搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氧化锌纳米线耦合硅金字塔微纳复合结构的制备及其自清洁特性研究

吴以治 许小亮

引用本文:
Citation:

氧化锌纳米线耦合硅金字塔微纳复合结构的制备及其自清洁特性研究

吴以治, 许小亮

Fabrication of ZnO nanowire-silicon pyramid hierarchical structure, and its self-cleaning

Wu Yi-Zhi, Xu Xiao-Liang
PDF
导出引用
  • 光伏器件粉尘堆积伴随的遮光效应极其严重,可导致太阳能电池的光电转换效率降低一半以上,这是任何其他提高光伏器件性能的高新技术所不能弥补的.本文根据Cassie-Baxter理论构建出一种基于光伏器件应用的超疏水自清洁微纳复合结构,即氧化锌纳米线耦合硅金字塔.通过调控硅金字塔的尺寸和均匀性,使其尺寸效应不被遮盖以符合存在微米构型的疏水要求,同时尽量不破坏硅光伏器件绒面的减反性能.本文采用水热法在金字塔表面生长氧化锌纳米线的方案,通过系统的实验设计,首次成功地制备了符合光伏器件应用的接触角高达154,且接触角滞后小于10的超疏水自清洁微纳复合结构.此外,我们不仅发现硅金字塔的刻蚀存在高温促进硅金字塔刻蚀的温度效应和硅金字塔顶部有圆润-方正-圆润的时间效应,还从物理上对高温促进刻蚀、晶体的各向异性刻蚀导致的硅金字塔和我们所制备的氧化锌纳米线耦合硅金字塔复合结构的陷光效应等进行了比较充分的分析.
    The transmittance diminishment of solar cells, caused by dust accumulation is higher than 52.54% every year (2006 Energ. Convers. Manage. 47 3192), which greatly reduces their overall efficiencies of power conversion. Any other strategy for improving the photovoltaic device cannot compensate for this loss caused by the dust. However, this critical issue has not received much attention. In this work, a kind of self-cleaning coating consisting of ZnO nanowire-silicon pyramid hierarchical structures is proposed to overcome the dust accumulation on the photovoltaic device. The principle of designing this self-cleaning is based on the Cassie-Baxter theory. Both the micron size effect for superhydrophobicity and the performance of anti-reflection of light of the substrate should be retained, which are the requirements of application of solar cell. The pyramid-like silicon (named silicon pyramid, hereafter) is fabricated by simple chemical etching. The effects of isopropanol, KOH, etching time, and etching temperature on the morphology of the silicon pyramid are investigated by using systematic statistical design and analysis method, to obtain the best distribution and size of the silicon pyramid. In the systematic statistical design and analysis method, the pick-the-winner rule is adopted. Eventually, we find that the optimized conditions for etching silicon pyramid (according the requirements of self-clean) are as follows: etching time is 60 min, etching temperature is 95℃, and mixture is 80 mL DI water, 2.9598 g KOH and 20 mL isopropanol. Moreover, ZnO nanowire-silicon pyramid hierarchical structures for the application of photovoltaic device are successfully hydrothermally grown on the substrate of silicon pyramid for the first time. The obtained self-cleaning coating consists of ZnO nanowire (with a diameter of 136 nm) and silicon pyramid (with a size of 8-11 m). The surface of this coating possesses superhydrophobic properties, i.e., a water contact angle of 154 and a contact angle hysteresis of less than 10, after being modified by heptadecafluorodecyltrimethoxysilane. Also, our obtained ZnO nanowire-silicon pyramid hierarchical structures have quite a good performance of anti-reflection, which appear gray in the normal environment. And the mechanism for it is postulated. Importantly, some new phenomena, such as high temperature improving the growth of silicon pyramid, are also revealed. Besides, the physical mechanism for high temperature improving the growth of silicon pyramid and anisotropic etching of silicon substrate is discussed. It is indicated that the anisotropic behavior is attributed to small difference in energy level (being a function of the crystal orientation) between the back-bond surface states. The method we proposed to achieve self-cleaning coating is versatile, reliable and low-cost, which is also compatible with contemporary micro-and nano-fabrication processes.
      通信作者: 吴以治, wuyizhi@tjpu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11504264)资助的课题.
      Corresponding author: Wu Yi-Zhi, wuyizhi@tjpu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11504264).
    [1]

    Elminir H K, Ghitas A E, Hamid R H, El-Hussainy F, Beheary M M, Abdel-Moneim K M 2006 Energ. Convers. Manage. 47 3192

    [2]

