-
三元合金CdSxSe1–x兼具CdS和CdSe的物理性质, 其带隙可以通过改变元素的组分来调节. 该合金具有优异的光电性能, 在光电器件方面具有潜在的应用价值. 本文首先通过热蒸发法制备了单晶CdS0.42Se0.58纳米带器件, 在550 nm光照及1 V偏压下, 器件的光电流与暗电流之比为1.24×103, 光响应度达60.1 A/W, 外量子效率达1.36×104%, 探测率达2.16×1011 Jones, 其上升/下降时间约为41.1/41.5 ms. 其次, 通过Au纳米岛修饰该CdS0.42Se0.58纳米带后, 器件的光电性能显著提升, 在550 nm光照及1 V偏压下, 器件的光开关比、响应度、外量子效率及探测率分别提高了5.4倍、11.8倍、11.8倍和10.6倍, 并且上升/下降时间均缩短了近一半. 最后基于Au纳米岛的局域表面等离子共振解释了器件光电性能增强的微观物理机制, 为在不增大器件面积的前提下, 制备高性能光电探测器提供了一种有效策略.
-
关键词:
- CdSSe纳米带 /
- Au纳米岛 /
- 局域表面等离子体共振 /
- 光电探测器
Ternary alloy CdSxSe1–x has the physical properties of CdS and CdSe, and its band gap can be adjusted by changing the component ratio of the elements. The alloy has excellent photoelectric properties and has potential application in optoelectronic devices. Although one has made some research progress of the CdSSe-based photodetectors, their performances are still far from the commercial requirements, so how to improve the performance of the device is the focus of current research. In this work, a single crystal CdS0.42Se0.58 nanobelt device is first prepared by thermal evaporation. Under 550 nm illumination and 1 V bias, the ratio of photocurrent to dark current of the device is 1.24×103, the responsivity arrives at 60.1 A/W, and the external quantum efficiency reaches 1.36×104%, and the detectivity is 2.16×1011 Jones. Its rise time and fall time are about 41.1/41.5 ms, respectively. Secondly, after the CdSSe nanobelt is decorated by Au nanoislands, the optoelectronic performance of the device is significantly improved. Under 550 nm illumination and 1 V bias, the Ip/Id ratio, responsivity, external quantum efficiency and detectivity of the device are increased by 5.4, 11.8, 11.8 and 10.6 times, respectively, and the rise time and fall time are both reduced to half of counterparts of single CdSSe nanobelt. Finally, the microscopic physical mechanism of the enhanced optoelectronic performance of the device is explained based on localized surface plasmon resonance of Au nanoislands. After the combination of gold nanoislands and CdSSe nanobelt, the difference in Fermi level between them results in the transfer of electrons from CdSSe nanobelt to Au nanoislands, thus forming an internal electric field at the interface, which is directed from CdSSe nanobelt to Au nanoislands. Under illumination, the electrons in the Au nanoislands acquire enough energy to jump over the Schottky barrier because of localized surface plasmon resonance. These photoexcited hot electrons are trapped and stored in extra energy levels above the conduction band minimum, and then are cooled down to the band edge, thus realizing the transfer of electrons from Au nanoislands to CdSSe nanobelt. Moreover, the internal electric field also greatly promotes the transfer of hot electrons from Au nanoislands to CdSSe nanobelt, and inhibits the recombination of carriers at the interface, resulting in large photocurrent. Our work provides an effective strategy for fabricating high-performance photodetectors without increasing the device area.-
