搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

功率金属-氧化物半导体场效应晶体管静电放电栅源电容解析模型的建立

苏乐 王彩琳 谭在超 罗寅 杨武华 张超

引用本文:
Citation:

功率金属-氧化物半导体场效应晶体管静电放电栅源电容解析模型的建立

苏乐, 王彩琳, 谭在超, 罗寅, 杨武华, 张超

Establishment of analytical model for electrostatic discharge gate-to-source capacitance of power metal-oxide-semiconductor field-effect transistor

Su Le, Wang Cai-Lin, Tan Zai-Chao, Luo Yin, Yang Wu-Hua, Zhang Chao
PDF
HTML
导出引用
  • 在实际静电放电测试时, 发现各种功率金属-氧化物半导体场效应晶体管(MOSFET)的静电放电测试结果均呈现出正反向耐压不对称现象, 而人体与器件接触时的静电放电过程是不区分正反向的. 正反向耐压差异较大对于功率MOSFET或作为静电放电保护器件来说都是无法接受的, 其造成器件失效的问题格外凸显. 本文通过建立SGT-MOSFET, VUMOSFET和VDMOS在静电放电正反向电压下的栅源电容解析模型, 对比分析了三种功率MOSFET器件静电放电正反向耐压不对称及其比值不同的原因, 为器件的静电放电测试及可靠性分析提供了理论依据.
    In the actual human body model (HBM) test, it is found that the electrostatic discharge (ESD) test results of various power metal-oxide-semiconductor field-effect transistor (MOSFET) devices show asymmetry between forward withstand voltage and reverse withstand voltage, while the ESD process does not distinguish between positive direction and negative direction. Large differences between forward and reverse withstand voltages are unacceptable for power MOSFETs or as ESD protection devices. The problem of its causing device failure is particularly pronounced. In this work, by establishing the analytical model of gate-to-source capacitance of SGT-MOSFET, VUMOSFET and VDMOS under the forward and reverse voltages, we comparatively analyze the reasons for the asymmetry of the forward and reverse withstand voltages and their different ratios of the three kinds of power MOSFETs, which provides a theoretical basis for testing the device’s ESD and the analyzing their reliability. It is found that the ESD forward and reverse withstand voltage asymmetry phenomena of different power MOSFET structures are related to the variation of gate-to-source capacitance, caused by the reverse-type layer. When a forward voltage is applied across the gate and source, the device gate-to-source capacitance consists of the oxide layer capacitance around the gate in parallel; when a reverse voltage is applied, the gate-to-source capacitance consists of the virtual gate-to-drain capacitance in series with the inverse layer capacitance and then in parallel with the other oxide layer capacitance around the gate. This results in a decrease of the gate-to-source capacitance at the reverse voltage, making the device reverse withstand voltage greater than the forward withstand voltage. The difference in the ratio of ESD reverse withstand voltage to forward withstand voltage among different devices is related to the change of the capacitance of the inverse layer in the gate-to-source capacitor under reverse voltage caused by the difference in device structure.
      通信作者: 王彩琳, wangcailin8511@xaut.edu.cn
    • 基金项目: 陕西省“两链融合”重点研发项目(批准号: 2021LLRH-02)和陕西省科学技术厅自然科学基础研究计划(批准号: 2023-JC-QN-0764)资助的课题.
      Corresponding author: Wang Cai-Lin, wangcailin8511@xaut.edu.cn
    • Funds: Project supported by Shaanxi Province “Two Chain” Integration Key Project of China (Grant No. 2021LLRH-02) and the Natural Science Basic Research Program of Science and Technology Department of Shaanxi Province, China (Grant No. 2023-JC-QN-0764).
    [1]

    Jung D Y, Park K S, Kim S I, Kwon S, Cho D H, Jang H G, Lim J W 2023 ETRI J. 45 543Google Scholar

    [2]

    Mai X C, Chen S L, Chen H W, Lee Y M 2023 Electronics 12 2803Google Scholar

    [3]

    Yan Y, Lan W, Chen Y, Yang D, Zhou Y, Zhu Z, Liou J J 2022 Adv. Electron. Mater. 8 2100886

    [4]

    Anderson N T, Lockledge S P 2022 ASM International Pasadena, USA, October 30–November 3, 2022 pp329–332

    [5]

    Smallwood J M 2023 J. Electrostat. 125 103817Google Scholar

    [6]

    Ker M D, Pommerenke D 2022 IEEE Trans. on Electromagn. Compat. 64 1783Google Scholar

    [7]