    Guo Z, Chen X, Li J, Liu J H, Huang X J 2011 Langmuir 27 6193

    [3]

    Gong M G, Xu X L, Yang Z, Liu Y Y, L H F, L L 2009 Nanotechnology 20 165602

    [4]

    Gong M G, Liu Y Y, Xu X L 2010 Chin. Phys. B 19 106801

    [5]

    Gong M G, Xu X L, Yang Z, Liu Y S, Liu L 2010 Chin. Phys. B 19 056701

    [6]

    Wang H J, Yu J, Wu Y Z, Shao W J, Xu X L 2014 J. Mater. Chem. A 2 5010

    [7]

    Yang Z, Wu Y Z, Ye Y F, Gong M G, Xu X L 2012 Chin. Phys. B 21 126801

    [8]

    Cassie A B D, Baxter S 1944 Trans. Faraday Soc. 40 546

    [9]

    Inomata Y, Fukui K, Shirasawa K 1997 Sol. Energ. Mat. Sol. C 48 237

    [10]

    Xiu Y, Zhu L, Hess D W, Wong C P 2007 Nano Lett. 7 3388

    [11]

    Baek S, Kang G, Kang M, Lee C W, Kim K 2016 Sci. Rep. 6 1

    [12]

    Zhou C L, Wang W J, Zhao L, Li H L, Diao H W, Cao X N 2010 Acta Phys. Sin. 59 5777 (in Chinese) [周春兰, 王文静, 赵雷, 李海玲, 刁宏伟, 曹晓宁 2010 物理学报 59 5777]

    [13]

    Xi Z Q, Yang D R, Que D L 2003 Sol. Energ. Mat. Sol. C 77 255

    [14]

    Xi Z Q, Yang D R, Dan W, Jun C, Li X H, Que D L 2004 Renew. Energ. 29 2101

    [15]

    Tian J T, Feng S M, Wang K X, Xu H T, Yang S Q, Liu F, Huang J H, Pei J 2012 Acta Phys. Sin. 61 066803 (in Chinese) [田嘉彤, 冯仕猛, 王坤霞, 徐华天, 杨树泉, 刘峰, 黄建华, 裴俊 2012 物理学报 61 066803]

    [16]

    Pan S, Feng S M 2012 Semicond. Optoelectron. 33 214 (in Chinese) [潘盛, 冯仕猛 2012 半导体光电 33 214]

    [17]

    Zhang T R, Dong W J, Keeter-Brewer, M, Konar S, Njabon R N, Tian Z R 2006 J. Am. Chem. Soc. 128 10960

    [18]

    Wang Z L, Song J H 2006 Science 312 242

    [19]

    Lincot D 2010 MRS Bull. 35 778

    [20]

    Saito N, Haneda H 2011 Sci. Technol. Adv. Mat. 12 064707

    [21]

    Xu S, Wang Z L 2011 Nano Res. 4 1013

    [22]

    Wang Z W, Cai J Q, Wu Y Z, Wang H J, Xu X L 2015 Chin. Phys. B 24 017802

    [23]

    Baxter S, Cassie A B D 1945 J. Textile Institute Trans. 36 T67

    [24]

    Nishimoto Y, Namba K 2000 Sol. Energ. Mat. Sol. C 61 393

    [25]

    Seidel H, Csepregi L, Heuberger A, Baumgrtel H 1990 J. Electrochem. Soc. 137 3612

    [26]

    Liu Y, Lin Z Y, Lin W, Moon K S, Wong C P 2012 ACS Appl. Mater. Int. 4 3959

    [27]

    Gao Y Q, Gereige I, El Labban A, Cha D, Isimjan T T, Beaujuge P M 2014 ACS Appl. Mater. Int. 6 2219

    [28]

    Chen X H, Bin Yang G, Kong L H, Dong D, Yu L G, Chen J M, Zhang P Y 2009 Cryst. Growth Des. 9 2656

    [29]

    Wang H, Yang Z, Yu J, Wu Y, Shao W, Jiang T, Xu X 2014 Rsc Adv. 4 33730

  • [1]

    Elminir H K, Ghitas A E, Hamid R H, El-Hussainy F, Beheary M M, Abdel-Moneim K M 2006 Energ. Convers. Manage. 47 3192

    [2]

    Guo Z, Chen X, Li J, Liu J H, Huang X J 2011 Langmuir 27 6193

    [3]

    Gong M G, Xu X L, Yang Z, Liu Y Y, L H F, L L 2009 Nanotechnology 20 165602

    [4]