Keywords:
- CdSSe nanobelt /
- Au nanoisland /
- localized surface plasmon resonance /
- photodetector
[1] Fang X S, Bando Y, Liao M Y, Gautam U K, Zhi C Y, Dierre B, Liu B D, Zhai T Y, Sekiguchi T, Koide Y, Golberg D S 2009 Adv. Mater. 21 2034Google Scholar
[2] An Q W, Meng X J 2016 J. Mater. Sci-Mater. El. 27 11952Google Scholar
[3] Xu S, Qin Y, Xu C, Wei Y G, Yang R S, Wang Z L 2010 Nat. Nanotechnol. 5 366Google Scholar
[4] Zhai T Y, Li L, Ma Y, Liao M Y, Wang X, Fang X S, Yao J N, Bando Y, Golberg D 2011 Chem. Soc. Rev. 40 2986Google Scholar
[5] Hong Y J, Saroj R K, Park W I, Yi G C 2021 Apl Mater. 9 060907Google Scholar
[6] Cao F R, Tian W, Gu B K, Ma Y L, Lu H, Li L 2017 Nano Res. 10 2244Google Scholar
[7] Teng F, Zheng L X, Hu K, Chen H Y, Li Y M, Zhang Z M, Fang X S 2016 J. Mater. Chem. C 4 8416Google Scholar
[8] Jiang Y, Zhang W J, Jie J S, Meng X M, Fan X, Lee S T 2007 Adv. Funct. Mater. 17 1795Google Scholar
[9] Li L, Wu P C, Fang X S, Zhai T Y, Dai L, Liao M Y, Koide Y, Wang H Q, Bando Y, Golberg D 2010 Adv. Mater. 22 3161Google Scholar
[10] Fang X S, Zhai T Y, Gautam U K, Li L, Wu L M, Yoshio B, Golberg D 2011 Prog. Mater. Sci. 56 175Google Scholar
[11] Fang X S, Xiong S L, Zhai T Y, Bando Y, Liao M Y, Gautam U K, Koide Y, Zhang X, Qian Y T, Golberg D 2009 Adv. Mater. 21 5016Google Scholar
[12] Chuo H X, Wang T Y, Zhang W G 2014 J. Alloy. Compd. 606 231Google Scholar
[13] Peng M F, Wen Z, Shao M W, Sun X H 2017 J. Mater. Chem. C 5 7521Google Scholar
[14] Hassanien A S, Akl A A 2016 Superlattice. Microst. 89 153Google Scholar
[15] Liu Y K, Zapien J A, Shan Y Y, Geng C Y, Lee C S, Lee S T 2005 Adv. Mater. 17 1372Google Scholar
[16] Rani T D, Tamilarasan K, Elangovan E, Leela S, Ramamurthi K, Thangaraj K, Himcinschi C Trenkmann I, Schulze S, Hietschold M, Liebig A, Salvan G, Zahn D R T 2015 Superlattice. Microst. 77 325Google Scholar
[17] Perna G, Pagliara S, Capozzi V, Ambrico M, Ligonzo T 1999 Thin Solid Films 349 220Google Scholar
[18] Ding C J, Lu T Q, Wazir N, Ma W F, Guo S, Xin Y, Li A, Liu R B, Zou B S 2021 Acs Appl. Mater. Inter. 13 30959Google Scholar
[19] Guo S, Li Z S, Song G L, Zou B S, Wang X X, Liu R B 2015 J. Alloy. Compd. 649 793Google Scholar
[20] Pan A L, Yang H, Yu R C, Zou B S 2006 Nanotechnology 17 1083Google Scholar
[21] Liu H W, Lu J P, Yang Z Y, Teng J H, Ke L, Zhang X H, Tong L M, Sow C H 2016 Sci. Rep-Uk. 6 27387Google Scholar
[22] Guo P F, Hu W, Zhang Q L, Zhuang X J, Zhu X L, Zhou H, Shan Z P, Xu J Y, Pan A L 2014 Adv. Mater. 26 2844Google Scholar
[23] Li X M, Tan Q H, Feng X B, Wang Q J, Liu Y K 2018 Nanoscale Res. Lett. 13 171Google Scholar
[24] Peng M F, Xie X K, Zheng H C, Wang Y J, Zhou Q Q, Yuan G T, Ma W L, Shao M W, Wen Z, Sun X H 2018 Acs Appl. Mater. Inter. 10 43887Google Scholar