    Yang L, Yang C, Tu Y, Wang X, Wang Q 2021 IEEE Access 9 33512Google Scholar

    [8]

    Ji Q, Luo A, Liu Q, Wan B 2023 International Conference on Optoelectronic Information and Functional Materials 2023 12781

    [9]

    Gimenez S P, Galembeck E H S 2023 ECS Trans. 111 161Google Scholar

    [10]

    Ajay 2021 Silicon 13 1325Google Scholar

    [11]

    Hong S Z, Chen S L, Chen H W, Lee Y M 2021 IEEE Electron Device Lett. 42 1512Google Scholar

    [12]

    Lai J Y, Chen S L, Liu Z W, Chen H W, Chen H H, Lee Y M 2022 Sens. Mater. 34 1835

    [13]

    Zhu Z, Yang Z, Fan X, W Fan 2021 Crystals 11 128Google Scholar

    [14]

    Luo X, Xu J, Xu X, Luo H, Dai Z 2022 2022 International EOS/ESD Symposium on Design and System Chengdu China, November 9–11, 2022 p2023-03-22

    [15]

    Arosio M, Boffino C, Morini S, Dirk Priefert, Oezguer Albayrak, Viktor Boguszewicz, Andrea Baschirotto 2021 IEEE Trans Electron. Devices 68 2848Google Scholar

    [16]

    苏乐, 王彩琳, 杨武华, 梁晓刚, 张超 2023 物理学报 72 148501Google Scholar

    Su L, Wang C L, Yang W H, Liang X G, Zhang C 2023 Acta Phys. Sin. 72 148501Google Scholar

    [17]

    Xi J, Wang J, Lu J, Chen J, Xin Y, Li Z, Tu C, Shen Z J 2018 Microelectron. Reliab. 88-90 593Google Scholar

    [18]

    Su L, Wang C L, Yang W H, Zhang C 2023 Microelectron. Reliab. 143 114950Google Scholar

    [19]

    Tian Y, Yang Z, Xu Z, Liu S, Sun W F, Shi L, Zhu Y, Ye P, Zhou J 2018 Superlattices Microstruct. 116 151Google Scholar

    [20]

    Su L, Wang C L, Yang W H, An J 2022 Microelectron. Reliab. 139 114822Google Scholar

    [21]

    Sun J, Zheng Z, Zhang L, Chen K J 2022 2022 IEEE 34th International Symposium on Power Semiconductor Devices and ICS Vancouver, Canada, May 22–25, 2022 pp73–76

  • 图 1  SGT-MOSFET, VUMOSFET, VDMOS产品HBM测试的反向耐压与正向耐压比值

    Fig. 1.  The positive and negative pass voltage difference multiple of SGT-MOSFET, VUMOSFET, and VDMOS under HBM testing

    图 2  人体放电模型测试电路

    Fig. 2.  The HBM testing circuit.

    图 3  SGT-MOSFET在HBM模型下的放电波形 (RHBM1 = 1 MΩ, RHBM2 = 1500 Ω, RHBM3 = 500 Ω, CHBM = 100 pF)

    Fig. 3.  The discharge waveform of SGT-MOSFET under the HBM model (RHBM1 = 1 MΩ, RHBM2 = 1500 Ω, RHBM3 = 500 Ω, CHBM = 100 pF).

    图 4  SGT-MOSFET ESD正反向电压下的电子密度、空穴密度、空间电荷及电场强度分布图

    Fig. 4.  The e-density, h-density, space charge, and electric field distribution diagram of SGT-MOSFET under forward and reverse voltage of ESD.

    图 5  SGT-MOSFET正向耐压测试下的栅源电容CGS(+) (a)及等效电路(b)示意图

    Fig. 5.  Schematic diagram of SGT-MOSFET gate to source capacitor CGS(+) (a) and equivalent circuit (b).

    图 6  SGT-MOSFET正向耐压测试下简化后的栅极与元胞结构间的栅源电容CGS(+)组成示意图

    Fig. 6.  The simplified schematic diagram of SGT-MOSFET gate to source capacitor CGS(+) between the gate and the cell structure under forward pass voltage testing.

    图 7  SGT-MOSET反向耐压测试下的栅源电容CGS(–) (a)及等效电路(b)示意图

    Fig. 7.  Schematic diagram of SGT-MOSET gate to source capacitor CGS(–) (a) and equivalent circuit (b) under reverse pass voltage testing.

    图 8  SGT-MOSFET反向耐压测试下简化后的栅极与元胞结构间的栅源电容CGS(–)组成示意图

    Fig. 8.  The simplified schematic diagram of SGT-MOSFET gate to source capacitor CGS(–) between the gate and the cell structure under reverse pass voltage testing.

