J, Jiang D J, Qu X C, Ouyang H, Zhao C C, Cao Y, Fan Y B, Wang Z L, Li Z 2019 Adv. Energy Mater. 9 1875Google Scholar

    [13]

    Zhang Z T, Li X Y, Guan G Z, Pan S W, Zhu Z J, Ren D Y, Peng H S 2014 Angew. Chem. Int. Edit. 53 11571Google Scholar

    [14]

    Chai Z S, Zhang N N, Sun P, Huang Y, Zhao C X, Fang H J, Fan X, Mai W J 2016 ACS Nano 10 9201Google Scholar

    [15]

    Chen X Q, Dai W, Wu T, Luo W, Yang J P, Jiang W, Wang L J 2018 Coatings 8 244Google Scholar

    [16]

    Du Y, Cai K F, Chen S, Wang H X, Shen S Z, Donelson R, Lin T 2015 Sci. Rep-Uk 5 6411Google Scholar

    [17]

    Zou Y, Tan P C, Shi B J, Ouyang H, Jiang D J, Liu Z, Li H, Yu M, Wang C, Qu X C, Zhao L M, Fan Y B, Wang Z L, Li Z 2019 Nat. Commun. 10 2695Google Scholar

    [18]

    Gao L B, Song J, Surjadi J U, Cao K, Han Y, Sun D, Tao X M, Lu Y 2018 ACS Appl. Mater. Inter. 10 28597Google Scholar

    [19]

    Chen Y, Zhang Y, Yuan F F, Ding F, Schmidt O G 2017 Adv. Electron. Mater. 3 540Google Scholar

    [20]

    Zhao C C, Feng H Q, Zhang L J, Li Z, Zou Y, Tan P C, Ouyang H, Jiang D J, Yu M, Wang C, Li H, Xu L L, Wei W, Li Z 2019 Adv. Funct. Mater. 29 8640Google Scholar

    [21]

    Chen B D, Tang W, Jiang T, Zhu L P, Chen X Y, He C, Xu L, Guo H Y, Lin P, Li D, Shao J J, Wang Z L 2018 Nano Energy 45 380Google Scholar

    [22]

    Lin Z M, Wu Z Y, Zhang B B, Wang Y C, Guo H Y, Liu G L, Chen C Y, Chen Y L, Yang J, Wang Z L 2019 Adv. Mater. Technol-Us 4 360Google Scholar

    [23]

    Qu W M, Plotner M, Fischer W J 2001 J. Micromech. Microeng. 11 146Google Scholar

    [24]

    Jiang D, Shi B, Ouyang H, Fan Y, Wang Z L, Li Z 2020 ACS Nano 14 6436Google Scholar

    [25]

    Sun J, Yang A, Zhao C, Liu F, Li Z 2019 Sci. Bull. 64 1336Google Scholar

    [26]

    Shen D Z, Xiao M, Zou G S, Liu L, Duley W W, Zhou Y N 2018 Adv. Mater. 30 5925Google Scholar

    [27]

    Wu W W, Haick H 2018 Adv. Mater. 30 5024Google Scholar

    [28]

    Liu Z, Zhang S, Jin Y M, Ouyang H, Zou Y, Wang X X, Xie L X, Li Z 2017 Semicond. Sci. Tech. 32 64004Google Scholar

    [29]

    Li Z, Zheng Q, Wang Z L, Li Z 2020 Research 25Google Scholar

    [30]

    Ji D, Shi Z, Liu Z, Low S S, Zhu J, Zhang T, Chen Z, Yu X, Lu Y, Lu D, Liu Q 2020 Smart Materials in Medicine 1 1Google Scholar

    [31]

    Lou Z, Wang L L, Shen G Z 2018 Adv. Mater. Technol-Us 3 444Google Scholar

    [32]

    Zheng Q, Jin Y M, Liu Z, Ouyang H, Li H, Shi B J, Jiang W, Zhang H, Li Z, Wang Z L 2016 ACS Appl. Mater. Inter. 8 26697Google Scholar

    [33]

    Yu X, Fu Y P, Cai X, Kafafy H, Wu H W, Peng M, Hou S C, Lv Z B, Ye S Y, Zou D C 2013 Nano Energy 2 1242Google Scholar

    [34]

    Zhang Y, Liu Y, Wang Z L 2011 Adv. Mater. 23 3004Google Scholar

    [35]