    Gong M G, Liu Y Y, Xu X L 2010 Chin. Phys. B 19 106801

    [5]

    Gong M G, Xu X L, Yang Z, Liu Y S, Liu L 2010 Chin. Phys. B 19 056701

    [6]

    Wang H J, Yu J, Wu Y Z, Shao W J, Xu X L 2014 J. Mater. Chem. A 2 5010

    [7]

    Yang Z, Wu Y Z, Ye Y F, Gong M G, Xu X L 2012 Chin. Phys. B 21 126801

    [8]

    Cassie A B D, Baxter S 1944 Trans. Faraday Soc. 40 546

    [9]

    Inomata Y, Fukui K, Shirasawa K 1997 Sol. Energ. Mat. Sol. C 48 237

    [10]

    Xiu Y, Zhu L, Hess D W, Wong C P 2007 Nano Lett. 7 3388

    [11]

    Baek S, Kang G, Kang M, Lee C W, Kim K 2016 Sci. Rep. 6 1

    [12]

    Zhou C L, Wang W J, Zhao L, Li H L, Diao H W, Cao X N 2010 Acta Phys. Sin. 59 5777 (in Chinese) [周春兰, 王文静, 赵雷, 李海玲, 刁宏伟, 曹晓宁 2010 物理学报 59 5777]

    [13]

    Xi Z Q, Yang D R, Que D L 2003 Sol. Energ. Mat. Sol. C 77 255

    [14]

    Xi Z Q, Yang D R, Dan W, Jun C, Li X H, Que D L 2004 Renew. Energ. 29 2101

    [15]

    Tian J T, Feng S M, Wang K X, Xu H T, Yang S Q, Liu F, Huang J H, Pei J 2012 Acta Phys. Sin. 61 066803 (in Chinese) [田嘉彤, 冯仕猛, 王坤霞, 徐华天, 杨树泉, 刘峰, 黄建华, 裴俊 2012 物理学报 61 066803]

    [16]

    Pan S, Feng S M 2012 Semicond. Optoelectron. 33 214 (in Chinese) [潘盛, 冯仕猛 2012 半导体光电 33 214]

    [17]

    Zhang T R, Dong W J, Keeter-Brewer, M, Konar S, Njabon R N, Tian Z R 2006 J. Am. Chem. Soc. 128 10960

    [18]

    Wang Z L, Song J H 2006 Science 312 242

    [19]

    Lincot D 2010 MRS Bull. 35 778

    [20]

    Saito N, Haneda H 2011 Sci. Technol. Adv. Mat. 12 064707

    [21]

    Xu S, Wang Z L 2011 Nano Res. 4 1013

    [22]

    Wang Z W, Cai J Q, Wu Y Z, Wang H J, Xu X L 2015 Chin. Phys. B 24 017802

    [23]

    Baxter S, Cassie A B D 1945 J. Textile Institute Trans. 36 T67

    [24]

    Nishimoto Y, Namba K 2000 Sol. Energ. Mat. Sol. C 61 393

    [25]

    Seidel H, Csepregi L, Heuberger A, Baumgrtel H 1990 J. Electrochem. Soc. 137 3612

    [26]

    Liu Y, Lin Z Y, Lin W, Moon K S, Wong C P 2012 ACS Appl. Mater. Int. 4 3959

    [27]

    Gao Y Q, Gereige I, El Labban A, Cha D, Isimjan T T, Beaujuge P M 2014 ACS Appl. Mater. Int. 6 2219

    [28]

    Chen X H, Bin Yang G, Kong L H, Dong D, Yu L G, Chen J M, Zhang P Y 2009 Cryst. Growth Des. 9 2656

    [29]