    图 9  VUMOSFET正向耐压测试下的栅源电容CGS(+) (a)及等效电路(b)示意图

    Fig. 9.  Schematic diagram of VUMOSFET CGS(+) (a) and equivalent circuit (b) under forward pass voltage testing.

    图 10  VUMOSFET正向耐压测试下简化后的栅极与元胞结构间的栅源电容CGS(+)组成示意图

    Fig. 10.  The simplified schematic diagram of VUMOSFET gate to source capacitor CGS(+) between the gate and the cell structure under forward pass voltage testing.

    图 11  VUMOSET反向耐压测试下的栅源电容CGS(–) (a)及等效电路(b)示意图

    Fig. 11.  Schematic diagram of VUMOSET gate to source capacitor CGS(–) (a) and equivalent circuit (b) under reverse pass voltage testing.

    图 12  VUMOSET反向耐压测试下简化后的栅极与元胞结构间的栅源电容CGS(–)组成示意图

    Fig. 12.  The simplified schematic diagram of VUMOSET gate to source capacitor CGS(–) between the gate and the cell structure under reverse pass voltage testing.

    图 13  VDMOS正向耐压测试下的栅源电容CGS(+) (a)及等效电路(b)示意图

    Fig. 13.  Schematic diagram of VDMOS gate to source capacitor CGS(+)(a) and equivalent circuit (b).

    图 14  VDMOS正向耐压测试下简化后的栅极与元胞结构间的栅源电容CGS(+)组成示意图

    Fig. 14.  The simplified schematic diagram of VDMOS gate to source capacitor CGS(+) between the gate and the cell structure under forward pass voltage testing.

    图 15  VDMOS反向耐压测试下的栅源电容CGS(–) (a)及等效电路(b)示意图

    Fig. 15.  Schematic diagram of VDMOS gate to source capacitor CGS(–) (a) and equivalent circuit (b) under reverse pass voltage testing

    图 16  VDMOS反向耐压测试下简化后的栅极与元胞结构间的栅源电容CGS(–)组成示意图

    Fig. 16.  The simplified schematic diagram of VDMOS gate to source capacitor CGS(–) between the gate and the cell structure under reverse pass voltage testing.

    图 17  SGT-MOSFET改进结构 (a) 传统结构; (b) NPN-SG结构

    Fig. 17.  The improved structure of SGT-MOSFET: (a) Traditional structures; (b) NPN-SG structures.

    图 18  NPN-SG结构在HBM下的放电波形

    Fig. 18.  The discharge waveform of NPN-SG structures under HBM

    图 19  VDMOS在HBM模型下的放电波形 (RHBM1 = 1 MΩ, RHBM2 = 1500Ω, RHBM3 = 500Ω, CHBM = 100 pF)

    Fig. 19.  The discharge waveform of VDMOS under the HBM model (RHBM1 = 1 MΩ, RHBM2 = 1500Ω, RHBM3 = 500Ω, CHBM = 100 pF)

    表 1  SGT-MOSFET, VUMOSFET, VDMOS不同型号产品HBM测试的正反向耐压数据

    Table 1.  Positive and reverse withstand voltage data for HBM tests of VDMOS, VUMOSFET, SGT-MOSFET.

    器件类型 样品型号 ESD正向
    耐压/V
    ESD反向
    耐压/V
    SGT-MOSFET SW036R10E8S 600 1010
    SW050R10E8S 750 1450
    SW050R85E8S 670 1390
    SW050R95E8S 810 1590
    SW083R06VLS 480 830
    VUMOSFET SW065R68E7T 520 1640
    SW067R68E7T 650 2350
    SW068R68E7T 680 1970
    SW065R03VLT 450 1360
    SW018R03VLT 830 2800
    VDMOS SW7N60D 1350 3140
    SW10N60D 1470 3520
    SW12N65D 1530 3690
    SW20N65D 1560 3510
    SW7N80D 1670 3940
    下载: 导出CSV

    表 2  SGT-MOSFET, VUMOSFET, VDMOS不同型号产品的相关参数

    Table 2.  Related parameters of different products of VDMOS, VUMOSFET, SGT-MOSFET.