    Li Z, Zhu G, Yang R S, Wang A C, Wang Z L 2010 Adv. Mater. 22 2534Google Scholar

    [36]

    Fan F R, Tang W, Wang Z L 2016 Adv. Mater. 28 4283Google Scholar

    [37]

    Nguyen V, Zhu R, Yang R S 2015 Nano Energy 14 49Google Scholar

    [38]

    Kwak S S, Kim H, Seung W, Kim J, Hinchet R, Kim S W 2017 ACS Nano 11 10733Google Scholar

    [39]

    Zheng Q, Shi B J, Fan F R, Wang X X, Yan L, Yuan W W, Wang S H, Liu H, Li Z, Wang Z L 2014 Adv. Mater. 26 5851Google Scholar

    [40]

    Zhang D, Zhang K W, Wang Y M, Wang Y H, Yang Y 2019 Nano Energy 56 25Google Scholar

    [41]

    Uchida K, Takahashi S, Harii K, Ieda J, Koshibae W, Ando K, Maekawa S, Saitoh E 2008 Nature 455 778Google Scholar

    [42]

    We J H, Kim S J, Cho B J 2014 Energy 73 506Google Scholar

    [43]

    Whatmore R W 1986 Rep. Prog. Phys. 49 1335Google Scholar

    [44]

    Feng R, Tang F, Zhang N, Wang X H 2019 ACS Appl. Mater. Inter. 11 38616Google Scholar

    [45]

    Zhang D, Song Y D, Ping L, Xu S W, Yang D, Wang Y H, Yang Y 2019 Nano Res. 12 2982Google Scholar

    [46]

    Xue H, Yang Q, Wang D, Luo W, Wang W, Lin M, Liang D, Luo Q 2017 Nano Energy 38 147Google Scholar

    [47]

    Wen Z, Chen J, Yeh M H, Guo H, Li Z, Fan X, Zhang T, Zhu L, Wang Z L 2015 Nano Energy 16 38Google Scholar

    [48]

    Lin Z M, Chen J, Li X S, Zhou Z H, Meng K Y, Wei W, Yang J, Wang Z L 2017 ACS Nano 11 8830Google Scholar

    [49]

    Ma Y, Zheng Q, Liu Y, Shi B J, Xue X, Ji W P, Liu Z, Jin Y M, Zou Y, Zhao A, Zhang W, Wang X X, Jiang W, Xun Z Y, Wang Z L, Li Z, Zhang H 2016 Nano Lett. 16 6042Google Scholar

    [50]

    Ouyang H, Tian J J, Sun G L, Zou Y, Liu Z, Li H, Zhao L M, Shi B J, Fan Y B, Fan Y F, Wang Z L, Li Z 2017 Adv. Mater. 29 3456Google Scholar

    [51]

    Park S, Heo S W, Lee W, Inoue D, Jiang Z, Yu K, Jinno H, Hashizume D, Sekino Masaki, Yokota T, Fukuda K, Tajima K, Someya T 2018 Nature 561 516Google Scholar

    [52]

    Yang Y, Zhou Y S, Wu J M, Wang Z L 2012 ACS Nano 6 8456Google Scholar

    [53]

    Zhang F, Zang Y, Huang D, Di C A, Zhu D 2015 Nat. Commun. 6 8356Google Scholar

    [54]

    Yang Y, Zhang H L, Lin Z H, Zhou Y S, Jing Q S, Su Y J, Yang J, Chen J, Hu C G, Wang Z L 2013 ACS Nano 7 9213Google Scholar

    [55]

    Pu X J, Guo H Y, Tang Q, Chen J, Feng L, Liu G L, Wang X, Xi Y, Hu C G, Wang Z L 2018 Nano Energy 54 453Google Scholar

    [56]

    Chen H T, Song Y, Cheng X L, Zhang H X 2019 Nano Energy 56 252Google Scholar

    [57]

    Han W, He H, Zhang L, Dong C, Zeng H, Dai Y, Xing L, Zhang Y, Xue X 2017 ACS Appl. Mater. Inter. 9 29526Google Scholar

    [58]

    Chen T, Shi Q F, Zhu M L, He T Y Y, Sun L N, Yang L, Lee C 2018 ACS Nano 12 11561Google Scholar

    [59]

