-
单斜氧化镓(β-Ga2O3)材料因其独特而优异的光电特性在日盲紫外探测领域具有广阔的应用前景, 受到国内外研究者的广泛关注. 本研究工作采用射频磁控溅射技术, 在c面蓝宝石衬底上制备了未掺杂和氮(N)掺杂β-Ga2O3薄膜, 研究了N掺杂对β-Ga2O3薄膜结构及光学特性的影响; 在此基础上, 构筑了未掺杂和N掺杂β-Ga2O3薄膜基金属-半导体-金属(metal-semiconductor-metal, MSM)型日盲紫外探测器, 并讨论了N掺杂影响器件性能的物理机制. 结果表明, N掺杂会导致β-Ga2O3薄膜表面形貌变得相对粗糙, 且会促使β-Ga2O3薄膜由直接带隙向间接带隙转变. 所有器件均表现出较高的稳定性和日盲特性, 相比之下, N掺杂β-Ga2O3薄膜器件能展现出较低的暗电流和更快的光响应速度(响应时间和恢复时间分别为40和8 ms), 与氧空位相关缺陷的抑制密切相关. 本研究对开发新型的高性能日盲紫外探测器具有一定的借鉴意义.β-Ga2O3-based deep-ultraviolet photodetector (PD) has versatile civil and military applications especially due to its inherent solar-blindness. In this work, pristine and N-doped β-Ga2O3 thin films are prepared on c-plane sapphire substrates by radio frequency magnetron sputtering. The influences of N impurity on the micromorphology, structural and optical properties of β-Ga2O3 film are investigated in detail by scanning electron microscopy, X-ray diffraction, and Raman spectra. The introduction of N impurities not only degrades the crystal quality of β-Ga2O3 films, but also affects the surface roughness. The β-Ga2O3 films doped with N undergoes a transition from a direct optical band gap to an indirect optical band gap. Then, the resulting metal-semiconductor-metal (MSM) PD is constructed. Comparing with the pure β-Ga2O3-based photodetector, the introduction of N impurities can effectively depress dark current and improve response speed of the β-Ga2O3 device. The N-doped β-Ga2O3-based photodetector achieves a dark current of 1.08 × 10–11 A and a fast response speed (rise time of 40 ms and decay time of 8 ms), which can be attributed to the decrease of oxygen vacancy related defects. This study demonstrates that the acceptor doping provides a new opportunity for producing ultraviolet photodetectors with fast response for further practical applications.
-
Keywords:
- β-Ga2O3 films /
- N-doped /
- deep-ultraviolet photodetectors /
- fast response
[1] Pearton S J, Yang J C, Cary I V P H, Ren F, Kim J, Tadjer M J, Mastor M A 2018 Appl. Phys. Rev. 5 011301
[2] 郭道友, 李培刚, 陈政委, 吴真平, 唐为华 2019 物理学报 68 078501Google Scholar
Guo D Y, Li P G, Chen Z W, Wu Z P, Tang W H 2019 Acta Phys. Sin. 68 078501Google Scholar
[3] Chen X, Ren F, Gu S, Ye J 2019 Photonics Res. 7 381Google Scholar
[4] Xu J, Zheng W, Huang F 2019 J. Mater. Chem. C 7 8753Google Scholar
[5] Cicek E, McClintock R, Cho C Y, Rahnema B, Razeghi M 2013 Appl. Phys. Lett. 103 191108Google Scholar
[6] Kim J H, Han C Y, Lee K H, An K S, Song W, Kim J, Oh M S, Do Y R, Yang H 2014 Chem. Mater. 27 197
[7] Liao M Y, Sang L, Teraji T, Imura M, Alvarez J, Koide Y 2012 Jpn. J. Appl. Phys. 51 090115Google Scholar