    器件类型 样品型号 封装形式 击穿电压/V 阈值电压/V 导通电阻/mΩ
    SGT-MOSFET SW036R10E8S TO-220 100 3 3.8
    SW050R10E8S TO-220 100 3 5.7
    SW050R85E8S TO-263 85 3 5.2
    SW050R95E8S TO-263 95 3 5.9
    SW083R06VLS TO-251 60 2 9.6
    VUMOSFET SW065R68E7T TO-220 68 3 6.3
    SW067R68E7T TO-220 68 3 6.9
    SW068R68E7T TO-252 68 3 7.0
    SW065R03VLT TO-252 30 3 6.6
    SW018R03VLT DFN5*6 30 1.8 1.6
    VDMOS SW7N60D TO-220 600 3.5 1.1
    SW10N60D TO-220F 600 3.5 0.9
    SW12N65D TO-220F 650 3.5 0.6
    SW20N65D TO-220F 650 3.7 0.3
    SW7N80D TO-220F 800 3.5 1.5
    下载: 导出CSV
  • [1]

    Jung D Y, Park K S, Kim S I, Kwon S, Cho D H, Jang H G, Lim J W 2023 ETRI J. 45 543Google Scholar

    [2]

    Mai X C, Chen S L, Chen H W, Lee Y M 2023 Electronics 12 2803Google Scholar

    [3]

    Yan Y, Lan W, Chen Y, Yang D, Zhou Y, Zhu Z, Liou J J 2022 Adv. Electron. Mater. 8 2100886

    [4]

    Anderson N T, Lockledge S P 2022 ASM International Pasadena, USA, October 30–November 3, 2022 pp329–332

    [5]

    Smallwood J M 2023 J. Electrostat. 125 103817Google Scholar

    [6]

    Ker M D, Pommerenke D 2022 IEEE Trans. on Electromagn. Compat. 64 1783Google Scholar

    [7]

    Yang L, Yang C, Tu Y, Wang X, Wang Q 2021 IEEE Access 9 33512Google Scholar

    [8]

    Ji Q, Luo A, Liu Q, Wan B 2023 International Conference on Optoelectronic Information and Functional Materials 2023 12781

    [9]

    Gimenez S P, Galembeck E H S 2023 ECS Trans. 111 161Google Scholar

    [10]

    Ajay 2021 Silicon 13 1325Google Scholar

    [11]

    Hong S Z, Chen S L, Chen H W, Lee Y M 2021 IEEE Electron Device Lett. 42 1512Google Scholar

    [12]

    Lai J Y, Chen S L, Liu Z W, Chen H W, Chen H H, Lee Y M 2022 Sens. Mater. 34 1835

    [13]

    Zhu Z, Yang Z, Fan X, W Fan 2021 Crystals 11 128Google Scholar

    [14]

    Luo X, Xu J, Xu X, Luo H, Dai Z 2022 2022 International EOS/ESD Symposium on Design and System Chengdu China, November 9–11, 2022 p2023-03-22

    [15]

    Arosio M, Boffino C, Morini S, Dirk Priefert, Oezguer Albayrak, Viktor Boguszewicz, Andrea Baschirotto 2021 IEEE Trans Electron. Devices 68 2848Google Scholar

    [16]

    苏乐, 王彩琳, 杨武华, 梁晓刚, 张超 2023 物理学报 72 148501Google Scholar

    Su L, Wang C L, Yang W H, Liang X G, Zhang C 2023 Acta Phys. Sin. 72 148501Google Scholar

    [17]

    Xi J, Wang J, Lu J, Chen J, Xin Y, Li Z, Tu C, Shen Z J 2018 Microelectron. Reliab. 88-90 593Google Scholar

    [18]

    Su L, Wang C L, Yang W H, Zhang C 2023 Microelectron. Reliab. 143 114950Google Scholar

    [19]

    Tian Y, Yang Z, Xu Z, Liu S, Sun W F, Shi L, Zhu Y, Ye P, Zhou J 2018 Superlattices Microstruct. 116 151Google Scholar

    [20]

    Su L, Wang C L, Yang W H, An J 2022 Microelectron. Reliab. 139 114822Google Scholar

    [21]

    Sun J, Zheng Z, Zhang L, Chen K J 2022 2022 IEEE 34th International Symposium on Power Semiconductor Devices and ICS Vancouver, Canada, May 22–25, 2022 pp73–76