    Guo H Y, Pu X J, Chen J, Meng Y, Yeh M H, Liu G L, Tang Q, Chen B D, Liu D, Qi S, Wu C S, Hu C G, Wang J, Wang Z L 2018 Sci. Robot. 3 2516Google Scholar

    [60]

    Wang X D, Zhang Y F, Zhang X J, Huo Z H, Li X Y, Que M L, Peng Z C, Wang H, Pan C F 2018 Adv. Mater. 30 6738Google Scholar

    [61]

    Zhong T Y, Zhang M Y, Fu Y M, Han Y C, Guan H Y, He H X, Zhao T M, Xing L L, Xue X Y, Zhang Y, Zhan Y 2019 Nano Energy 63 103884Google Scholar

    [62]

    Jiang X Z, Sun Y J, Fan Z Y, Zhang T Y 2016 ACS Nano 10 7696Google Scholar

    [63]

    Chen J X, Wen H J, Zhang G L, Lei F, Feng Q, Liu Y, Cao X D, Dong H 2020 ACS Appl. Mater. Inter. 12 67565Google Scholar

    [64]

    Meng K, Zhao S, Zhou Y, Wu Y, Zhang S, He Q, Wang X, Zhou Z, Fan W, Tan X, Yang J, Chen J 2020 Matter 2 896Google Scholar

    [65]

    Niu S M, Matsuhisa N, Beker L, Li J X, Wang S H, Wang J C, Jiang Y W, Yan X Z, Yun Y, Burnett W, Poon A S Y, Tok J B, Chen X D, Bao Z N 2019 Nat. Electron. 2 361Google Scholar

    [66]

    Yu X G, Xie Z Q, Yu Y, Lee J, Vazquez-Guardado A, Luan H W, Ruban J, Ning X, Akhtar A, Li D F, Ji B W, Liu Y M, Sun R J, Cao J Y, Huo Q Z, Zhong Y S, Lee C, Kim S, Gutruf P, Zhang C X, Xue Y G, Guo Q L, Chempakasseril A, Tian P L, Lu W, Jeong J, Yu Y, Cornman J, Tan C, Kim B, Lee K, Feng X, Huang Y G, Rogers J 2019 Nature 476 575Google Scholar

    [67]

    Dhanabalan S C, Dhanabalan B, Chen X, Ponraj J S, Zhang H 2019 Nanoscale 11 3046Google Scholar

    [68]

    Cao Y, Morrissey T G, Acome E, Allec S I, Wong B M, Keplinger C, Wang C 2018 Adv. Mater. 29 5099Google Scholar

  • 图 1  自驱动柔性生物医学传感器的设计思路 (a)主动式生物医学传感器直接收集各种生理信号并转化为电信号; (b)能源式生物医学传感器收集能量再为商用传感器提供能量

    Fig. 1.  Design concept of self-powered flexible biomedical sensor: (a) Active biomedical sensors directly collect various physiological signals and convert them into electrical signals; (b) energy-type biomedical sensors collect energy and provide energy for commercial sensors.

    图 2  压电纳米发电机的工作原理[34] (a) ZnO的晶体结构模型; (b) ZnO纳米线的压电势; (c) ZnO纳米线压电势有限元分析; (d) 压电纳米发电机的发电机制

    Fig. 2.  Working mechanism of piezoelectric nanogenerator[34]: (a) Crystal model of ZnO; (b) piezoelectric potential of ZnO nanowire; (c) finite element analysis of piezoelectric potential of ZnO nanowires; (d) mechanism of piezoelectric nanogenerator.

    图 3  摩擦纳米发电机的4种工作模式[36] (a) 接触分离式摩擦纳米发电机; (b) 滑动式摩擦纳米发电机; (c) 单电极模式摩擦纳米发电机; (d) 独立层式摩擦纳米发电机

    Fig. 3.  Four working modes of triboelectric nanogenerator[36]: (a) Vertical contact separation mode; (b) lateral sliding mode; (c) single-electrode mode; (d) freestanding triboelectric-layer mode.

    图 4  热电发电机的发电原理[41]

    Fig. 4.  Working mechanism of thermoelectric generator based on spin Seebeck effect[41].

