搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

同步对称双栅InGaZnO薄膜晶体管电势模型研究

覃婷 黄生祥 廖聪维 于天宝 邓联文

引用本文:
Citation:

同步对称双栅InGaZnO薄膜晶体管电势模型研究

覃婷, 黄生祥, 廖聪维, 于天宝, 邓联文

Analytical channel potential model of amorphous InGaZnO thin-film transistors with synchronized symmetric dual-gate

Qin Ting, Huang Sheng-Xiang, Liao Cong-Wei, Yu Tian-Bao, Deng Lian-Wen
PDF
导出引用
  • 研究了同步对称双栅氧化铟镓锌薄膜晶体管(InGaZnO thin film transistors,IGZO TFTs)的沟道电势,利用表面电势边界方程联合Lambert W函数推导得到了器件沟道电势的解析模型.该模型考虑了IGZO薄膜中存在深能态及带尾态等缺陷态密度,能够同时精确地描述器件在亚阈区(sub-threshold)与开启区(above threshold)的电势分布.基于所提出的双栅IGZO TFT模型,讨论了不同厚度的栅介质层和有源层时,栅-源电压对双栅IGZO TFT的表面势以及中心势的调制效应.对比分析了该模型的计算值与数值模拟值,结果表明二者具有较高的符合程度.
    Oxide indium gallium zinc thin film transistor (IGZO TFT) is a promising candidate for mass production of next-generation flat panel display technology with high performance. This is due to many merits of IGZO TFTs, such as high mobility, excellent uniformity over large area, and low cost. In recent years, IGZO TFTs with dual gate structure have attracted enormous attention. Compared with the conventional single gate IGZO TFTs, the dual gate IGZO TFTs have many advantages including increased driving ability, reduced leakage current, and improved reliability for both negative biasing stressing and positive biasing stressing. Although the measurement results of fabricated circuit samples have proven that dual gate IGZO TFTs are beneficial for the integration of digital circuit and active matrix light emitting display with in-array or external compensation schematics, there has been no proper analytic model for dual gate IGZO TFTs to date. As the analytic model is crucial to circuit simulations, there are great difficulties in circuit designs by using dual gate IGZO TFTs. Although there are some similarities between the operating principal of the dual gate IGZO TFTs and that of the dual gate silicon-on-insulator devices, the complexity of conducting mechanism of IGZO TFTs is increased due to the existence of sub-gap density of states (DOS) in the IGZO thin film. In this paper, an analytical channel potential model for IGZO TFT with synchronized symmetric dual gate structure is proposed. Gaussian method and Lambert function are used for solving the Poisson equation. The DOS of IGZO thin film is included in the proposed model. Analytical expressions for the surface potential (S) and central potential (0) of the IGZO film are derived in detail. And the proposed channel potential model is valid for both sub-threshold and above-threshold region of IGZO TFTs. The influences of geometry of dual-gate IGZO TFT, including thickness values of gate oxide layer and IGZO layer, on the device performance are thoroughly discussed. It is found that in the case of small gate-to-source voltage (VGS), as the conducting of IGZO layer is weak, both S and 0 increase linearly with the increase of VGS due to the increase of voltage division between the oxide and IGZO layer. However, the increase of S and 0 starts to saturate once VGS is larger than threshold voltage due to the shielding of electrical field by the induced electron layer of IGZO surface. With the evolution of VGS, the calculated results of S and 0 by using the proposed dual gate IGZO TFT model are in good agreement with the numerical results by technology computer aided design simulation method. Therefore, the proposed model is promising for new IGZO TFT electronics design automation tool development.
      通信作者: 黄生祥, hsx351@csu.edu.cn
    • 基金项目: 湖南省科技计划(批准号:2015JC3041)资助的课题.
      Corresponding author: Huang Sheng-Xiang, hsx351@csu.edu.cn
    • Funds: Project supported by the Science and Technology Project of Hunan Province, China (Grant No. 2015JC3041).
    [1]

    Kim Y, Kim Y, Lee H 2014 J. Dis. Technol. 10 80

    [2]

