搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于GaSe/Ga2O3异质结的自供电日盲紫外光电探测器

宿冉 奚昭颖 李山 张嘉汉 姜明明 刘增 唐为华

引用本文:
Citation:

基于GaSe/Ga2O3异质结的自供电日盲紫外光电探测器

宿冉, 奚昭颖, 李山, 张嘉汉, 姜明明, 刘增, 唐为华

Self-powered solar-blind ultraviolet photoelectric detector based on GaSe/β-Ga2O3 heterojunction

Su Ran, Xi Zhao-Ying, Li Shan, Zhang Jia-Han, Jiang Ming-Ming, Liu Zeng, Tang Wei-Hua
PDF
导出引用
  • 氧化镓(Ga2O3)作为超宽禁带半导体在深紫外探测领域有极其重要的应用价值. 它能与GaSe形成典型的Ⅱ型异质结构, 促进载流子分离与传输, 进而实现高性能的自供电探测. 本文利用等离子体增强化学气相沉积(PECVD)技术在蓝宝石衬底上生长了Ga2O3薄膜, 并采用布里奇曼技术在氧化镓薄膜上生长了GaSe薄膜, 构建了GaSe/β-Ga2O3异质结光电探测器, 分析其中涉及的光物理与界面物理问题. 该探测器对深紫外光有很好的响应性能, 在8 V的电压下器件的暗电流仅为1.83 pA, 254 nm光照下的光电流达到了6.5 nA, 且UV-C/可见光(254 nm/600 nm)的抑制比约为354, 即使在很小的光照强度下, 响应度和探测度也达到了1.49 mA/W 和 6.65× 1011 Jones. 同时由于结界面上的空间电荷区形成的光伏效应, 该探测器在零偏压下表现出自供电性能, 开路电压为0.2 V. 此外, 探测器有很好的灵敏度, 无论是在电压恒定的条件下用不同光强的光照射探测器, 还是在光强恒定条件下改变电压, 器件都能快速响应.
    UV photodetectors have the advantages of high sensitivity and fast response speed. As an ultra-wide bandgap semiconductor, gallium oxide (Ga2O3) plays an extremely important role in the field of deep ultraviolet detection. It can form a typical type II heterostructure with GaSe, which promotes carrier separation and transport. In this paper, Ga2O3 epitaxial films were grown on sapphire substrates by plasma-assisted chemical vapor deposition (PECVD). GaSe films and GaSe/β-Ga2O3 heterojunction photodetectors were grown on gallium oxide films by Bridgeman technology. The detector has a good response to deep ultraviolet light, the dark current of the device is only 1.83 pA at 8 V, and the photocurrent reaches 6.5 nA at 254 nm. the UVC/Visible (254 nm/600 nm) has a high rejection ratio of about 354. Although at very small light intensities, the responsivity and detection reach 1.49 mA/W and 6.65× 1011 Jones. At the same time, due to the photovoltaic effect formed by the space charge region at the junction interface, the detector exhibits self-power supply performance at zero bias voltage, and the open-circuit voltage is 0.2 V. In addition, the detector has a very good sensitivity, whether it is irradiated with different light intensities under the condition of constant voltage, or changing the voltage under the condition of constant light intensity, the device can respond quickly. It can respond within milliseconds under a bias voltage of 10V. This paper demonstrates the enormous potential of heterojunctions in photoelectric detection by analyzing the photophysical and interface physical issues involved in heterojunction photodectectors, and provides a possibility for the deep ultraviolet detection of gallium oxide.
  • [1]

    Xi Z Y, Liu Z, Yang L L, Tang K, Li L, Shen G H, Zhang M L, Li S, Guo Y F, Tang W H. 2023, ACS Appl. Mater. Interfaces 15 40744.

    [2]

    Lee S H, Kim S B, Moon Y-J, Kim S M, Jung H J, Seo M S, Lee K M, Kim S-K, Lee S W. 2017, ACS Photon. 4 2937.

    [3]

    Tang X, Li K H, Zhao Y, Sui Y, Liang H, Liu Z, Liao C H, Babatain W, Lin R, Wang C, Lu Y, Alqatari F S, Mei Z, Tang W, Li X. 2021, ACS Appl. Mater. Interfaces 14 1304.

    [4]

    Wang Y H, Yang Z, Li H, Li S, Zhi Y, Yan Z, Huang X, Wei X, Tang W H, Wu Z. 2020, ACS Appl. Mater. Interfaces 12 47714.