    图 5  自驱动柔性呼吸传感器 (a)基于柔性压电纳米发电机的穿戴式自驱动呼吸传感器[27]; (b)与N95口罩集成的热释电可穿戴呼吸传感器[46]; (c)基于摩擦纳米发电机的主动式酒精呼吸分析仪[47]

    Fig. 5.  Self-powered flexible respiratory sensor: (a) Wearable self-powered active sensor for respiration monitoring based on a flexible piezoelectric nanogenerator[27]; (b) wearable respiration sensor based on a pyroelectric nanogenerator integrated with an N95 respira-tor[46]; (c) blow-driven triboelectric nanogenerator as an active alcohol breath analyzer[47].

    图 6  自驱动柔性脉搏传感器 (a)用于实时生物医学监测的自驱动多功能植入式传感器[49]; (b)基于摩擦电效应的柔性自驱动超灵敏脉搏传感器[50]; (c)基于有机光伏电池的自驱动超柔性生物传感器[51]

    Fig. 6.  Self-powered flexible pulse sensor: (a) Self-powered, one-stop, and multifunctional implantable triboelectric active sensor for real-time biomedical monitoring[49]; (b) flexible self-powered ultrasensitive pulse sensor based on triboelectric effect[50]; (c) self-powered ultra-flexible biosensor based on nanograting-patterned organic photovoltaics[51].

    图 7  自驱动柔性体温传感器 (a)基于热释电发电机的自驱动温度传感器[52]; (b)由热电材料制成的自驱动温度-压力双参数传感器[53]; (c)基于复合发电机的温度传感器系统[8]

    Fig. 7.  Self-powered flexible temperature sensor. (a) Self-powered temperature sensor based on a PyNG[52]; (b) self-powered temperature-pressure dual-parameter sensor fabricated by organic thermoelectric materials[53]; (c) wireless temperature sensor system based on hybridized nanogenerator[8].

    图 8  自驱动柔性人工感觉器官 (a)用于机器人和助听器的自驱动听觉传感器[59]; (b)用于可穿戴电子设备的自驱动触觉传感器[60]; (c)用于智能嗅觉替换的摩擦电-脑-行为闭环[61]

    Fig. 8.  Self-powered flexible artificial sense organ: (a) Self-powered triboelectric auditory sensor for social robotics and hearing aids[59]; (b) self-powered triboelectric tactile sensor with metallized nanofibers for wearable electronics[60]; (c) an artificial triboelectricity-brain-behavior closed loop for intelligent olfactory substitution[61].

    图 9  自驱动柔性生物传感器的重要研究方向 (a)多功能的传感系统[63]; (b)无线信号传输[65]; (c)柔性人机界面[66]

    Fig. 9.  Core research directions of self-powered flexible biomedical sensor: (a) Multifunctional sensing system[63]; (b) wireless signal transmission[65]; (c) flexible man-machine interface[66].

  • [1]

    Zhao L M, Li H, Meng J P, Li Z 2020 Infomat. 2 212Google Scholar

    [2]

    Lou Z, Li L, Wang L L, Shen G Z 2017 Small 13 1791Google Scholar

    [3]

    Liu Z, Li H, Shi B J, Fan Y B, Wang Z L, Li Z 2019 Adv. Funct. Mater. 29 8820Google Scholar

    [4]

    Hong Y, Cheng X L, Liu G J, Hong D S, He S S, Wang B J, Sun X M, Peng H S 2019 Chin. J. Polym. Sci. 37 737Google Scholar

    [5]

    Shi B J, Liu Z, Zheng Q, Meng J P, Ouyang H, Zou Y, Jiang D J, Qu X C, Yu M, Zhao L M, Fan Y B, Wang Z L, Li Z 2019 ACS Nano 13 6017Google Scholar

    [6]

    Xu J, Ku Z L, Zhang Y Q, Chao D L, Fan H J 2016 Adv. Mater. Technol-Us 1 74Google Scholar

    [7]

    Jinno H, Fukuda K, Xu X M, Park S, Suzuki Y, Koizumi M, Yokota T, Osaka I, Takimiya K, Someya T 2017 Nat Energy 2 780Google Scholar

    [8]

    Wang X, Wang S, Yang Y, Wang Z L 2015 ACS Nano 9 4553Google Scholar

    [9]

    Bandodkar A J, Wang J 2016 Electroanalysis 28 1188Google Scholar

    [10]

