搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于云母衬底生长的非晶Ga2O3柔性透明日盲紫外光探测器研究

玄鑫淼 王加恒 毛彦琦 叶利娟 张红 李泓霖 熊元强 范嗣强 孔春阳 李万俊

引用本文:
Citation:

基于云母衬底生长的非晶Ga2O3柔性透明日盲紫外光探测器研究

玄鑫淼, 王加恒, 毛彦琦, 叶利娟, 张红, 李泓霖, 熊元强, 范嗣强, 孔春阳, 李万俊

Flexible transparent solar blind ultraviolet photodetector based on amorphous Ga2O3 grown on mica substrate

Xuan Xin-Miao, Wang Jia-Heng, Mao Yan-Qi, Ye Li-Juan, Zhang Hong, Li Hong-Lin, Xiong Yuan-Qiang, Fan Si-Qiang, Kong Chun-Yang, Li Wan-Jun
PDF
HTML
导出引用
  • 基于宽禁带半导体材料氧化镓(Ga2O3)制备日盲深紫外(UV)光电探测器是当前研究的热点课题之一, 但如何制备出高性能的Ga2O3基日盲探测器应用于柔性透明光电子领域仍然存在挑战. 本文采用射频磁控溅射技术在柔性云母衬底上生长了具有高透射率的非晶Ga2O3薄膜. 在此基础之上, 采用铝掺杂氧化锌(AZO)作为电极材料, 制备了非晶Ga2O3薄膜基金属-半导体-金属(MSM)结构的透明日盲深紫外光电探测器, 并系统对比分析了平面状态和多次弯曲后的器件性能. 结果表明, 非晶Ga2O3基透明探测器具有超高的可见光透明度, 并显示出良好的日盲紫外光电特性. 器件在254 nm光照下的响应率为2.69 A/W, 响应和恢复时间为0.14 s/0.31 s. 经过300次机械弯曲后, 器件具有与其平面状态相近的光响应行为, 器件性能没有发生明显的衰减现象, 表现出良好的柔韧性和稳定性. 本工作证实了AZO薄膜可作为下一代柔性和可见光透明的Ga2O3基探测器的电极材料, 并为研制高性能柔性透明日盲深紫外探测器提供一定参考.
    Solar-blind deep-ultraviolet (UV) photodetectors (PDs) based on the super-wide bandgap semiconductor material Ga2O3 is one of the hot topics of current research, but how to prepare high-performance Ga2O3-based solar-blind PDs in the field of flexible and transparent optoelectronics still faces challenges. In this work, an amorphous Ga2O3 film with high transmittance is grown on a flexible mica substrate by using the radio frequency magnetron sputtering technology. On this basis, using AZO as an electrode material, a transparent metal-semiconductor-metal (MSM) structured solar-blind deep ultraviolet photodetector based amorphous Ga2O3 film is fabricated, and the performance of PD in the planar state and after multiple bending are systematically compared and analyzed. The results show that the amorphous Ga2O3 based transparent PD has ultra-high visible light transparency and shows good solar-blind ultraviolet photoelectric characteristics. The responsivity of the PD under 254 nm light is 2.69 A/W, and the response time and the recovery time are 0.14 s and 0.31 s, respectively. After bending 300 times, the PD has a photoresponse behavior similar to its planar state, and the performance of the PD has no obvious attenuation phenomenon, showing good flexibility and stability. This work proves that AZO can be used as the electrode material of the next generation of flexible and visible light transparent Ga2O3 based photodetectors, and provides a reference for developing the high-performance flexible and transparent solar-blind deep ultraviolet photodetectors.
      通信作者: 叶利娟, ylj2592924@163.com ; 李万俊, liwj@cqnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11904041)、重庆市自然科学基金(批准号: cstc2020jcyj-msxmX0557, cstc2019jcyj-msxmX0237)和 重庆市教育委员会科学技术研究项目(批准号: KJQN201900542, KJ1703042)资助的课题
      Corresponding author: Ye Li-Juan, ylj2592924@163.com ; Li Wan-Jun, liwj@cqnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11904041), the Natural Science Foundation of Chongqing, China (Grant Nos. cstc2020jcyj-msxmX0557, cstc2019jcyj-msxmX0237), and the Science and Technology Research Project of Chongqing Education Committee, China (Grant Nos. KJQN201900542, KJ1703042)
    [1]