  • [1] 张召泉, 时朋朋, 苟晓凡. 铁磁板磁巴克豪森应力检测的解析模型. 物理学报, 2022, 71(9): 097501. doi: 10.7498/aps.71.20212253
    [2] 马群刚, 王海宏, 张盛东, 陈旭, 王婷婷. InGaZnO薄膜晶体管背板的层间Cu互连静电保护研究. 物理学报, 2019, 68(15): 158501. doi: 10.7498/aps.68.20190646
    [3] 张卿, 武新军. 基于电磁波反射和折射理论的平底孔试件脉冲涡流检测解析模型. 物理学报, 2017, 66(3): 038102. doi: 10.7498/aps.66.038102
    [4] 覃婷, 黄生祥, 廖聪维, 于天宝, 邓联文. 同步对称双栅InGaZnO薄膜晶体管电势模型研究. 物理学报, 2017, 66(9): 097101. doi: 10.7498/aps.66.097101
    [5] 张娜, 曹猛, 崔万照, 胡天存, 王瑞, 李韵. 金属规则表面形貌影响二次电子产额的解析模型. 物理学报, 2015, 64(20): 207901. doi: 10.7498/aps.64.207901
    [6] 李世松, 张钟华, 赵伟, 黄松岭, 傅壮. 一种用保角变换求解带电Kelvin电容器边缘效应所产生静电力的解析模型. 物理学报, 2015, 64(6): 060601. doi: 10.7498/aps.64.060601
    [7] 吴良海, 张骏, 范之国, 高隽. 多次散射因素影响下天空偏振光模式的解析模型. 物理学报, 2014, 63(11): 114201. doi: 10.7498/aps.63.114201
    [8] 梁京辉, 张晓锋, 乔鸣忠, 夏益辉, 李耕, 陈俊全. 离散式任意充磁角度Halbach永磁电机解析模型研究. 物理学报, 2013, 62(15): 150501. doi: 10.7498/aps.62.150501
    [9] 苏丽娜, 顾晓峰, 秦华, 闫大为. 单电子晶体管电流解析模型及数值分析. 物理学报, 2013, 62(7): 077301. doi: 10.7498/aps.62.077301
    [10] 吴晓鹏, 杨银堂, 高海霞, 董刚, 柴常春. 基于深亚微米工艺的栅接地NMOS静电放电保护器件衬底电阻模型研究. 物理学报, 2013, 62(4): 047203. doi: 10.7498/aps.62.047203
    [11] 刘保军, 蔡理. 临近空间单粒子串扰的解析模型. 物理学报, 2012, 61(19): 196103. doi: 10.7498/aps.61.196103
    [12] 李聪, 庄奕琪, 韩茹, 张丽, 包军林. 非对称HALO掺杂栅交叠轻掺杂漏围栅MOSFET的解析模型. 物理学报, 2012, 61(7): 078504. doi: 10.7498/aps.61.078504
    [13] 刘玉栋, 杜磊, 孙鹏, 陈文豪. 静电放电对功率肖特基二极管I-V及低频噪声特性的影响. 物理学报, 2012, 61(13): 137203. doi: 10.7498/aps.61.137203
    [14] 曹磊, 刘红侠, 王冠宇. 异质栅全耗尽应变硅金属氧化物半导体模型化研究. 物理学报, 2012, 61(1): 017105. doi: 10.7498/aps.61.017105
    [15] 刘景旺, 杜振辉, 李金义, 齐汝宾, 徐可欣. DFB激光二极管电流-温度调谐特性的解析模型. 物理学报, 2011, 60(7): 074213. doi: 10.7498/aps.60.074213
    [16] 黄建国, 韩建伟. 航天器内部充电效应及典型事例分析. 物理学报, 2010, 59(4): 2907-2913. doi: 10.7498/aps.59.2907
    [17] 张冰, 柴常春, 杨银堂. 源、漏到栅距离对次亚微米ggNMOS ESD保护电路鲁棒性的影响. 物理学报, 2010, 59(11): 8063-8070. doi: 10.7498/aps.59.8063
    [18] 栾苏珍, 刘红侠, 贾仁需, 蔡乃琼. 高k介质异质栅全耗尽SOI MOSFET二维解析模型. 物理学报, 2008, 57(6): 3807-3812. doi: 10.7498/aps.57.3807
    [19] 陈卫兵, 徐静平, 邹 晓, 李艳萍, 许胜国, 胡致富. 小尺寸MOSFET隧穿电流解析模型. 物理学报, 2006, 55(10): 5036-5040. doi: 10.7498/aps.55.5036
    [20] 朱志炜, 郝 跃, 张金凤, 方建平, 刘红侠. 适用于深亚微米NMOSFET ESD效应的非本地传输模型. 物理学报, 2006, 55(11): 5878-5884. doi: 10.7498/aps.55.5878
计量
  • 文章访问数:  1673
  • PDF下载量:  40
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-20
  • 修回日期:  2024-03-07
  • 上网日期:  2024-04-13
  • 刊出日期:  2024-06-05

/

返回文章
返回