    Leonov V, Van Hoof C, Vullers R J M 2009 Sixth International Workshop on Wearable and Implantable Body Sensor Networks, Berkeley, CA, USA, June 3–5, 2009 195

    [11]

    Cha S, Kim S M, Kim H, Ku J, Sohn J I, Park Y J, Song B G, Jung M H, Lee E K, Choi B L, Park J J, Wang Z L, Kim J M, Kim K 2011 Nano Lett. 11 5142Google Scholar

    [12]

    Tan P C, Zheng Q, Zou Y, Shi B J, Jiang D J, Qu X C, Ouyang H, Zhao C C, Cao Y, Fan Y B, Wang Z L, Li Z 2019 Adv. Energy Mater. 9 1875Google Scholar

    [13]

    Zhang Z T, Li X Y, Guan G Z, Pan S W, Zhu Z J, Ren D Y, Peng H S 2014 Angew. Chem. Int. Edit. 53 11571Google Scholar

    [14]

    Chai Z S, Zhang N N, Sun P, Huang Y, Zhao C X, Fang H J, Fan X, Mai W J 2016 ACS Nano 10 9201Google Scholar

    [15]

    Chen X Q, Dai W, Wu T, Luo W, Yang J P, Jiang W, Wang L J 2018 Coatings 8 244Google Scholar

    [16]

    Du Y, Cai K F, Chen S, Wang H X, Shen S Z, Donelson R, Lin T 2015 Sci. Rep-Uk 5 6411Google Scholar

    [17]

    Zou Y, Tan P C, Shi B J, Ouyang H, Jiang D J, Liu Z, Li H, Yu M, Wang C, Qu X C, Zhao L M, Fan Y B, Wang Z L, Li Z 2019 Nat. Commun. 10 2695Google Scholar

    [18]

    Gao L B, Song J, Surjadi J U, Cao K, Han Y, Sun D, Tao X M, Lu Y 2018 ACS Appl. Mater. Inter. 10 28597Google Scholar

    [19]

    Chen Y, Zhang Y, Yuan F F, Ding F, Schmidt O G 2017 Adv. Electron. Mater. 3 540Google Scholar

    [20]

    Zhao C C, Feng H Q, Zhang L J, Li Z, Zou Y, Tan P C, Ouyang H, Jiang D J, Yu M, Wang C, Li H, Xu L L, Wei W, Li Z 2019 Adv. Funct. Mater. 29 8640Google Scholar

    [21]

    Chen B D, Tang W, Jiang T, Zhu L P, Chen X Y, He C, Xu L, Guo H Y, Lin P, Li D, Shao J J, Wang Z L 2018 Nano Energy 45 380Google Scholar

    [22]

    Lin Z M, Wu Z Y, Zhang B B, Wang Y C, Guo H Y, Liu G L, Chen C Y, Chen Y L, Yang J, Wang Z L 2019 Adv. Mater. Technol-Us 4 360Google Scholar

    [23]

    Qu W M, Plotner M, Fischer W J 2001 J. Micromech. Microeng. 11 146Google Scholar

    [24]

    Jiang D, Shi B, Ouyang H, Fan Y, Wang Z L, Li Z 2020 ACS Nano 14 6436Google Scholar

    [25]

    Sun J, Yang A, Zhao C, Liu F, Li Z 2019 Sci. Bull. 64 1336Google Scholar

    [26]

    Shen D Z, Xiao M, Zou G S, Liu L, Duley W W, Zhou Y N 2018 Adv. Mater. 30 5925Google Scholar

    [27]

    Wu W W, Haick H 2018 Adv. Mater. 30 5024Google Scholar

    [28]

    Liu Z, Zhang S, Jin Y M, Ouyang H, Zou Y, Wang X X, Xie L X, Li Z 2017 Semicond. Sci. Tech. 32 64004Google Scholar

    [29]

    Li Z, Zheng Q, Wang Z L, Li Z 2020 Research 25Google Scholar

    [30]

    Ji D, Shi Z, Liu Z, Low S S, Zhu J, Zhang T, Chen Z, Yu X, Lu Y, Lu D, Liu Q 2020 Smart Materials in Medicine 1 1Google Scholar

    [31]

    Lou Z, Wang L L, Shen G Z 2018 Adv. Mater. Technol-Us 3 444Google Scholar

    [32]