[8] Chen J X, Li X X, Ma H P, Huang W, Ji Z G, Xia C T, Lu H L, Zhang D W 2019 ACS Appl. Mater. Interfaces 11 32127Google Scholar
[9] Wang J, Ye L J, Wang X, Zhang H, Li L, Kong C, Li W J 2019 J. Alloys Compd. 803 9Google Scholar
[10] Zhang L H, Verma A, Xing H L, Jena D 2017 Jpn. J. Appl. Phys. 56 030304Google Scholar
[11] 马腾宇, 孔春阳, 李万俊, 何先旺, 胡慧, 黄利娟, 张红, 李泓霖, 叶利娟 2020 物理学报 69 108102Google Scholar
Ma T Y, Kong C Y, Li W J, He X W, Hu H, Huang L J, Zhang H, Li H L, Ye L J 2020 Acta Phys. Sin. 69 108102Google Scholar
[12] Guo D Y, Wu Z P, An Y H, Guo X C, Chu X L, Sun C L, Li L H, Li P C, Tang W H 2014 Appl. Phys. Lett. 105 023507Google Scholar
[13] Qin Y, Li L H, Zhao X L, Tompa G S, Dong H, Jian G Z, He Q M, Tan P J, Hou X H, Zhang Z F, Yu S J, Sun H D, Xu G W, Miao X S, Xue K H, Long S B, Liu M 2020 ACS Photonics 7 812Google Scholar
[14] Wang J, Xiong Y Q, Ye L J, Li W J, Qin G P, Ruan H B, Zhang H, Liang F, Kong C Y, Li H L 2021 Opt. Mater. 112 110808Google Scholar
[15] Wang Q, Chen J, Huang P, Li M, Lu Y, Homewood K P, Chang G, Chen H, He Y B 2019 Appl. Surf. Sci. 489 101Google Scholar
[16] Hu H D, Liu Y C, Han G Q, Fang C Z, Zhang Y F, Liu H, Wang Y B, Ye J D, Hao Y 2020 Nanoscale Res. Lett. 15 100Google Scholar
[17] Chen Y P, Liang H W, Xia X C, Shen R S, Liu Y, Luo Y M, Du G T 2015 Appl. Surf. Sci. 325 258Google Scholar
[18] Guo D Y, Qin X Y, Lü M, Shi H Z, Su Y L, Yao G S, Wang S L, Li C R, Li P G, Tang W H 2017 Electron. Mater. Lett. 13 483Google Scholar
[19] Chen J W, Tang H L, Liu B, Zhang Z X, Gu M, Zhu Z C, Xu Q, Xun J, Zhou L D, Chen L, Ou Yang X P 2021 ACS Appl. Mater. Interfaces 13 2879Google Scholar
[20] Yao Z R, Tang K, Xu Z H, Ye J D, Zhun S M, Gu S L 2016 Nanoscale Res. Lett. 11 501Google Scholar
[21] Saravanakumar B, Mohan R, Thiyagarajan K, Kim S J 2013 J. Alloys Compd. 580 538Google Scholar
[22] Dong L P, Jia R X, Li C, Xin B, Zhang Y M 2017 J. Alloys Compd. 712 379Google Scholar
[23] Chang L W, Li C F, Hsieh Y T, Liu C M, Cheng Y T, Yeh J W, Shih H C 2011 J. Electrochem. Soc. 158 D136Google Scholar
[24] Jiang Z X, Wu Z Y, Ma C C, Deng J N, Zhang H, Xu Y, Ye J D, Fang Z L, Zhang G Q, Kang J Y, Zhang T Y 2020 Mater. Today Phys. 14 100226Google Scholar
[25] Luan S Z, Dong L P, Ma X F, Jia R X 2020 J. Alloys Compd. 812 152026Google Scholar
[26] Xie C, Lu X T, Liang Y, Chen H H, Wang L, Wu C Y, Wu D, Yang W H, Luo L B 2021 J. Mater. Sci. Technol. 72 189Google Scholar
[27] Shen H, Baskaran K, Yin Y N, Tian K, Duan L B, Zhao X R, Tiwari A 2020 J. Alloys Compd. 822 153419Google Scholar
[28] Rao R, Rao A M, Xu B, Dong J, Sharma S, Sunkara M K 2005 J. Appl. Phys. 98 094312
[29] Chen Y C, Lu Y J, Liu Q, Lin C N, Guo J, Zang J H, Tian Y Z, Shan C X 2019 J. Mater. Chem. C 7 2557Google Scholar