[25] Moger S N, Mahesha M G 2021 J. Alloy. Compd. 870 159479Google Scholar
[26] Choi H, Lee J P, Ko S J, Jung J W, Park H, Yoo S, Park O, Jeong J R, Park S, Kim J Y 2013 Nano Lett. 13 2204Google Scholar
[27] Halas N J 2010 Nano Lett. 10 3816Google Scholar
[28] Liang Z Q, Sun J, Jiang Y Y, Jiang L, Chen X D 2014 Plasmonics 9 859Google Scholar
[29] 管昱多 2022 博士学位论文 (长春: 吉林大学)
Guan Y D 2022 Ph. D. Dissertation (Changchun: Jilin University) (in Chinese)
[30] Li H C, Peng S, Qin K, Hong Q Q, Tan Q H, Zhang X J, Liu Y K, Lou J 2019 Phys. Status Solidi A 216 23Google Scholar
[31] Nazirzadeh M A, Atar F B, Turgut B B, Okyay A K 2014 Sci. Rep-Uk. 4 7103Google Scholar
[32] Tian H Y, Liu X, Liang Z Q, Qiu P Y, Qian X, Cui H Z, Tian J 2019 J. Colloid Interf. Sci. 557 700Google Scholar
[33] Baek S W, Park G, Noh J, Cho C, Lee C H, Seo M K, Song H, Lee J Y 2014 Acs Nano 8 3302Google Scholar
[34] Notarianni M, Vernon K, Chou A, Aljada M, Liu J Z, Motta N 2014 Sol. Energy 106 23Google Scholar
[35] Liu Y, Huang W, Chen W J, Wang X W, Guo J X, Tian H, Zhang H N, Wang Y T, Yu B, Ren T L 2019 Appl. Surf. Sci. 481 1127Google Scholar
[36] Huang J A, Luo L B 2018 Adv. Opt. Mater. 6 1701282Google Scholar
[37] Shi Z F, Li Y, Li S, Li X J, Wu D, Xu T T, Tian Y T, Chen Y S, Zhang Y T, Zhang B L 2018 Adv. Funct. Mater. 28 1707031Google Scholar
[38] Wang W Y, Klots A, Prasai D, Yang Y M, Bolotin K L, Valentine J 2015 Nano Lett. 15 7440Google Scholar
[39] Hu K, Chen H Y, Jiang M M, Teng F, Zheng L X, Fang X S 2016 Adv. Funct. Mater. 26 6641Google Scholar
[40] Lin Z M, Luo P Q, Zeng W, Lai H J, Xie W G, Deng W L, Luo Z 2020 Opt. Mater. 108 110191Google Scholar
[41] Loutfy R O, Nag D S 1984 Solar Energy Mater. 11 319Google Scholar
[42] Hossain M A, Jenning J R, Mathews N, Wang Q 2012 Phys. Chem. Chem. Phys. 14 7161Google Scholar
[43] Garcia L V, Mendivil M I, Guillen G G, Martinez J A A, Krishnan B, Avellaneda D, Castillo G A, Das Roy T K, Shaji S 2015 Appl. Surf. Sci. 336 329Google Scholar
[44] Deng J P, Li L, Gou Y C, Fang J F, Feng R, Lei Y L, Song X H, Yang Z 2020 Electrochimica Acta 356 136845Google Scholar
[45] Li C Y, Li W J, Cheng M M, Yang W Y, Tan Q H, Wang Q J, Liu Y K 2021 Adv. Opt. Mater. 9 2100927Google Scholar
[46] Li W, Valentine J 2014 Nano Lett. 14 3510Google Scholar
[47] Tauc J, Grigorovici R, Vancu A 1966 Phys. Status Solidi B 15 627Google Scholar
[48] Dong Y H, Xu L M, Zhao Y L, Wang S L, Song J Z, Zou Y S, Zeng H B 2021 Adv. Mater. Interfaces 8 2002053Google Scholar
[49] Liu F C, Shimotani H, Shang H, Kanagasekaran T, Zolyomi V, Drummond N, Fal'ko V I, Tanigaki K 2014 Acs Nano 8 752Google Scholar
[50] Xia J, Zhao Y X, Wang L, Li X Z, Gu Y Y, Cheng H Q, Meng X M 2017 Nanoscale 9 13786Google Scholar
[51] An Q W, Meng X Q, Xiong K, Qiu Y L, Lin W H 2017 J. Alloy. Compd. 726 214Google Scholar
[52] Jin B, Huang P, Zhang Q, Zhou X, Zhang X W, Li L, Su J W, Li H Q, Zhai T Y 2018 Adv. Funct. Mater. 28 1800181Google Scholar