    Zheng Q, Jin Y M, Liu Z, Ouyang H, Li H, Shi B J, Jiang W, Zhang H, Li Z, Wang Z L 2016 ACS Appl. Mater. Inter. 8 26697Google Scholar

    [33]

    Yu X, Fu Y P, Cai X, Kafafy H, Wu H W, Peng M, Hou S C, Lv Z B, Ye S Y, Zou D C 2013 Nano Energy 2 1242Google Scholar

    [34]

    Zhang Y, Liu Y, Wang Z L 2011 Adv. Mater. 23 3004Google Scholar

    [35]

    Li Z, Zhu G, Yang R S, Wang A C, Wang Z L 2010 Adv. Mater. 22 2534Google Scholar

    [36]

    Fan F R, Tang W, Wang Z L 2016 Adv. Mater. 28 4283Google Scholar

    [37]

    Nguyen V, Zhu R, Yang R S 2015 Nano Energy 14 49Google Scholar

    [38]

    Kwak S S, Kim H, Seung W, Kim J, Hinchet R, Kim S W 2017 ACS Nano 11 10733Google Scholar

    [39]

    Zheng Q, Shi B J, Fan F R, Wang X X, Yan L, Yuan W W, Wang S H, Liu H, Li Z, Wang Z L 2014 Adv. Mater. 26 5851Google Scholar

    [40]

    Zhang D, Zhang K W, Wang Y M, Wang Y H, Yang Y 2019 Nano Energy 56 25Google Scholar

    [41]

    Uchida K, Takahashi S, Harii K, Ieda J, Koshibae W, Ando K, Maekawa S, Saitoh E 2008 Nature 455 778Google Scholar

    [42]

    We J H, Kim S J, Cho B J 2014 Energy 73 506Google Scholar

    [43]

    Whatmore R W 1986 Rep. Prog. Phys. 49 1335Google Scholar

    [44]

    Feng R, Tang F, Zhang N, Wang X H 2019 ACS Appl. Mater. Inter. 11 38616Google Scholar

    [45]

    Zhang D, Song Y D, Ping L, Xu S W, Yang D, Wang Y H, Yang Y 2019 Nano Res. 12 2982Google Scholar

    [46]

    Xue H, Yang Q, Wang D, Luo W, Wang W, Lin M, Liang D, Luo Q 2017 Nano Energy 38 147Google Scholar

    [47]

    Wen Z, Chen J, Yeh M H, Guo H, Li Z, Fan X, Zhang T, Zhu L, Wang Z L 2015 Nano Energy 16 38Google Scholar

    [48]

    Lin Z M, Chen J, Li X S, Zhou Z H, Meng K Y, Wei W, Yang J, Wang Z L 2017 ACS Nano 11 8830Google Scholar

    [49]

    Ma Y, Zheng Q, Liu Y, Shi B J, Xue X, Ji W P, Liu Z, Jin Y M, Zou Y, Zhao A, Zhang W, Wang X X, Jiang W, Xun Z Y, Wang Z L, Li Z, Zhang H 2016 Nano Lett. 16 6042Google Scholar

    [50]

    Ouyang H, Tian J J, Sun G L, Zou Y, Liu Z, Li H, Zhao L M, Shi B J, Fan Y B, Fan Y F, Wang Z L, Li Z 2017 Adv. Mater. 29 3456Google Scholar

    [51]

    Park S, Heo S W, Lee W, Inoue D, Jiang Z, Yu K, Jinno H, Hashizume D, Sekino Masaki, Yokota T, Fukuda K, Tajima K, Someya T 2018 Nature 561 516Google Scholar

    [52]

    Yang Y, Zhou Y S, Wu J M, Wang Z L 2012 ACS Nano 6 8456Google Scholar

    [53]

    Zhang F, Zang Y, Huang D, Di C A, Zhu D 2015 Nat. Commun. 6 8356Google Scholar

    [54]

    Yang Y, Zhang H L, Lin Z H, Zhou Y S, Jing Q S, Su Y J, Yang J, Chen J, Hu C G, Wang Z L 2013 ACS Nano 7 9213Google Scholar

    [55]

    Pu X J, Guo H Y, Tang Q, Chen J, Feng L, Liu G L, Wang X, Xi Y, Hu C G, Wang Z L 2018 Nano Energy 54 453Google Scholar

    [56]