    [5]

    Imura S, Mineo K, Miyakawa K, Nanba M, Ohtake H, Kubota M. 2018, IEEE Sensors J. 18 3108.

    [6]

    Sorifi S, Kaushik S, Sheoran H, Singh R. 2022, J. Phys. D: Appl. Phys. 55 365105.

    [7]

    Chen Y, Lu Y, Liao M, Tian Y, Liu Q, Gao C, Yang X, Shan C. 2019, Adv. Funct. Mater. 29 1906040.

    [8]

    Zhao B, Wang F, Chen H, Zheng L, Su L, Zhao D, Fang X. 2017, Adv. Funct. Mater. 27 1700264.

    [9]

    Ozbay E, Biyikli N, Kimukin I, Kartaloglu T, Tut T, Aytur O. 2004, IEEE J. Select. Topics Quantum Electron. 10 742.

    [10]

    Xu Z, Zang J, Yang X, Chen Y, Lou Q, Li K, Lin C, Zhang Z, Shan C. 2021, Semicond. Sci. Technol. 36 065007.

    [11]

    Liu Z, Li S, Yan Z, Liu Y, Zhi Y, Wang X, Wu Z, Li P, Tang W. 2020, J. Mater. Chem. C 8 5071.

    [12]

    Li L, Liao F, Hu X. 2020, Superlattices Microstruct. 141 106502.

    [13]

    Jing L, Ai C, Guo X, Cao J, Jing D, Luo B, Ma L. 2023, Ind .Eng. Chem. Res. 62 6103.

    [14]

    Moon S, Bae J, Kim J. 2022, J.Mater. Chem.C 10 6281.

    [15]

    Lu C, Gao L, Meng F, Zhang Q, Yang L, Liu Z, Zhu M, Chen X, Lyu X, Wang Y, Liu J, Ji A, Li P, Gu L, Cao Z, Lu N. 2023, J. Appl. Phys. 133 045306.

    [16]

    Han Y, Jiao S, Jing J, Chen L, Rong P, Ren S, Wang D, Gao S, Wang J. 2023, Nano Res. 17 2960.

    [17]

    Li X, Dong J, Idrobo J C, Puretzky A A, Rouleau C M, Geohegan D B, Ding F, Xiao K. 2016, J. Am. Chem. Soc. 139 482.

    [18]

    Qasrawi A F. 2005, Cryst. Res. Technol. 40 610.

    [19]

    Lei S, Ge L, Liu Z, Najmaei S, Shi G, You G, Lou J, Vajtai R, Ajayan P M. 2013, Nano Lett. 13 2777.

    [20]

    Yuan X, Tang L, Liu S, Wang P, Chen Z, Zhang C, Liu Y, Wang W, Zou Y, Liu C, Guo N, Zou J, Zhou P, Hu W, Xiu F. 2015, Nano Lett. 15 3571.

    [21]

    Ben Aziza Z, Henck H, Pierucci D, Silly M G, Lhuillier E, Patriarche G, Sirotti F, Eddrief M, Ouerghi A. 2016, ACS Nano, 10 9679.

    [22]

    M.Parlak, A.F.Qasrawi, C.Ercelebi. 2003, Mater. Sci. 38 1507.

    [23]

    Yan Z, Li S, Liu Z, Zhi Y, Dai J, Sun X, Sun S, Guo D, Wang X, Li P, Wu Z, Li L, Tang W. 2020, J.Mater. Chem. C 8 4502.

    [24]

    Mudiyanselage D H, Wang D, Fu H. 2022, IEEE J. Electron Devices Soc. 10 89.

    [25]

    Lin R, Zheng W, Zhang D, Zhang Z, Liao Q, Yang L, Huang F. 2018, ACS Appl.Mater. Interfaces 10 22419.

    [26]

    Abdullah M M, Bhagavannarayana G, Wahab M A. 2010, J.Cryst. Growth 312 1534.

    [27]

    Jubu P R, Yam F K, Igba V M, Beh K P. 2020, J. Solid State Chem. 290 121576.

    [28]

    Zhang M L, Ma W Y, Wang L, Liu Z, Yang L L, Li S, Tang W H, Guo Y F. 2023, Acta Phys. Sin. 72 160201 (in Chinese) [张茂林,马万煜,王磊,刘增,杨莉莉,李山,唐为华,郭宇锋 2023 物理学报 72 160201].