[53] Ye Y, Gan L, Dai L, Dai Y, Guo X F, Meng H, Yu B, Shi Z J, Shang K P, Qin G G 2011 Nanoscale 3 1477Google Scholar
[54] Di T, Cheng B, Ho W, Yu J, Tang H 2019 Appl. Surf. Sci. 470 196Google Scholar
[55] Avanesian T, Christopher P 2014 J. Phys. Chem. C 118 28017Google Scholar
[56] Boerigter C, Aslam U, Linic S 2016 Acs Nano 10 6108Google Scholar
[57] Wang H L, Wang F, Xu T F, Xia H, Xie R Z, Zhou X H, Ge X, Liu W W, Zhu Y C, Sun L X, Guo J X, Ye J F, Zubair M, Luo M, Yu C H, Sun D Y, Li T X, Zhuang Q D, Fu L, Hu W D, Lu W 2021 Nano Lett. 21 7761Google Scholar
[58] Kumar A, Husale S, Srivastava A K, Dutta P K, Dhar A 2014 Nanoscale 6 8192Google Scholar
[59] Sharma A, Kumar R, Bhattacharyya B, Husale S 2016 Sci. Rep-Uk. 6 22939Google Scholar
[60] 李含春 2018 硕士学位论文 (昆明: 云南师范大学)
Li H C 2018 M. S. Dissertation (Kunming: Yunnan Normal University) (in Chinese)
[61] Zhang K, Luo T, Chen H R, Lou Z, Shen G Z 2017 J. Mater. Chem. C 5 3330Google Scholar
-
图 1 (a)和(b) CdSSe纳米带SEM图; (c) Au@CdSSe纳米带SEM图(插图为放大后的Au纳米岛的SEM图); (d)和(e) CdSSe纳米带的TEM图((e)插图为CdSSe纳米带的SAED图); (f) Au纳米粒子的TEM图
Fig. 1. (a) and (b) SEM images of CdSSe nanobelts; (c) SEM images of Au@CdSSe nanobelts (inset: SEM images of Au nanoislands (NIS)); (d) and (e) TEM images of CdSSe nanobelts (inset: SAED images of CdSSe nanobelts in (e)); (f) TEM images of Au nanoparticles.
图 5 (a) CdSSe纳米带以及Au纳米岛@CdSSe纳米带光电探测器在1 V偏压下的光谱响应图; (b)单一CdSSe纳米带及Au纳米岛的紫外-可见光光谱图(插图为带隙拟合图); (c), (d) CdSSe纳米带以及Au纳米岛@CdSSe纳米带光电探测器在550 nm单色光、0.697 mW/cm2光功率密度下的I-V图
Fig. 5. (a) Spectral response of CdSSe nanobelt and Au NIS@CdSSe nanobelt photodetectors at 1 V bias; (b) UV-visible spectrum of single CdSSe nanobelt (inset is bandgap diagram) and NIS; (c), (d) the I-V plots of CdSSe nanobelt and Au NIS@CdSSe nanobelt photodetectors under optical power density of 0.697 mW/cm2 at 550 nm.
图 6 (a) CdSSe纳米带光电探测器在550 nm单色光不同光功率密度下的I-V曲线图, 以及(b)光电流与光功率密度的函数拟合关系图; (c) Au纳米岛修饰的CdSSe纳米带光电探测器在550 nm单色光不同光功率密度下的I-V曲线图, 以及(d)光电流与光功率密度的函数拟合关系图
Fig. 6. (a) The I-V curves of CdSSe nanobelt photodetectors with different optical power densities under 550 nm light, and (b) the fitting relation diagram of the function of photocurrent and optical power density; (c) the I-V curves of the Au NIS decorated CdSSe nanobelt photodetector with different optical power densities under 550 nm light, and (d) the fitting relation diagram of the function of photocurrent and optical power density.
图 8 (a), (b) CdSSe纳米带光电探测器在550 nm光功率密度为 0.697 mW/cm2下的周期性I-t图以及单个I-t图; (c), (d) Au纳米岛@CdSSe纳米带光电探测器在550 nm光功率密度为0.697 mW/cm2下的周期性I-t图以及单个I-t图
Fig. 8. (a) and (b) Periodic I-t diagram and single I-t diagram of CdSSe nanobelt photodetector under 550 nm and optical power density of 0.697 mW/cm2; (c) and (d) the periodic I-t plots and individual I-t plots of the Au NIS@CdSSe nanobelt photodetector under 550 nm and optical power density of 0.697 mW/cm2.