    Li Y B, Tokizono T, Liao M Y, Zhong M, Koide Y, Yamada I, Delaunay J J 2010 Adv. Funct. Mater. 20 3972Google Scholar

    [2]

    Chen X H, Ren F F, Gu S L, Ye J D 2019 Photonics Res. 7 381Google Scholar

    [3]

    Wang S L, Sun H L, Zeng X H, Ungar D, Guo D Y, Shen J Q, Li A P, Li C R, Tang W H 2019 J. Alloys Compd. 787 133Google Scholar

    [4]

    Guo D Y, Su Y L, Shi H Z, Li P G, Zhao N, Ye J H, Wang S L, Liu A P, Chen Z, Li C R, Tang W H 2018 ACS Nano 12 12827Google Scholar

    [5]

    Li P G, Shi H Z, Chen K, Guo D Y, Cui W, Zhi Y S, Wang S L, Wu Z Z, Chen Z W, Tang W H 2017 J. Mater. Chem. C 5 10562Google Scholar

    [6]

    Chen Y R, Zhang Z W, Jiang H, Li Z M, Miao G Q, Song H 2018 J. Mater. Chem. C. 6 4936Google Scholar

    [7]

    Chen X, Liu K W, Wang X, Li B H, Zhang Z Z, Xie X H, Shen D Z 2017 J. Mater. Chem. C 5 10645Google Scholar

    [8]

    Lu Y J, Lin C N, Shan C X 2018 Adv. Opt. Mater. 6 1800359Google Scholar

    [9]

    Guo D Y, Wu Z P, Li P G, An Y H, Liu H, Guo X C, Yan Y, Wang G F, Sun C L, Li L H, Tang W H 2014 Opt. Mater. Express 4 1067Google Scholar

    [10]

    Kong W Y, Wu G A, Wang K Y, Zhang T F, Zou Y F, Wang D D, Luo L B 2016 Adv. Mater. 28 10725Google Scholar

    [11]

    Luan S Z, Dong L P, Jia R X 2019 J. Cryst. Growth 505 74Google Scholar

    [12]

    Wang J, Ye L J, Wang X, Zhang H, Li L, Kong C, Li W J 2019 J. Alloys Compd. 803 9Google Scholar

    [13]

    Du X J, Li Z, Luan C N, Wang W G, Wang M X, Feng X J, Xiao H D, Ma J 2015 J. Mater. Sci. 50 3252Google Scholar

    [14]

    Pratiyush A S, Krishnamoorthy S, Solanke S V, Xia Z B, Muralidharan R, Rajan S, and Nath B 2017 Appl. Phys. Lett. 110 221107Google Scholar

    [15]

    Chen X H, Han S, Lu Y M, Cao P J, Liu W J, Zeng Y X, Jia F, Xu W Y, Liu X K, Zhu D L 2018 J. Alloys Compd. 747 869Google Scholar

    [16]

    Arora K, Goel N, Kumar M, Kumaret Mal 2018 ACS Photonics 5 2391Google Scholar

    [17]

    Du J Y, Xing J, Ge C, Liu H, Liu P Y, Hao H Y, Dong J J, Zheng Z Y, Gao H 2016 J. Phys. D:Appl. Phys. 49 425105Google Scholar

    [18]

    Chen X H, Ren F F, Ye J D, Gu S L 2020 Semicond. Sci. Technol. 35 023001Google Scholar

    [19]

    Yadav A, Upadhyaya A, Gupta S K, Verma A S, Negi C M S 2019 AIP Conf. Proc. 2142 150022Google Scholar

    [20]

    Li Z, Xu Y, Zhang J Q, Cheng Y L, Chen D Z, Feng Q, Xu S R, Zhang Y C, Zhang J C, Hao Y, Zhang C F 2019 IEEE Photonics J. 11 1Google Scholar

    [21]

    Xiao S Y, Deng Y, Chen Z Y, Wang Y H, Yu J, Tang W H, Tang W H, Wu Z P 2020 J. Phys. D:Appl. Phys. 53 484004Google Scholar

    [22]