[30] He T, Zhang X D, Ding X Y, Ding X Y, Sun C, Zhao Y K, Yu Q, Ning J Q, Wang R X, Yu G H, Lu S L, Zhang K, Zhang X P, Zhang B S 2019 Adv. Opt. Mater. 7 1801563Google Scholar
[31] Song D Y, Li L, Li B S, Sui Y, Shen A D 2016 AIP Adv. 6 065016Google Scholar
[32] Li W H, Zhao X L, Zhi Y S, Zhang X H, Chen Z W, Chu X L, Yang H J, Wu Z P, Tang W H 2018 Appl. Opt. 57 538Google Scholar
[33] Fang M Z, Zhao W G, Li F F, Zhu D L, Han S, Xu W Y, Liu W J, Fang M, Lu Y M 2019 Sensors 20 129Google Scholar
[34] Qian Y P, Guo D Y, Chu X L, Shi H Z, Zhu W K, Wang K, Huang X K, Wang H, Wang S L, Li P G, Zhang X H, Tang W H 2017 Mater. Lett. 209 558Google Scholar
[35] Zhao Z C, Yang C L, Meng Q T, Wang M S, Ma X G 2019 Spectrochim. Acta, Part A 211 71Google Scholar
[36] Beaton D A, Alberi K, Fluegel B, Mascarenhas A, Reno J L 2013 Appl. Phys. Express 6 071201Google Scholar
[37] Zhao W R, Yang Y, Hao R, Liu F F, Wang Y, Tan M, Tang J, Ren D Q, Zhao D Y 2011 J. Hazard. Mater. 192 1548Google Scholar
[38] Zhao X L, Wu Z P, Zhi Y S, An Y H, Cui W, Li L H, Tang W H 2017 J. Phys. D: Appl. Phys. 50 085102Google Scholar
[39] Liu L L, Li M K, Yu D Q, Zhang J, Zhang H, Qian C, Yang Z 2010 Appl. Phys. A 98 831
[40] Zhang D, Zheng W, Lin R C, Li T T, Zhang Z J, Huang F 2018 J. Alloys Compd. 735 150Google Scholar
[41] Tak B R, Garg M, Dewan S, Torres-Castanedo C G, Li K H, Gupta V, Li X H, Singh R 2019 J. Appl. Phys. 125 144501Google Scholar
[42] Qian L X, Wu Z H, Zhang Y Y, Lai P T, Liu X Z, Li Y R 2017 ACS Photonics 4 2203Google Scholar
[43] Alema F, Hertog B, Ledyaev O, Volovik D, Thoma G, Miller R, Osinsky A, Mukhopadhyay P, Bakhshi S, Ali H, Schoenfeld W 2017 Phys. Status Solidi A 214 1600688Google Scholar
[44] Yu M, Lü C D, Yu J G, Shen Y M, Yuan L, Hu J C, Zhang S G, Cheng H J, Zhang Y M, Jia R X 2020 Mater. Today Commun. 25 101532Google Scholar
-
图 4 β-Ga2O3薄膜MSM型日盲紫外器件的光电特性 (a), (b) I-V特性曲线; (c), (d) 瞬态光响应特性曲线(偏压为10 V); (e), (f) 光响应时间拟合曲线
Fig. 4. Photoresponse performance of the β-Ga2O3 film MSM photodetectors: (a), (b) I-V curves of the MSM photodetector; (c), (d) transient light response characteristic curve under the bias voltage of 10 V; (e), (f) exponential fitting of a single cycle at 10 V illuminated with 254 nm light.
表 1 不同N掺杂浓度β-Ga2O3薄膜的(–201)衍射峰和201.4 cm–1拉曼特征峰的半高宽
Table 1. Full width at half maximum (FWHM) of XRD diffraction peak and Raman peak.
Sample FWHM of (–201) peak/(°) FWHM of 201.4 cm–1
peak/cm–1A 0.38 2.6 B 0.51 3.08 C 0.39 2.9 D 0.58 3.14 表 2 国内外Ga2O3薄膜基光电探测器的主要性能指标对比
Table 2. Comparison of the representative photoresponse metrics based on Ga2O3 film photodetectors.