图 9 Au纳米岛与CdSSe纳米带接触前后体系能带结构示意图 (a)接触前CdSSe纳米带在光激发下电子跃迁图; (b)接触后光激发下Au纳米岛@CdSSe纳米带电子转移示意图; E0为真空能级、WAu和WCdSSe为Au和CdSSe的功函数、EV和 EC为价带顶和导带底
Fig. 9. Band structure diagram of CdSSe nanoribbon before and after contact with Au NIS: (a) Electron transition diagram of pure CdSSe nanoribbon under photoexcitation; (b) schematic diagram of electron transfer of Au@CdSSe nanobelt under photoexcitation; E0 is the vacuum energy level, WAu and WCdSSe are the work functions of Au and CdSSe, EV and EC are the valence band maximum and conduction band minimum, respectively
表 1 基于其他低维度高性能光电探测器重要参数比较
Table 1. Comparison of important parameters based on other low-dimension high-performance photodetectors.
Device structure Bias voltage/V EQE/% R/(A·W–1) Ip/Id D*/Jones Rise/decay time Ref. CdS0.76Se0.24 NBs 1 19.1 10.4 (674 nm) 816 — 1.62/4.70 ms [23] 2D CdS0.14Se0.86 flaks 5 1.94×103 703 (450 nm) 23 3.41×1010 39/39 ms [50] CdSe Nanotubes 1 — 76 (氙灯) 1.29×103 2.75×1010 1.85/0.2 s [51] 2D CdS flake 2 — 0.18 (Visible) 103 2.71×109 14/8 ms [52] CdSSe NBs 1 1.36×104 60.1 (550 nm) 1.24×103 2.16×1011 41.1/41.5 ms This work Au NIS@CdSSe NBs 1 1.61×105 711.4 (550 nm) 6.70×103 2.29×1012 22.6/23.0 ms This work -
[1] Fang X S, Bando Y, Liao M Y, Gautam U K, Zhi C Y, Dierre B, Liu B D, Zhai T Y, Sekiguchi T, Koide Y, Golberg D S 2009 Adv. Mater. 21 2034Google Scholar
[2] An Q W, Meng X J 2016 J. Mater. Sci-Mater. El. 27 11952Google Scholar
[3] Xu S, Qin Y, Xu C, Wei Y G, Yang R S, Wang Z L 2010 Nat. Nanotechnol. 5 366Google Scholar
[4] Zhai T Y, Li L, Ma Y, Liao M Y, Wang X, Fang X S, Yao J N, Bando Y, Golberg D 2011 Chem. Soc. Rev. 40 2986Google Scholar
[5] Hong Y J, Saroj R K, Park W I, Yi G C 2021 Apl Mater. 9 060907Google Scholar
[6] Cao F R, Tian W, Gu B K, Ma Y L, Lu H, Li L 2017 Nano Res. 10 2244Google Scholar
[7] Teng F, Zheng L X, Hu K, Chen H Y, Li Y M, Zhang Z M, Fang X S 2016 J. Mater. Chem. C 4 8416Google Scholar
[8] Jiang Y, Zhang W J, Jie J S, Meng X M, Fan X, Lee S T 2007 Adv. Funct. Mater. 17 1795Google Scholar
[9] Li L, Wu P C, Fang X S, Zhai T Y, Dai L, Liao M Y, Koide Y, Wang H Q, Bando Y, Golberg D 2010 Adv. Mater. 22 3161Google Scholar
[10] Fang X S, Zhai T Y, Gautam U K, Li L, Wu L M, Yoshio B, Golberg D 2011 Prog. Mater. Sci. 56 175Google Scholar
[11] Fang X S, Xiong S L, Zhai T Y, Bando Y, Liao M Y, Gautam U K, Koide Y, Zhang X, Qian Y T, Golberg D 2009 Adv. Mater. 21 5016Google Scholar
[12] Chuo H X, Wang T Y, Zhang W G 2014 J. Alloy. Compd. 606 231Google Scholar
[13] Peng M F, Wen Z, Shao M W, Sun X H 2017 J. Mater. Chem. C 5 7521Google Scholar