    Lee P, Lee J, Lee H, Yeo J, Hong S, Nam K H, Lee D, Lee S S, Koo S H 2012 Adv. Mater. 24 3326Google Scholar

    [23]

    Huang Z, Ke S, Zhou J, Zhao Y, Huang W. Chen S, Li C 2021 Chin. Phys. B 30 037303Google Scholar

    [24]

    Kumar N, Arora K, Kumar M 2019 J. Phys. D:Appl. Phys. 52 335Google Scholar

    [25]

    Qi H, Xia X, Zhou C, Xiao P, Wang Y, Deng Y 2020 J. Mater. Sci.-Mater. Electron. 31 3042Google Scholar

    [26]

    Taruta S, Ichinose T, Yamaguchi T, Kitajima K 2006 J. Non-cryst. Solids 352 5556Google Scholar

    [27]

    Gao Q, Wu X, Fan Y, Du C 2016 Ceram. Int. 42 6595Google Scholar

    [28]

    Chen Y, Fan L, Fang Q, Xu W, Chen S, Zan G B, Hui R, Li S, Zou C W 2017 Nano Energy. 31 144Google Scholar

    [29]

    Ramana C V, Rubio E J, Barraza C D, Ramana C V, Rubio E J, Barraza C D, Miranda G A, McPeak S, Kotru S, Grant J T 2014 J. Appl. Phys. 115 043508Google Scholar

    [30]

    Wang J, Xiong Y Q, Ye L J, Li W J, Qin G P, Ruan H B, Zhang H, Fang L, Kong C Y, Li H L 2021 Opt. Mater. 112 110808Google Scholar

    [31]

    Manandhar S, Ramana C V 2017 Appl. Phys. Lett. 110 061902Google Scholar

    [32]

    郭道友, 李培刚, 陈政委, 吴 真平, 唐为华 2019 物理学报 68 078501Google Scholar

    Guo D Y, Li P G, Chen Z W, Wu Z P, Tang W H 2019 Act. Phys. Sin. 68 078501Google Scholar

    [33]

    Qian L X, Wu Z H, Zhang Y Y, Lai P T, Liu X Z, Li Y R 2017 ACS Photonics 4 2203Google Scholar

    [34]

    Guo D, Liu H, Li P G, Wu Z P, Wang S L, Cui C, Li C R, Tang W H 2017 ACS Appl. Mater. Interfaces 9 1619Google Scholar

    [35]

    Guo D, Qin X, Lv M, Shi H Z, Su Y L, Yao G S, Wang S L, Li C R, Li P G, Tang W 2017 Electron. Mater. Lett. 13 483Google Scholar

    [36]

    Guo X C, Hao N H, Guo D Y, Wu Z P, An Y H, Chu X L, Li L H, Li P G, Lei M, Tang W H 2016 J. Alloys Compd. 660 136Google Scholar

    [37]

    Shen H, Yin Y, Tian K, Baskaran K, Duan L, Zhao X, Tiwari A 2018 J. Alloys Compd. 766 601Google Scholar

    [38]

    Chen K, He C, Guo D, Wang S L, Chen Z W, Shen J Q, Li P G, Tang W H, 2018 J. Alloys Compd. 755 199Google Scholar

    [39]

    Rafique S, Han L, Zhao H 2017 Phys. Status Solidi A 214 1700063Google Scholar

    [40]

    Oh S, Kim C K, Kim J 2017 ACS Photonics 5 1123Google Scholar

    [41]

    Sun B, Zhang X, Zhou G D, Yu T, Mao S S, Zhu S H, Zhao Y, Xia Y D 2018 J. Colloid Interface Sci. 520 19Google Scholar

    [42]

    Feng W, Wang X, Zhang J, Wang L F, Zheng W, Hu P A, Cao W W, Yang B 2014 J. Mater. Chem. C 2 3254Google Scholar

  • 图 1  柔性衬底云母上沉积的Ga2O3薄膜 (a) XRD图谱; (b) Raman散射光谱; (c) Ga 2p核心能级谱; (d) O 1s核心能级谱; (e) 紫外可见光透射光谱(插图为样品放置于LOGO上的照片); (d) (αhν)2随光子能量(hν)的变化关系

    Fig. 1.  (a) The XRD pattern, (b) Raman scattering spectra, (c) Ga 2p core level spectra, (d) O 1s core level spectra, (e) optical transmittance spectra (the photograph of the as-grown Ga2O3 film is depicted in the inset) and (f) the variation of (αhν)2 with photon energy () of the Ga2O3 film deposited on flexible mica substrate, respectively.