    Zheng Z, Jiang J, Guo J, Sun J, Yang J 2016 Organic Electron. 33 311

    [3]

    Liu F, Qian C, Sun J, Liu P, Huang Y, Gao Y, Yang J 2016 Appl. Phys. A 122 311

    [4]

    Han D D, Chen Z F, Cong Y Y, Yu W, Zhang X, Wang Y 2016 IEEE Trans. Electron Dev. 63 3360

    [5]

    Cai J, Han D D, Geng Y F, Wang W, Wang L L, Zhang S D, Wang Y 2013 IEEE Trans. Electron Dev. 60 2432

    [6]

    Jeon C, Mativenga M, Geng D, Jang J 2016 SID Symposium (San Francisco: Wiley) 47 65

    [7]

    Smith J T, Shah S S, Goryll M, Stowell J R, Allee D R 2014 IEEE Sensors J. 14 937

    [8]

    Tai Y H, Chou L S, Chiu H L, Chen B C 2012 IEEE Electron Dev. Lett. 33 393

    [9]

    Kaneyasu M, Toyotaka K, Shishido H, Isa T, Eguchi S, Miyake H, Hirakata Y, Yamazaki S, Dobashi M, Fujiwara C 2015 J. Soc. Inform. Dis. 46 857

    [10]

    Baek G, Bie L, Abe K, Kumomi H, Kanicki J 2014 IEEE Trans. Electron Dev. 61 1109

    [11]

    Hong S, Lee S, Mativenga M, Jang J 2014 IEEE Electron Dev. Lett. 35 93

    [12]

    He X, Wang L Y, Xiao X, Deng W, Zhang L T, Chan M S, Zhang S D 2014 IEEE Electron Dev. Lett. 35 927

    [13]

    Chang K J, Chen W T, Chang W C, Chen W P, Nien C C, Shih T H, Lu H H, Lin Y 2015 SID Symposium (San Jose: Wiley) 46 1203

    [14]

    Baudrand H, Ahmed A A 1984 IEEE Electron. Lett. 20 33

    [15]

    Young K K 1989 IEEE Trans. Electron Dev. 36 399

    [16]

    Yuan T 2000 IEEE Electron Dev. Lett. 21 245

    [17]

    Ortiz-Conde A, Garca-Snchez F J, Malobabic S 2005 IEEE Trans. Electron Dev. 52 1669

    [18]

    Wang C C, Hu Z J, He X, Liao C W, Zhang S D 2016 IEEE Trans. Electron Dev. 63 3800

    [19]

    Krner W, Urban D F, Elssser C 2013 J. Appl. Phys. 114 163704

    [20]

    Torricelli F, ONeill K, Gelinck G H, Myny K, Genoe J, Cantatore E 2012 IEEE Trans. Electron Dev. 59 1520

    [21]

    Alvarado J, Iiguez B, Estrada M, Flandre D, Cerdeira A 2010 Int. J. Number. Model. Electron. Netw. Dev. Fields 23 88

    [22]

    Hoorfar A, Hassani M 2008 J. Inequalities Pure Appl. Math. 9 51

    [23]

    Enz C C, Krummenacher F, Vittoz E A 1995 Analog Integr. Circuits Process. 8 83

    [24]

    Chatterjee A, Machala C F, Yang P 1995 IEEE Trans. Computer-Aided Design Integr. Syst. 14 1193

  • [1]

    Kim Y, Kim Y, Lee H 2014 J. Dis. Technol. 10 80

    [2]

    Zheng Z, Jiang J, Guo J, Sun J, Yang J 2016 Organic Electron. 33 311

    [3]

    Liu F, Qian C, Sun J, Liu P, Huang Y, Gao Y, Yang J 2016 Appl. Phys. A 122 311

    [4]

    Han D D, Chen Z F, Cong Y Y, Yu W, Zhang X, Wang Y 2016 IEEE Trans. Electron Dev. 63 3360

    [5]

    Cai J, Han D D, Geng Y F, Wang W, Wang L L, Zhang S D, Wang Y 2013 IEEE Trans. Electron Dev. 60 2432