[14] Hassanien A S, Akl A A 2016 Superlattice. Microst. 89 153Google Scholar
[15] Liu Y K, Zapien J A, Shan Y Y, Geng C Y, Lee C S, Lee S T 2005 Adv. Mater. 17 1372Google Scholar
[16] Rani T D, Tamilarasan K, Elangovan E, Leela S, Ramamurthi K, Thangaraj K, Himcinschi C Trenkmann I, Schulze S, Hietschold M, Liebig A, Salvan G, Zahn D R T 2015 Superlattice. Microst. 77 325Google Scholar
[17] Perna G, Pagliara S, Capozzi V, Ambrico M, Ligonzo T 1999 Thin Solid Films 349 220Google Scholar
[18] Ding C J, Lu T Q, Wazir N, Ma W F, Guo S, Xin Y, Li A, Liu R B, Zou B S 2021 Acs Appl. Mater. Inter. 13 30959Google Scholar
[19] Guo S, Li Z S, Song G L, Zou B S, Wang X X, Liu R B 2015 J. Alloy. Compd. 649 793Google Scholar
[20] Pan A L, Yang H, Yu R C, Zou B S 2006 Nanotechnology 17 1083Google Scholar
[21] Liu H W, Lu J P, Yang Z Y, Teng J H, Ke L, Zhang X H, Tong L M, Sow C H 2016 Sci. Rep-Uk. 6 27387Google Scholar
[22] Guo P F, Hu W, Zhang Q L, Zhuang X J, Zhu X L, Zhou H, Shan Z P, Xu J Y, Pan A L 2014 Adv. Mater. 26 2844Google Scholar
[23] Li X M, Tan Q H, Feng X B, Wang Q J, Liu Y K 2018 Nanoscale Res. Lett. 13 171Google Scholar
[24] Peng M F, Xie X K, Zheng H C, Wang Y J, Zhou Q Q, Yuan G T, Ma W L, Shao M W, Wen Z, Sun X H 2018 Acs Appl. Mater. Inter. 10 43887Google Scholar
[25] Moger S N, Mahesha M G 2021 J. Alloy. Compd. 870 159479Google Scholar
[26] Choi H, Lee J P, Ko S J, Jung J W, Park H, Yoo S, Park O, Jeong J R, Park S, Kim J Y 2013 Nano Lett. 13 2204Google Scholar
[27] Halas N J 2010 Nano Lett. 10 3816Google Scholar
[28] Liang Z Q, Sun J, Jiang Y Y, Jiang L, Chen X D 2014 Plasmonics 9 859Google Scholar
[29] 管昱多 2022 博士学位论文 (长春: 吉林大学)
Guan Y D 2022 Ph. D. Dissertation (Changchun: Jilin University) (in Chinese)
[30] Li H C, Peng S, Qin K, Hong Q Q, Tan Q H, Zhang X J, Liu Y K, Lou J 2019 Phys. Status Solidi A 216 23Google Scholar
[31] Nazirzadeh M A, Atar F B, Turgut B B, Okyay A K 2014 Sci. Rep-Uk. 4 7103Google Scholar
[32] Tian H Y, Liu X, Liang Z Q, Qiu P Y, Qian X, Cui H Z, Tian J 2019 J. Colloid Interf. Sci. 557 700Google Scholar
[33] Baek S W, Park G, Noh J, Cho C, Lee C H, Seo M K, Song H, Lee J Y 2014 Acs Nano 8 3302Google Scholar
[34] Notarianni M, Vernon K, Chou A, Aljada M, Liu J Z, Motta N 2014 Sol. Energy 106 23Google Scholar
[35] Liu Y, Huang W, Chen W J, Wang X W, Guo J X, Tian H, Zhang H N, Wang Y T, Yu B, Ren T L 2019 Appl. Surf. Sci. 481 1127Google Scholar
[36] Huang J A, Luo L B 2018 Adv. Opt. Mater. 6 1701282Google Scholar
[37] Shi Z F, Li Y, Li S, Li X J, Wu D, Xu T T, Tian Y T, Chen Y S, Zhang Y T, Zhang B L 2018 Adv. Funct. Mater. 28 1707031Google Scholar