Samples Growth Idark/nA τr/s τd/s Ref. β-Ga2O3 Sputtering 0.11 (10 V) 0.31/1.52 0.05/0.91 [9] β-Ga2O3 MOCVD 34 (10 V) 7.30 8.05 [40] β-Ga2O3 PLD ~1.2 0.59/2.4 0.15/1.6 [41] a-Ga2O3 Sputtering 0.3386 (10 V) 0.41/2.04 0.02/0.35 [42] Ga2O3:Zn Sputtering 45 (10 V) 17.2/1.23 4.03/46.10 [38] Ga2O3:Zn MOCVD 23 (30 V) 3.2 1.4 [43] Ga2O3:N CVD ~0.1 (5 V) 0.01 0.01 [24] Ga2O3:Mg Sputtering 0.0041 (10 V) 0.33/8.84 0.02 [34] Ga2O3:Ce PLD — 0.87/10.81 0.54/13.98 [32] α/β-Ga2O3 Sol–gel 0.125 (15 V) 0.04/0.87 0.02/1.00 [44] β-Ga2O3 Sputtering 0.56 (10 V) 0.51/3.04 0.07/0.08 This work Ga2O3:N Sputtering 0.0108 (10 V) 0.04/2.38 0.008/0.29 This work -
[1] Pearton S J, Yang J C, Cary I V P H, Ren F, Kim J, Tadjer M J, Mastor M A 2018 Appl. Phys. Rev. 5 011301
[2] 郭道友, 李培刚, 陈政委, 吴真平, 唐为华 2019 物理学报 68 078501Google Scholar
Guo D Y, Li P G, Chen Z W, Wu Z P, Tang W H 2019 Acta Phys. Sin. 68 078501Google Scholar
[3] Chen X, Ren F, Gu S, Ye J 2019 Photonics Res. 7 381Google Scholar
[4] Xu J, Zheng W, Huang F 2019 J. Mater. Chem. C 7 8753Google Scholar
[5] Cicek E, McClintock R, Cho C Y, Rahnema B, Razeghi M 2013 Appl. Phys. Lett. 103 191108Google Scholar
[6] Kim J H, Han C Y, Lee K H, An K S, Song W, Kim J, Oh M S, Do Y R, Yang H 2014 Chem. Mater. 27 197
[7] Liao M Y, Sang L, Teraji T, Imura M, Alvarez J, Koide Y 2012 Jpn. J. Appl. Phys. 51 090115Google Scholar
[8] Chen J X, Li X X, Ma H P, Huang W, Ji Z G, Xia C T, Lu H L, Zhang D W 2019 ACS Appl. Mater. Interfaces 11 32127Google Scholar
[9] Wang J, Ye L J, Wang X, Zhang H, Li L, Kong C, Li W J 2019 J. Alloys Compd. 803 9Google Scholar
[10] Zhang L H, Verma A, Xing H L, Jena D 2017 Jpn. J. Appl. Phys. 56 030304Google Scholar
[11] 马腾宇, 孔春阳, 李万俊, 何先旺, 胡慧, 黄利娟, 张红, 李泓霖, 叶利娟 2020 物理学报 69 108102Google Scholar
Ma T Y, Kong C Y, Li W J, He X W, Hu H, Huang L J, Zhang H, Li H L, Ye L J 2020 Acta Phys. Sin. 69 108102Google Scholar
[12] Guo D Y, Wu Z P, An Y H, Guo X C, Chu X L, Sun C L, Li L H, Li P C, Tang W H 2014 Appl. Phys. Lett. 105 023507Google Scholar
[13] Qin Y, Li L H, Zhao X L, Tompa G S, Dong H, Jian G Z, He Q M, Tan P J, Hou X H, Zhang Z F, Yu S J, Sun H D, Xu G W, Miao X S, Xue K H, Long S B, Liu M 2020 ACS Photonics 7 812Google Scholar
[14] Wang J, Xiong Y Q, Ye L J, Li W J, Qin G P, Ruan H B, Zhang H, Liang F, Kong C Y, Li H L 2021 Opt. Mater. 112 110808Google Scholar
[15] Wang Q, Chen J, Huang P, Li M, Lu Y, Homewood K P, Chang G, Chen H, He Y B 2019 Appl. Surf. Sci. 489 101Google Scholar
[16] Hu H D, Liu Y C, Han G Q, Fang C Z, Zhang Y F, Liu H, Wang Y B, Ye J D, Hao Y 2020 Nanoscale Res. Lett. 15 100Google Scholar
[17] Chen Y P, Liang H W, Xia X C, Shen R S, Liu Y, Luo Y M, Du G T 2015 Appl. Surf. Sci. 325 258Google Scholar
[18] Guo D Y, Qin X Y, Lü M, Shi H Z, Su Y L, Yao G S, Wang S L, Li C R, Li P G, Tang W H 2017 Electron. Mater. Lett. 13 483Google Scholar
[19] Chen J W, Tang H L, Liu B, Zhang Z X, Gu M, Zhu Z C, Xu Q, Xun J, Zhou L D, Chen L, Ou Yang X P 2021 ACS Appl. Mater. Interfaces 13 2879Google Scholar