    Chen H T, Song Y, Cheng X L, Zhang H X 2019 Nano Energy 56 252Google Scholar

    [57]

    Han W, He H, Zhang L, Dong C, Zeng H, Dai Y, Xing L, Zhang Y, Xue X 2017 ACS Appl. Mater. Inter. 9 29526Google Scholar

    [58]

    Chen T, Shi Q F, Zhu M L, He T Y Y, Sun L N, Yang L, Lee C 2018 ACS Nano 12 11561Google Scholar

    [59]

    Guo H Y, Pu X J, Chen J, Meng Y, Yeh M H, Liu G L, Tang Q, Chen B D, Liu D, Qi S, Wu C S, Hu C G, Wang J, Wang Z L 2018 Sci. Robot. 3 2516Google Scholar

    [60]

    Wang X D, Zhang Y F, Zhang X J, Huo Z H, Li X Y, Que M L, Peng Z C, Wang H, Pan C F 2018 Adv. Mater. 30 6738Google Scholar

    [61]

    Zhong T Y, Zhang M Y, Fu Y M, Han Y C, Guan H Y, He H X, Zhao T M, Xing L L, Xue X Y, Zhang Y, Zhan Y 2019 Nano Energy 63 103884Google Scholar

    [62]

    Jiang X Z, Sun Y J, Fan Z Y, Zhang T Y 2016 ACS Nano 10 7696Google Scholar

    [63]

    Chen J X, Wen H J, Zhang G L, Lei F, Feng Q, Liu Y, Cao X D, Dong H 2020 ACS Appl. Mater. Inter. 12 67565Google Scholar

    [64]

    Meng K, Zhao S, Zhou Y, Wu Y, Zhang S, He Q, Wang X, Zhou Z, Fan W, Tan X, Yang J, Chen J 2020 Matter 2 896Google Scholar

    [65]

    Niu S M, Matsuhisa N, Beker L, Li J X, Wang S H, Wang J C, Jiang Y W, Yan X Z, Yun Y, Burnett W, Poon A S Y, Tok J B, Chen X D, Bao Z N 2019 Nat. Electron. 2 361Google Scholar

    [66]

    Yu X G, Xie Z Q, Yu Y, Lee J, Vazquez-Guardado A, Luan H W, Ruban J, Ning X, Akhtar A, Li D F, Ji B W, Liu Y M, Sun R J, Cao J Y, Huo Q Z, Zhong Y S, Lee C, Kim S, Gutruf P, Zhang C X, Xue Y G, Guo Q L, Chempakasseril A, Tian P L, Lu W, Jeong J, Yu Y, Cornman J, Tan C, Kim B, Lee K, Feng X, Huang Y G, Rogers J 2019 Nature 476 575Google Scholar

    [67]

    Dhanabalan S C, Dhanabalan B, Chen X, Ponraj J S, Zhang H 2019 Nanoscale 11 3046Google Scholar

    [68]

    Cao Y, Morrissey T G, Acome E, Allec S I, Wong B M, Keplinger C, Wang C 2018 Adv. Mater. 29 5099Google Scholar