    Wang H, Yang Z, Yu J, Wu Y, Shao W, Jiang T, Xu X 2014 Rsc Adv. 4 33730

  • [1] 肖思, 秦应霖, 王慧, 王鹏, 马海铭, 何军, 王迎威. 辐射对称金字塔型剪纸的力学行为. 物理学报, 2020, 69(9): 096102. doi: 10.7498/aps.69.20200112
    [2] 吴美梅, 张超, 张灿, 孙倩倩, 刘玫. 三维金字塔立体复合基底表面增强拉曼散射特性. 物理学报, 2020, 69(5): 058103. doi: 10.7498/aps.69.20191636
    [3] 陈全胜, 刘尧平, 陈伟, 赵燕, 吴俊桃, 王燕, 杜小龙. 不同硅晶面指数上的类倒金字塔结构研究与分析. 物理学报, 2018, 67(22): 226801. doi: 10.7498/aps.67.20181275
    [4] 张玮祎, 胡明, 刘星, 李娜, 闫文君. 硅纳米线/氧化钒纳米棒复合材料的制备与气敏性能研究. 物理学报, 2016, 65(9): 090701. doi: 10.7498/aps.65.090701
    [5] 齐俊杰, 徐旻轩, 胡小峰, 张跃. 一维纳米氧化锌自驱动紫外探测器的构建与性能研究. 物理学报, 2015, 64(17): 172901. doi: 10.7498/aps.64.172901
    [6] 章建辉, 韩季刚. 控制纳米结构以调控氧化锌的发光、磁性和细胞毒性. 物理学报, 2015, 64(9): 097702. doi: 10.7498/aps.64.097702
    [7] 胡梦珠, 周思阳, 韩琴, 孙华, 周丽萍, 曾春梅, 吴兆丰, 吴雪梅. 紫外表面等离激元在基于氧化锌纳米线的半导体-绝缘介质-金属结构中的输运特性研究. 物理学报, 2014, 63(2): 029501. doi: 10.7498/aps.63.029501
    [8] 邱康生, 赵彦辉, 刘相波, 冯宝华, 许秀来. 弯曲氧化锌微米线微腔中的回音壁模. 物理学报, 2014, 63(17): 177802. doi: 10.7498/aps.63.177802
    [9] 胡杰, 邓霄, 桑胜波, 李朋伟, 李刚, 张文栋. 微流控技术制备ZnO纳米线阵列及其气敏特性. 物理学报, 2014, 63(20): 207102. doi: 10.7498/aps.63.207102
    [10] 王平, 郭立新, 杨银堂, 张志勇. 铝氮共掺杂氧化锌纳米管电子结构的第一性原理研究. 物理学报, 2013, 62(5): 056105. doi: 10.7498/aps.62.056105
    [11] 王乐, 刘阳, 徐国堂, 李晓艳, 董前民, 黄杰, 梁培. 分子团簇表面吸附敏化ZnO纳米线的第一性原理研究. 物理学报, 2012, 61(6): 063103. doi: 10.7498/aps.61.063103
    [12] 张金玲, 吕英华, 喇东升, 廖蕾, 白雪冬. 氧化锌纳米线的紫外光耦合增强场电子发射特性. 物理学报, 2012, 61(12): 128503. doi: 10.7498/aps.61.128503
    [13] 秦杰明, 田立飞, 赵东旭, 蒋大勇, 曹建明, 丁梦, 郭振. 一维氧化锌纳米结构生长及器件制备研究进展. 物理学报, 2011, 60(10): 107307. doi: 10.7498/aps.60.107307
    [14] 刘强, 方锦清, 李永. 多种形式的加权广义Farey组织网络金字塔的复杂性. 物理学报, 2010, 59(6): 3704-3714. doi: 10.7498/aps.59.3704
    [15] 李永, 方锦清, 刘强. 多种确定性广义Farey组织的网络金字塔. 物理学报, 2010, 59(5): 2991-3000. doi: 10.7498/aps.59.2991
    [16] 王建, 李会峰, 黄运华, 余海波, 张跃. 碳纳米管/四针状纳米氧化锌复合涂层的电磁波吸收特性. 物理学报, 2010, 59(3): 1946-1951. doi: 10.7498/aps.59.1946
    [17] 周春兰, 王文静, 赵雷, 李海玲, 刁宏伟, 曹晓宁. 单晶硅表面均匀小尺寸金字塔制备及其特性研究. 物理学报, 2010, 59(8): 5777-5783. doi: 10.7498/aps.59.5777
    [18] 李会峰, 高祥熙, 黄运华, 王建, 张跃, 赵婧. 掺铟氧化锌纳米阵列的制备、结构及性质研究. 物理学报, 2009, 58(4): 2702-2706. doi: 10.7498/aps.58.2702
    [19] 孙 晖, 张琦锋, 吴锦雷. 基于氧化锌纳米线的紫外发光二极管. 物理学报, 2007, 56(6): 3479-3482. doi: 10.7498/aps.56.3479
    [20] 姚志涛, 孙新瑞, 许海军, 姜卫粉, 肖顺华, 李新建. 氧化锌/硅纳米孔柱阵列的结构和光致发光特性研究. 物理学报, 2007, 56(10): 6098-6103. doi: 10.7498/aps.56.6098
计量
  • 文章访问数:  5476
  • PDF下载量:  289
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-01-09
  • 修回日期:  2017-01-27
  • 刊出日期:  2017-05-05

/

返回文章
返回