    [29]

    Li Z, Xu Y, Zhang J, Cheng Y, Chen D, Feng Q, Xu S, Zhang Y, Zhang J, Hao Y, Zhang C. 2019, IEEE Photon. J. 11 1.

    [30]

    He T, Li C, Zhang X, Ma Y, Cao X, Shi X, Sun C, Li J, Song L, Zeng C, Zhang K, Zhang X, Zhang B. 2019, Phys. Status Solidi. (a) 217 1900861.

    [31]

    Yakimov E B, Polyakov A Y, Shchemerov I V, Smirnov N B, Vasilev A A, Vergeles P S, Yakimov E E, Chernykh A V, Shikoh A S, Ren F, Pearton S J. 2020, APL Mater. 8 111105.

    [32]

    Bae J, Park J-H, Jeon D-W, Kim J. 2021, APL Mater. 9 101108.

    [33]

    Qian L X, Liu H Y, Zhang H F, Wu Z H, Zhang W L. 2019, Appl. Phys. Lett. 114 113506.

    [34]

    Chen M, Zhang Z, Lv Z, Zhan R, Chen H, Jiang H, Chen J. 2022, ACS Appl. Nano Mater. 5 351.

    [35]

    Ricci F, Boschi F, Baraldi A, Filippetti A, Higashiwaki M, Kuramata A, Fiorentini V, Fornari R. 2016, J. Phys.: Condens. Matter, 28 224005.

    [36]

    Filippo E, Tepore M, Baldassarre F, Siciliano T, Micocci G, Quarta G, Calcagnile L, Tepore A. 2015, Appl. Surf. Sci. 338 69.

    [37]

    Kong W Y, Wu G A, Wang K Y, Zhang T F, Zou Y F, Wang D D, Luo L B. 2016, Adv. Mater. 28 10725.

    [38]

    Liang S J, Cheng B, Cui X, Miao F. 2019, Adv. Mater. 32 1903800.

    [39]

    Kumar N, Kumail M, Lee J, Park H G, Kim J. 2023, Mater. Res. Bulletin 168 112466.

    [40]

    Zhuo R, Wu D, Wang Y, Wu E, Jia C, Shi Z, Xu T, Tian Y, Li X. 2018, J. Mater. Chem. C 6 10982.

    [41]

    Ma Y, Chen T, Zhang X, Tang W, Feng B, Hu Y, Zhang L, Zhou X, Wei X, Xu K, Mudiyanselage D, Fu H, Zhang B. 2022, ACS Appl. Mater. Interfaces 14 35194.

    [42]

    Tan P, Zhao X, Hou X, Yu Y, Yu S, Ma X, Zhang Z, Ding M, Xu G, Hu Q, Gao N, Sun H, Mu W, Jia Z, Tao X, Long S. 2021, Adv. Opt. Mater. 9 2100173.

    [43]

    Park S, Park T, Park J H, Min J Y, Jung Y, Kyoung S, Kang T Y, Kim K H, Rim Y S, Hong J. 2022, ACS Appl. Mater. Interfaces 14 25648.

    [44]

    Wu C, Qiu L, Li S, Guo D, Li P, Wang S, Du P, Chen Z, Liu A, Wang X, Wu H, Wu F, Tang W. 2021, Mater. Today Phys. 17 100335.

    [45]

    Nguyen T M H, Tran M H, Bark C W. 2023, ACS Appl. Electronic Mater. 5 6459.

    [46]

    Wang Y, Tang Y, Li H, Yang Z, Zhang Q, He Z, Huang X, Wei X, Tang W, Huang W, Wu Z. 2021, ACS Photon. 8 2256.