    图 2  平面状态下非晶态Ga2O3薄膜基柔性透明日盲探测器: (a) MSM型器件示意图; (b) 置于LOGO上的实物照片; (c) 在黑暗条件下, 365和254 nm光照下的I-V曲线(对数坐标); (d) 在–0.10−0.15 V偏置电压内的I-V曲线放大图, 插图为5 V偏压下光照强度与光电流之间的关系; (e) 黑暗条件下的能带示意图; (f) 254 nm光照下的能带示意图

    Fig. 2.  (a) The schematic diagram of the MSM photodetector; (b) the photograph of the Ga2O3 PD; (c) I-V characteristics in dark, under 365 and 254 nm illumination (in a logarithmic coordinate); (d) the enlarged view of the I-V characteristics at a bias voltage of –0.10 to 0.15 V, and the inset shows the relationship between the light intensity and photocurrent under 5 V bias; (e) schematic energy band diagrams in dark; (f) schematic energy band diagrams under 254 nm light illumination of the flexible transparent solar-blind photodetector based on amorphous Ga2O3 films deposited on mica substrate, respectively.

    图 3  平面状态下非晶态Ga2O3薄膜基柔性透明日盲探测器 (a) 在254和365 nm光照下的I-t特性曲线; (b) 254 nm光照下的上升/衰减边缘的放大视图和相应的指数拟合

    Fig. 3.  (a) Time-dependence photocurrent characteristics under the 254 and 365 nm illumination; (b) the enlarged view of the rise/decay edges and the corresponding exponential fitting under 254 nm illumination of the flexible transparent solar-blind photodetector based on amorphous Ga2O3 films deposited on mica substrate, respectively.

    图 4  非晶态Ga2O3薄膜基柔性透明日盲探测器在曲率半径 r = 7.5 mm条件下, 经300次弯曲后器件性能 (a) 弯曲实验下柔性装置的原位照片; (b) 在黑暗条件下, 365和254 nm光照下的I-V特性曲线(对数坐标); (c) 光照强度与光电流之间的关系; (d) 在–0.10−0.15 V偏置电压内的I-V特性曲线放大图; (e) 在254和365 nm光照下的I-t特性曲线; (f) 254 nm光照下的上升/衰减边缘的放大视图和相应的指数拟合

    Fig. 4.  (a) An in-situ photograph of the flexible PD under a bending test; (b) I-V characteristics in dark, under 365 and 254 nm illumination (in a logarithmic coordinate); (c) the relationship between the light intensity and photocurrent; (d) the enlarged view of the I-V characteristics at a bias voltage of –0.10 to 0.15 V; (e) time-dependence photocurrent characteristics under the 254 and 365 nm illumination; (f) the enlarged view of the rise/decay edges and the corresponding exponential fitting under 254 nm illumination of the flexible transparent solar-blind photodetector based on amorphous Ga2O3 films after bending 300 cycles with r = 7.5 mm, respectively.

  • [1]

    Li Y B, Tokizono T, Liao M Y, Zhong M, Koide Y, Yamada I, Delaunay J J 2010 Adv. Funct. Mater. 20 3972Google Scholar

    [2]

    Chen X H, Ren F F, Gu S L, Ye J D 2019 Photonics Res. 7 381Google Scholar

    [3]

    Wang S L, Sun H L, Zeng X H, Ungar D, Guo D Y, Shen J Q, Li A P, Li C R, Tang W H 2019 J. Alloys Compd. 787 133Google Scholar

    [4]

    Guo D Y, Su Y L, Shi H Z, Li P G, Zhao N, Ye J H, Wang S L, Liu A P, Chen Z, Li C R, Tang W H 2018 ACS Nano 12 12827Google Scholar

    [5]