    [6]

    Jeon C, Mativenga M, Geng D, Jang J 2016 SID Symposium (San Francisco: Wiley) 47 65

    [7]

    Smith J T, Shah S S, Goryll M, Stowell J R, Allee D R 2014 IEEE Sensors J. 14 937

    [8]

    Tai Y H, Chou L S, Chiu H L, Chen B C 2012 IEEE Electron Dev. Lett. 33 393

    [9]

    Kaneyasu M, Toyotaka K, Shishido H, Isa T, Eguchi S, Miyake H, Hirakata Y, Yamazaki S, Dobashi M, Fujiwara C 2015 J. Soc. Inform. Dis. 46 857

    [10]

    Baek G, Bie L, Abe K, Kumomi H, Kanicki J 2014 IEEE Trans. Electron Dev. 61 1109

    [11]

    Hong S, Lee S, Mativenga M, Jang J 2014 IEEE Electron Dev. Lett. 35 93

    [12]

    He X, Wang L Y, Xiao X, Deng W, Zhang L T, Chan M S, Zhang S D 2014 IEEE Electron Dev. Lett. 35 927

    [13]

    Chang K J, Chen W T, Chang W C, Chen W P, Nien C C, Shih T H, Lu H H, Lin Y 2015 SID Symposium (San Jose: Wiley) 46 1203

    [14]

    Baudrand H, Ahmed A A 1984 IEEE Electron. Lett. 20 33

    [15]

    Young K K 1989 IEEE Trans. Electron Dev. 36 399

    [16]

    Yuan T 2000 IEEE Electron Dev. Lett. 21 245

    [17]

    Ortiz-Conde A, Garca-Snchez F J, Malobabic S 2005 IEEE Trans. Electron Dev. 52 1669

    [18]

    Wang C C, Hu Z J, He X, Liao C W, Zhang S D 2016 IEEE Trans. Electron Dev. 63 3800

    [19]

    Krner W, Urban D F, Elssser C 2013 J. Appl. Phys. 114 163704

    [20]

    Torricelli F, ONeill K, Gelinck G H, Myny K, Genoe J, Cantatore E 2012 IEEE Trans. Electron Dev. 59 1520

    [21]

    Alvarado J, Iiguez B, Estrada M, Flandre D, Cerdeira A 2010 Int. J. Number. Model. Electron. Netw. Dev. Fields 23 88

    [22]

    Hoorfar A, Hassani M 2008 J. Inequalities Pure Appl. Math. 9 51

    [23]

    Enz C C, Krummenacher F, Vittoz E A 1995 Analog Integr. Circuits Process. 8 83

    [24]

    Chatterjee A, Machala C F, Yang P 1995 IEEE Trans. Computer-Aided Design Integr. Syst. 14 1193