  • [1] 孙堂友, 余燕丽, 覃祖彬, 陈赞辉, 陈均丽, 江玥, 张法碧. 基于TiO2纳米柱的多波段响应Cs2AgBiBr6双钙钛矿光电探测器. 物理学报, doi: 10.7498/aps.73.20231919
    [2] 王爱伟, 祝鲁平, 单衍苏, 刘鹏, 曹学蕾, 曹丙强. 利用脉冲激光沉积外延制备CsSnBr3/Si异质结高性能光电探测器. 物理学报, doi: 10.7498/aps.73.20231645
    [3] 张裕, 刘瑞文, 张京阳, 焦斌斌, 王如志. 氧化镓悬臂式薄膜日盲探测器及其电弧检测应用. 物理学报, doi: 10.7498/aps.73.20240186
    [4] 赵吉玉, 谭秋红, 刘磊, 杨伟业, 王前进, 刘应开. 基于Au纳米岛修饰的CdSSe纳米带光电探测器. 物理学报, doi: 10.7498/aps.72.20222021
    [5] 刘晓轩, 孙飞扬, 吴颖, 杨盛谊, 邹炳锁. 硅纳米线阵列光电探测器研究进展. 物理学报, doi: 10.7498/aps.72.20222303
    [6] 董典萌, 汪成, 张清怡, 张涛, 杨永涛, 夏翰驰, 王月晖, 吴真平. 基于HfO2插层的Ga2O3基金属-绝缘体-半导体结构日盲紫外光电探测器. 物理学报, doi: 10.7498/aps.72.20222222
    [7] 况丹, 徐爽, 史大为, 郭建, 喻志农. 基于铝纳米颗粒修饰的非晶氧化镓薄膜日盲紫外探测器. 物理学报, doi: 10.7498/aps.72.20221476
    [8] 落巨鑫, 高红丽, 邓金祥, 任家辉, 张庆, 李瑞东, 孟雪. 退火温度对氧化镓薄膜及紫外探测器性能的影响. 物理学报, doi: 10.7498/aps.72.20221716
    [9] 汪海波, 万丽娟, 樊敏, 杨金, 鲁世斌, 张忠祥. 势垒可调的氧化镓肖特基二极管. 物理学报, doi: 10.7498/aps.71.20211536
    [10] 傅群东, 王小伟, 周修贤, 朱超, 刘政. 硅基底上二维硒氧化铋的化学气相沉积法合成及其光电探测应用. 物理学报, doi: 10.7498/aps.71.20220388
    [11] 刘增, 李磊, 支钰崧, 都灵, 方君鹏, 李山, 余建刚, 张茂林, 杨莉莉, 张少辉, 郭宇锋, 唐为华. 具有大光电导增益的氧化镓薄膜基深紫外探测器阵列. 物理学报, doi: 10.7498/aps.71.20220859
    [12] 舒衍涛, 张有为, 王顺. 基于过渡金属硫族化合物同质结的光电探测器. 物理学报, doi: 10.7498/aps.70.20210859
    [13] 汪海波, 万丽娟, 樊敏, 杨金, 鲁世斌, 张忠祥. 势垒可调的氧化镓肖特基二极管. 物理学报, doi: 10.7498/aps.70.20211536
    [14] 赵一默, 黄志伟, 彭仁苗, 徐鹏鹏, 吴强, 毛亦琛, 余春雨, 黄巍, 汪建元, 陈松岩, 李成. 超薄介质插层调制的氧化铟锡/锗肖特基光电探测器. 物理学报, doi: 10.7498/aps.70.20210138
    [15] 孟宪成, 田贺, 安侠, 袁硕, 范超, 王蒙军, 郑宏兴. 基于二维材料二硒化锡场效应晶体管的光电探测器. 物理学报, doi: 10.7498/aps.69.20191960
    [16] 安涛, 涂传宝, 龚伟. 具有光电倍增的宽光谱三相体异质结有机彩色探测器. 物理学报, doi: 10.7498/aps.67.20180502
    [17] 郑加金, 王雅如, 余柯涵, 徐翔星, 盛雪曦, 胡二涛, 韦玮. 基于石墨烯-钙钛矿量子点场效应晶体管的光电探测器. 物理学报, doi: 10.7498/aps.67.20180129
    [18] 王尘, 许怡红, 李成, 林海军. 高性能SOI基GePIN波导光电探测器的制备及特性研究. 物理学报, doi: 10.7498/aps.66.198502
    [19] 马海林, 苏庆. 氧分压对溅射制备氧化镓薄膜结构及光学带隙的影响. 物理学报, doi: 10.7498/aps.63.116701
    [20] 郭剑川, 左玉华, 张云, 张岭梓, 成步文, 王启明. 单行载流子光电探测器中空间电荷屏蔽效应理论分析和实验研究. 物理学报, doi: 10.7498/aps.59.4524
计量
  • 文章访问数:  130
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 上网日期:  2024-04-17

/

返回文章
返回