    Li P G, Shi H Z, Chen K, Guo D Y, Cui W, Zhi Y S, Wang S L, Wu Z Z, Chen Z W, Tang W H 2017 J. Mater. Chem. C 5 10562Google Scholar

    [6]

    Chen Y R, Zhang Z W, Jiang H, Li Z M, Miao G Q, Song H 2018 J. Mater. Chem. C. 6 4936Google Scholar

    [7]

    Chen X, Liu K W, Wang X, Li B H, Zhang Z Z, Xie X H, Shen D Z 2017 J. Mater. Chem. C 5 10645Google Scholar

    [8]

    Lu Y J, Lin C N, Shan C X 2018 Adv. Opt. Mater. 6 1800359Google Scholar

    [9]

    Guo D Y, Wu Z P, Li P G, An Y H, Liu H, Guo X C, Yan Y, Wang G F, Sun C L, Li L H, Tang W H 2014 Opt. Mater. Express 4 1067Google Scholar

    [10]

    Kong W Y, Wu G A, Wang K Y, Zhang T F, Zou Y F, Wang D D, Luo L B 2016 Adv. Mater. 28 10725Google Scholar

    [11]

    Luan S Z, Dong L P, Jia R X 2019 J. Cryst. Growth 505 74Google Scholar

    [12]

    Wang J, Ye L J, Wang X, Zhang H, Li L, Kong C, Li W J 2019 J. Alloys Compd. 803 9Google Scholar

    [13]

    Du X J, Li Z, Luan C N, Wang W G, Wang M X, Feng X J, Xiao H D, Ma J 2015 J. Mater. Sci. 50 3252Google Scholar

    [14]

    Pratiyush A S, Krishnamoorthy S, Solanke S V, Xia Z B, Muralidharan R, Rajan S, and Nath B 2017 Appl. Phys. Lett. 110 221107Google Scholar

    [15]

    Chen X H, Han S, Lu Y M, Cao P J, Liu W J, Zeng Y X, Jia F, Xu W Y, Liu X K, Zhu D L 2018 J. Alloys Compd. 747 869Google Scholar

    [16]

    Arora K, Goel N, Kumar M, Kumaret Mal 2018 ACS Photonics 5 2391Google Scholar

    [17]

    Du J Y, Xing J, Ge C, Liu H, Liu P Y, Hao H Y, Dong J J, Zheng Z Y, Gao H 2016 J. Phys. D:Appl. Phys. 49 425105Google Scholar

    [18]

    Chen X H, Ren F F, Ye J D, Gu S L 2020 Semicond. Sci. Technol. 35 023001Google Scholar

    [19]

    Yadav A, Upadhyaya A, Gupta S K, Verma A S, Negi C M S 2019 AIP Conf. Proc. 2142 150022Google Scholar

    [20]

    Li Z, Xu Y, Zhang J Q, Cheng Y L, Chen D Z, Feng Q, Xu S R, Zhang Y C, Zhang J C, Hao Y, Zhang C F 2019 IEEE Photonics J. 11 1Google Scholar

    [21]

    Xiao S Y, Deng Y, Chen Z Y, Wang Y H, Yu J, Tang W H, Tang W H, Wu Z P 2020 J. Phys. D:Appl. Phys. 53 484004Google Scholar

    [22]

    Lee P, Lee J, Lee H, Yeo J, Hong S, Nam K H, Lee D, Lee S S, Koo S H 2012 Adv. Mater. 24 3326Google Scholar

    [23]

    Huang Z, Ke S, Zhou J, Zhao Y, Huang W. Chen S, Li C 2021 Chin. Phys. B 30 037303Google Scholar

    [24]

    Kumar N, Arora K, Kumar M 2019 J. Phys. D:Appl. Phys. 52 335Google Scholar

    [25]

    Qi H, Xia X, Zhou C, Xiao P, Wang Y, Deng Y 2020 J. Mater. Sci.-Mater. Electron. 31 3042Google Scholar

    [26]

    Taruta S, Ichinose T, Yamaguchi T, Kitajima K 2006 J. Non-cryst. Solids 352 5556Google Scholar

    [27]

    Gao Q, Wu X, Fan Y, Du C 2016 Ceram. Int. 42 6595Google Scholar

    [28]