[20] Yao Z R, Tang K, Xu Z H, Ye J D, Zhun S M, Gu S L 2016 Nanoscale Res. Lett. 11 501Google Scholar
[21] Saravanakumar B, Mohan R, Thiyagarajan K, Kim S J 2013 J. Alloys Compd. 580 538Google Scholar
[22] Dong L P, Jia R X, Li C, Xin B, Zhang Y M 2017 J. Alloys Compd. 712 379Google Scholar
[23] Chang L W, Li C F, Hsieh Y T, Liu C M, Cheng Y T, Yeh J W, Shih H C 2011 J. Electrochem. Soc. 158 D136Google Scholar
[24] Jiang Z X, Wu Z Y, Ma C C, Deng J N, Zhang H, Xu Y, Ye J D, Fang Z L, Zhang G Q, Kang J Y, Zhang T Y 2020 Mater. Today Phys. 14 100226Google Scholar
[25] Luan S Z, Dong L P, Ma X F, Jia R X 2020 J. Alloys Compd. 812 152026Google Scholar
[26] Xie C, Lu X T, Liang Y, Chen H H, Wang L, Wu C Y, Wu D, Yang W H, Luo L B 2021 J. Mater. Sci. Technol. 72 189Google Scholar
[27] Shen H, Baskaran K, Yin Y N, Tian K, Duan L B, Zhao X R, Tiwari A 2020 J. Alloys Compd. 822 153419Google Scholar
[28] Rao R, Rao A M, Xu B, Dong J, Sharma S, Sunkara M K 2005 J. Appl. Phys. 98 094312
[29] Chen Y C, Lu Y J, Liu Q, Lin C N, Guo J, Zang J H, Tian Y Z, Shan C X 2019 J. Mater. Chem. C 7 2557Google Scholar
[30] He T, Zhang X D, Ding X Y, Ding X Y, Sun C, Zhao Y K, Yu Q, Ning J Q, Wang R X, Yu G H, Lu S L, Zhang K, Zhang X P, Zhang B S 2019 Adv. Opt. Mater. 7 1801563Google Scholar
[31] Song D Y, Li L, Li B S, Sui Y, Shen A D 2016 AIP Adv. 6 065016Google Scholar
[32] Li W H, Zhao X L, Zhi Y S, Zhang X H, Chen Z W, Chu X L, Yang H J, Wu Z P, Tang W H 2018 Appl. Opt. 57 538Google Scholar
[33] Fang M Z, Zhao W G, Li F F, Zhu D L, Han S, Xu W Y, Liu W J, Fang M, Lu Y M 2019 Sensors 20 129Google Scholar
[34] Qian Y P, Guo D Y, Chu X L, Shi H Z, Zhu W K, Wang K, Huang X K, Wang H, Wang S L, Li P G, Zhang X H, Tang W H 2017 Mater. Lett. 209 558Google Scholar
[35] Zhao Z C, Yang C L, Meng Q T, Wang M S, Ma X G 2019 Spectrochim. Acta, Part A 211 71Google Scholar
[36] Beaton D A, Alberi K, Fluegel B, Mascarenhas A, Reno J L 2013 Appl. Phys. Express 6 071201Google Scholar
[37] Zhao W R, Yang Y, Hao R, Liu F F, Wang Y, Tan M, Tang J, Ren D Q, Zhao D Y 2011 J. Hazard. Mater. 192 1548Google Scholar
[38] Zhao X L, Wu Z P, Zhi Y S, An Y H, Cui W, Li L H, Tang W H 2017 J. Phys. D: Appl. Phys. 50 085102Google Scholar
[39] Liu L L, Li M K, Yu D Q, Zhang J, Zhang H, Qian C, Yang Z 2010 Appl. Phys. A 98 831
[40] Zhang D, Zheng W, Lin R C, Li T T, Zhang Z J, Huang F 2018 J. Alloys Compd. 735 150Google Scholar
[41] Tak B R, Garg M, Dewan S, Torres-Castanedo C G, Li K H, Gupta V, Li X H, Singh R 2019 J. Appl. Phys. 125 144501Google Scholar
[42] Qian L X, Wu Z H, Zhang Y Y, Lai P T, Liu X Z, Li Y R 2017 ACS Photonics 4 2203Google Scholar
[43] Alema F, Hertog B, Ledyaev O, Volovik D, Thoma G, Miller R, Osinsky A, Mukhopadhyay P, Bakhshi S, Ali H, Schoenfeld W 2017 Phys. Status Solidi A 214 1600688Google Scholar
[44] Yu M, Lü C D, Yu J G, Shen Y M, Yuan L, Hu J C, Zhang S G, Cheng H J, Zhang Y M, Jia R X 2020 Mater. Today Commun. 25 101532Google Scholar
计量
- 文章访问数: 8052
- PDF下载量: 244
- 被引次数: 0