[38] Wang W Y, Klots A, Prasai D, Yang Y M, Bolotin K L, Valentine J 2015 Nano Lett. 15 7440Google Scholar
[39] Hu K, Chen H Y, Jiang M M, Teng F, Zheng L X, Fang X S 2016 Adv. Funct. Mater. 26 6641Google Scholar
[40] Lin Z M, Luo P Q, Zeng W, Lai H J, Xie W G, Deng W L, Luo Z 2020 Opt. Mater. 108 110191Google Scholar
[41] Loutfy R O, Nag D S 1984 Solar Energy Mater. 11 319Google Scholar
[42] Hossain M A, Jenning J R, Mathews N, Wang Q 2012 Phys. Chem. Chem. Phys. 14 7161Google Scholar
[43] Garcia L V, Mendivil M I, Guillen G G, Martinez J A A, Krishnan B, Avellaneda D, Castillo G A, Das Roy T K, Shaji S 2015 Appl. Surf. Sci. 336 329Google Scholar
[44] Deng J P, Li L, Gou Y C, Fang J F, Feng R, Lei Y L, Song X H, Yang Z 2020 Electrochimica Acta 356 136845Google Scholar
[45] Li C Y, Li W J, Cheng M M, Yang W Y, Tan Q H, Wang Q J, Liu Y K 2021 Adv. Opt. Mater. 9 2100927Google Scholar
[46] Li W, Valentine J 2014 Nano Lett. 14 3510Google Scholar
[47] Tauc J, Grigorovici R, Vancu A 1966 Phys. Status Solidi B 15 627Google Scholar
[48] Dong Y H, Xu L M, Zhao Y L, Wang S L, Song J Z, Zou Y S, Zeng H B 2021 Adv. Mater. Interfaces 8 2002053Google Scholar
[49] Liu F C, Shimotani H, Shang H, Kanagasekaran T, Zolyomi V, Drummond N, Fal'ko V I, Tanigaki K 2014 Acs Nano 8 752Google Scholar
[50] Xia J, Zhao Y X, Wang L, Li X Z, Gu Y Y, Cheng H Q, Meng X M 2017 Nanoscale 9 13786Google Scholar
[51] An Q W, Meng X Q, Xiong K, Qiu Y L, Lin W H 2017 J. Alloy. Compd. 726 214Google Scholar
[52] Jin B, Huang P, Zhang Q, Zhou X, Zhang X W, Li L, Su J W, Li H Q, Zhai T Y 2018 Adv. Funct. Mater. 28 1800181Google Scholar
[53] Ye Y, Gan L, Dai L, Dai Y, Guo X F, Meng H, Yu B, Shi Z J, Shang K P, Qin G G 2011 Nanoscale 3 1477Google Scholar
[54] Di T, Cheng B, Ho W, Yu J, Tang H 2019 Appl. Surf. Sci. 470 196Google Scholar
[55] Avanesian T, Christopher P 2014 J. Phys. Chem. C 118 28017Google Scholar
[56] Boerigter C, Aslam U, Linic S 2016 Acs Nano 10 6108Google Scholar
[57] Wang H L, Wang F, Xu T F, Xia H, Xie R Z, Zhou X H, Ge X, Liu W W, Zhu Y C, Sun L X, Guo J X, Ye J F, Zubair M, Luo M, Yu C H, Sun D Y, Li T X, Zhuang Q D, Fu L, Hu W D, Lu W 2021 Nano Lett. 21 7761Google Scholar
[58] Kumar A, Husale S, Srivastava A K, Dutta P K, Dhar A 2014 Nanoscale 6 8192Google Scholar
[59] Sharma A, Kumar R, Bhattacharyya B, Husale S 2016 Sci. Rep-Uk. 6 22939Google Scholar
[60] 李含春 2018 硕士学位论文 (昆明: 云南师范大学)
Li H C 2018 M. S. Dissertation (Kunming: Yunnan Normal University) (in Chinese)
[61] Zhang K, Luo T, Chen H R, Lou Z, Shen G Z 2017 J. Mater. Chem. C 5 3330Google Scholar
计量
- 文章访问数: 3840
- PDF下载量: 70
- 被引次数: 0