    Chen Y, Fan L, Fang Q, Xu W, Chen S, Zan G B, Hui R, Li S, Zou C W 2017 Nano Energy. 31 144Google Scholar

    [29]

    Ramana C V, Rubio E J, Barraza C D, Ramana C V, Rubio E J, Barraza C D, Miranda G A, McPeak S, Kotru S, Grant J T 2014 J. Appl. Phys. 115 043508Google Scholar

    [30]

    Wang J, Xiong Y Q, Ye L J, Li W J, Qin G P, Ruan H B, Zhang H, Fang L, Kong C Y, Li H L 2021 Opt. Mater. 112 110808Google Scholar

    [31]

    Manandhar S, Ramana C V 2017 Appl. Phys. Lett. 110 061902Google Scholar

    [32]

    郭道友, 李培刚, 陈政委, 吴 真平, 唐为华 2019 物理学报 68 078501Google Scholar

    Guo D Y, Li P G, Chen Z W, Wu Z P, Tang W H 2019 Act. Phys. Sin. 68 078501Google Scholar

    [33]

    Qian L X, Wu Z H, Zhang Y Y, Lai P T, Liu X Z, Li Y R 2017 ACS Photonics 4 2203Google Scholar

    [34]

    Guo D, Liu H, Li P G, Wu Z P, Wang S L, Cui C, Li C R, Tang W H 2017 ACS Appl. Mater. Interfaces 9 1619Google Scholar

    [35]

    Guo D, Qin X, Lv M, Shi H Z, Su Y L, Yao G S, Wang S L, Li C R, Li P G, Tang W 2017 Electron. Mater. Lett. 13 483Google Scholar

    [36]

    Guo X C, Hao N H, Guo D Y, Wu Z P, An Y H, Chu X L, Li L H, Li P G, Lei M, Tang W H 2016 J. Alloys Compd. 660 136Google Scholar

    [37]

    Shen H, Yin Y, Tian K, Baskaran K, Duan L, Zhao X, Tiwari A 2018 J. Alloys Compd. 766 601Google Scholar

    [38]

    Chen K, He C, Guo D, Wang S L, Chen Z W, Shen J Q, Li P G, Tang W H, 2018 J. Alloys Compd. 755 199Google Scholar

    [39]

    Rafique S, Han L, Zhao H 2017 Phys. Status Solidi A 214 1700063Google Scholar

    [40]

    Oh S, Kim C K, Kim J 2017 ACS Photonics 5 1123Google Scholar

    [41]

    Sun B, Zhang X, Zhou G D, Yu T, Mao S S, Zhu S H, Zhao Y, Xia Y D 2018 J. Colloid Interface Sci. 520 19Google Scholar

    [42]

    Feng W, Wang X, Zhang J, Wang L F, Zheng W, Hu P A, Cao W W, Yang B 2014 J. Mater. Chem. C 2 3254Google Scholar