  • [1] 李雨凡, 薛文清, 李玉超, 战艳虎, 谢倩, 李艳凯, 查俊伟. 三明治结构柔性储能电介质材料研究进展. 物理学报, 2024, 73(2): 027702. doi: 10.7498/aps.73.20230614
    [2] 王辉, 郑德旭, 姜箫, 曹越先, 杜敏永, 王开, 刘生忠, 张春福. 基于协同钝化策略制备高性能柔性钙钛矿太阳能电池. 物理学报, 2024, 73(7): 078401. doi: 10.7498/aps.73.20231846
    [3] 杜立杰, 陈靖雯, 王荣明. 基于C14H31O3P-Ti3C2/Au肖特基结的自驱动近红外探测器. 物理学报, 2023, 72(13): 138502. doi: 10.7498/aps.72.20230480
    [4] 张嘉伟, 姚鸿博, 张远征, 蒋伟博, 吴永辉, 张亚菊, 敖天勇, 郑海务. 通过机器学习实现基于摩擦纳米发电机的自驱动智能传感及其应用. 物理学报, 2022, 71(7): 078702. doi: 10.7498/aps.71.20211632
    [5] 陈乐迪, 范仁浩, 刘雨, 唐贡惠, 马中丽, 彭茹雯, 王牧. 基于柔性超构材料宽带调控太赫兹波的偏振态. 物理学报, 2022, 71(18): 187802. doi: 10.7498/aps.71.20220801
    [6] 张福建, 陈悦, 高翔, 刘珍, 张忠强. 楔形铜基底-单层石墨烯覆层表面液滴自驱动研究. 物理学报, 2021, 70(20): 200202. doi: 10.7498/aps.70.20210905
    [7] 玄鑫淼, 王加恒, 毛彦琦, 叶利娟, 张红, 李泓霖, 熊元强, 范嗣强, 孔春阳, 李万俊. 基于云母衬底生长的非晶Ga2O3柔性透明日盲紫外光探测器研究. 物理学报, 2021, 70(23): 238502. doi: 10.7498/aps.70.20211039
    [8] 王闯, 鲍容容, 潘曹峰. 基于纳米发电机的触觉传感在柔性可穿戴电子设备中的研究与应用. 物理学报, 2021, 70(10): 100705. doi: 10.7498/aps.70.20202157
    [9] 李闯, 李伟伟, 蔡理, 谢丹, 刘保军, 向兰, 杨晓阔, 董丹娜, 刘嘉豪, 陈亚博. 基于银纳米线电极-rGO敏感材料的柔性NO2气体传感器. 物理学报, 2020, 69(5): 058101. doi: 10.7498/aps.69.20191390
    [10] 申茂良, 张岩. 基于压电纳米发电机的柔性传感与能量存储器件. 物理学报, 2020, 69(17): 170701. doi: 10.7498/aps.69.20200784
    [11] 钟婷婷, 吴梦昊. 二维层间滑移铁电研究进展. 物理学报, 2020, 69(21): 217707. doi: 10.7498/aps.69.20201432
    [12] 蓝顺, 潘豪, 林元华. 柔性无机铁电薄膜的制备及其应用. 物理学报, 2020, 69(21): 217708. doi: 10.7498/aps.69.20201365
    [13] 张红, 宗奕吾, 杨明成, 赵坤. 自驱动的Janus微球在具有不同障碍物的表面上的运动行为研究. 物理学报, 2019, 68(13): 134702. doi: 10.7498/aps.68.20190711
    [14] 熊开欣, 席昆, 鲍磊, 张忠良, 谭志杰. 脱氧核糖核酸柔性的分子动力学模拟:Amber bsc1和bsc0力场的对比研究. 物理学报, 2018, 67(10): 108701. doi: 10.7498/aps.67.20180326
    [15] 王海峰, 李旺, 顾国彪, 沈俊, 滕启治. 风力发电机自循环蒸发内冷系统稳定性的研究. 物理学报, 2016, 65(3): 030501. doi: 10.7498/aps.65.030501
    [16] 刘海文, 朱爽爽, 文品, 覃凤, 任宝平, 肖湘, 侯新宇. 基于发卡式开口谐振环的柔性双频带超材料. 物理学报, 2015, 64(3): 038101. doi: 10.7498/aps.64.038101
    [17] 崔海航, 谭晓君, 张鸿雁, 陈力. 自驱动Janus微球近壁运动特性实验与数值模拟研究. 物理学报, 2015, 64(13): 134705. doi: 10.7498/aps.64.134705
    [18] 娄利飞, 潘青彪, 吴志华. 基于石墨烯用于微弱能量获取的柔性微结构研究. 物理学报, 2014, 63(15): 158501. doi: 10.7498/aps.63.158501
    [19] 柴玉华, 郭玉秀, 卞伟, 李雯, 杨涛, 仪明东, 范曲立, 解令海, 黄维. 柔性有机非易失性场效应晶体管存储器的研究进展. 物理学报, 2014, 63(2): 027302. doi: 10.7498/aps.63.027302
    [20] 董京, 柴玉华, 赵跃智, 石巍巍, 郭玉秀, 仪明东, 解令海, 黄维. 柔性有机场效应晶体管研究进展. 物理学报, 2013, 62(4): 047301. doi: 10.7498/aps.62.047301
计量
  • 文章访问数:  18828
  • PDF下载量:  712
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-28
  • 修回日期:  2020-07-29
  • 上网日期:  2020-09-03
  • 刊出日期:  2020-09-05

/

返回文章
返回