  • [1] 苏乐, 王彩琳, 谭在超, 罗寅, 杨武华, 张超. 功率金属-氧化物半导体场效应晶体管静电放电栅源电容解析模型的建立. 物理学报, 2024, 73(11): 118501. doi: 10.7498/aps.73.20240144
    [2] 张召泉, 时朋朋, 苟晓凡. 铁磁板磁巴克豪森应力检测的解析模型. 物理学报, 2022, 71(9): 097501. doi: 10.7498/aps.71.20212253
    [3] 覃婷, 黄生祥, 廖聪维, 于天宝, 罗衡, 刘胜, 邓联文. 铟镓锌氧薄膜晶体管的悬浮栅效应研究. 物理学报, 2018, 67(4): 047302. doi: 10.7498/aps.67.20172325
    [4] 邵龑, 丁士进. 氢元素对铟镓锌氧化物薄膜晶体管性能的影响. 物理学报, 2018, 67(9): 098502. doi: 10.7498/aps.67.20180074
    [5] 张卿, 武新军. 基于电磁波反射和折射理论的平底孔试件脉冲涡流检测解析模型. 物理学报, 2017, 66(3): 038102. doi: 10.7498/aps.66.038102
    [6] 宁洪龙, 胡诗犇, 朱峰, 姚日晖, 徐苗, 邹建华, 陶洪, 徐瑞霞, 徐华, 王磊, 兰林锋, 彭俊彪. 铜-钼源漏电极对非晶氧化铟镓锌薄膜晶体管性能的改善. 物理学报, 2015, 64(12): 126103. doi: 10.7498/aps.64.126103
    [7] 李世松, 张钟华, 赵伟, 黄松岭, 傅壮. 一种用保角变换求解带电Kelvin电容器边缘效应所产生静电力的解析模型. 物理学报, 2015, 64(6): 060601. doi: 10.7498/aps.64.060601
    [8] 张娜, 曹猛, 崔万照, 胡天存, 王瑞, 李韵. 金属规则表面形貌影响二次电子产额的解析模型. 物理学报, 2015, 64(20): 207901. doi: 10.7498/aps.64.207901
    [9] 吴良海, 张骏, 范之国, 高隽. 多次散射因素影响下天空偏振光模式的解析模型. 物理学报, 2014, 63(11): 114201. doi: 10.7498/aps.63.114201
    [10] 韩名君, 柯导明, 迟晓丽, 王敏, 王保童. 超短沟道MOSFET电势的二维半解析模型. 物理学报, 2013, 62(9): 098502. doi: 10.7498/aps.62.098502
    [11] 李帅帅, 梁朝旭, 王雪霞, 李延辉, 宋淑梅, 辛艳青, 杨田林. 高迁移率非晶铟镓锌氧化物薄膜晶体管的制备与特性研究. 物理学报, 2013, 62(7): 077302. doi: 10.7498/aps.62.077302
    [12] 周春宇, 张鹤鸣, 胡辉勇, 庄奕琪, 吕懿, 王斌, 李妤晨. 应变Si NMOSFET漏电流解析模型. 物理学报, 2013, 62(23): 237103. doi: 10.7498/aps.62.237103
    [13] 梁京辉, 张晓锋, 乔鸣忠, 夏益辉, 李耕, 陈俊全. 离散式任意充磁角度Halbach永磁电机解析模型研究. 物理学报, 2013, 62(15): 150501. doi: 10.7498/aps.62.150501
    [14] 苏丽娜, 顾晓峰, 秦华, 闫大为. 单电子晶体管电流解析模型及数值分析. 物理学报, 2013, 62(7): 077301. doi: 10.7498/aps.62.077301
    [15] 刘保军, 蔡理. 临近空间单粒子串扰的解析模型. 物理学报, 2012, 61(19): 196103. doi: 10.7498/aps.61.196103
    [16] 李聪, 庄奕琪, 韩茹, 张丽, 包军林. 非对称HALO掺杂栅交叠轻掺杂漏围栅MOSFET的解析模型. 物理学报, 2012, 61(7): 078504. doi: 10.7498/aps.61.078504
    [17] 曹磊, 刘红侠, 王冠宇. 异质栅全耗尽应变硅金属氧化物半导体模型化研究. 物理学报, 2012, 61(1): 017105. doi: 10.7498/aps.61.017105
    [18] 刘景旺, 杜振辉, 李金义, 齐汝宾, 徐可欣. DFB激光二极管电流-温度调谐特性的解析模型. 物理学报, 2011, 60(7): 074213. doi: 10.7498/aps.60.074213
    [19] 栾苏珍, 刘红侠, 贾仁需, 蔡乃琼. 高k介质异质栅全耗尽SOI MOSFET二维解析模型. 物理学报, 2008, 57(6): 3807-3812. doi: 10.7498/aps.57.3807
    [20] 陈卫兵, 徐静平, 邹 晓, 李艳萍, 许胜国, 胡致富. 小尺寸MOSFET隧穿电流解析模型. 物理学报, 2006, 55(10): 5036-5040. doi: 10.7498/aps.55.5036
计量
  • 文章访问数:  6974
  • PDF下载量:  315
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-01-18
  • 修回日期:  2017-02-21
  • 刊出日期:  2017-05-05

/

返回文章
返回