  • [1] 宿冉, 奚昭颖, 李山, 张嘉汉, 姜明明, 刘增, 唐为华. 基于GaSe/Ga2O3异质结的自供电日盲紫外光电探测器. 物理学报, 2024, 73(11): 118502. doi: 10.7498/aps.73.20240267
    [2] 李雨凡, 薛文清, 李玉超, 战艳虎, 谢倩, 李艳凯, 查俊伟. 三明治结构柔性储能电介质材料研究进展. 物理学报, 2024, 73(2): 027702. doi: 10.7498/aps.73.20230614
    [3] 王辉, 郑德旭, 姜箫, 曹越先, 杜敏永, 王开, 刘生忠, 张春福. 基于协同钝化策略制备高性能柔性钙钛矿太阳能电池. 物理学报, 2024, 73(7): 078401. doi: 10.7498/aps.73.20231846
    [4] 况丹, 徐爽, 史大为, 郭建, 喻志农. 基于铝纳米颗粒修饰的非晶氧化镓薄膜日盲紫外探测器. 物理学报, 2023, 72(3): 038501. doi: 10.7498/aps.72.20221476
    [5] 陈乐迪, 范仁浩, 刘雨, 唐贡惠, 马中丽, 彭茹雯, 王牧. 基于柔性超构材料宽带调控太赫兹波的偏振态. 物理学报, 2022, 71(18): 187802. doi: 10.7498/aps.71.20220801
    [6] 李秀华, 张敏, 杨佳, 邢爽, 高悦, 李亚泽, 李思雨, 王崇杰. 薄膜厚度对射频磁控溅射${\boldsymbol{\beta}}$-Ga2O3薄膜光电性能的影响. 物理学报, 2022, 71(4): 048501. doi: 10.7498/aps.71.20211744
    [7] 李秀华, 张敏. 薄膜厚度对射频磁控溅射β-Ga2O3薄膜光电性能的影响*. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211744
    [8] 周树仁, 张红, 莫慧兰, 刘浩文, 熊元强, 李泓霖, 孔春阳, 叶利娟, 李万俊. N掺杂对${\boldsymbol\beta} $-Ga2O3薄膜日盲紫外探测器性能的影响. 物理学报, 2021, 70(17): 178503. doi: 10.7498/aps.70.20210434
    [9] 谈溥川, 赵超超, 樊瑜波, 李舟. 自驱动柔性生物医学传感器的研究进展. 物理学报, 2020, 69(17): 178704. doi: 10.7498/aps.69.20201012
    [10] 蓝顺, 潘豪, 林元华. 柔性无机铁电薄膜的制备及其应用. 物理学报, 2020, 69(21): 217708. doi: 10.7498/aps.69.20201365
    [11] 郭道友, 李培刚, 陈政委, 吴真平, 唐为华. 超宽禁带半导体β-Ga2O3及深紫外透明电极、日盲探测器的研究进展. 物理学报, 2019, 68(7): 078501. doi: 10.7498/aps.68.20181845
    [12] 熊开欣, 席昆, 鲍磊, 张忠良, 谭志杰. 脱氧核糖核酸柔性的分子动力学模拟:Amber bsc1和bsc0力场的对比研究. 物理学报, 2018, 67(10): 108701. doi: 10.7498/aps.67.20180326
    [13] 刘海文, 朱爽爽, 文品, 覃凤, 任宝平, 肖湘, 侯新宇. 基于发卡式开口谐振环的柔性双频带超材料. 物理学报, 2015, 64(3): 038101. doi: 10.7498/aps.64.038101
    [14] 柴玉华, 郭玉秀, 卞伟, 李雯, 杨涛, 仪明东, 范曲立, 解令海, 黄维. 柔性有机非易失性场效应晶体管存储器的研究进展. 物理学报, 2014, 63(2): 027302. doi: 10.7498/aps.63.027302
    [15] 董京, 柴玉华, 赵跃智, 石巍巍, 郭玉秀, 仪明东, 解令海, 黄维. 柔性有机场效应晶体管研究进展. 物理学报, 2013, 62(4): 047301. doi: 10.7498/aps.62.047301
    [16] 秦杰明, 张莹, 曹建明, 田立飞, 董中伟, 李岳. 高压下制备的透明低阻n-ZnO陶瓷的表征. 物理学报, 2011, 60(3): 036105. doi: 10.7498/aps.60.036105
    [17] 张治国. 非晶SnO2:(Cu,In)薄膜的荧光特性及带尾态. 物理学报, 2008, 57(9): 5823-5827. doi: 10.7498/aps.57.5823
    [18] 孙梅生, 郑南方, 方星豪, 亢强, 李忠海, 王磊, 孙稚, 姚成刚. 稠油采集高效电加热方法的研究. 物理学报, 2002, 51(12): 2906-2910. doi: 10.7498/aps.51.2906
    [19] 王焕荣, 滕新营, 石志强, 叶以富, 闵光辉. 非晶态Cu56Zr44合金的结构及其等温退火晶化过程的研究. 物理学报, 2001, 50(11): 2192-2197. doi: 10.7498/aps.50.2192
    [20] 王焕荣, 叶以富, 闵光辉, 滕新营. 非晶态Mg70Zn30合金结构因子的预峰. 物理学报, 2001, 50(3): 523-527. doi: 10.7498/aps.50.523
计量
  • 文章访问数:  5348
  • PDF下载量:  170
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-01
  • 修回日期:  2021-07-02
  • 上网日期:  2021-08-17
  • 刊出日期:  2021-12-05

/

返回文章
返回