搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

具有光电倍增的宽光谱三相体异质结有机彩色探测器

安涛 涂传宝 龚伟

引用本文:
Citation:

具有光电倍增的宽光谱三相体异质结有机彩色探测器

安涛, 涂传宝, 龚伟

Organic color photodetectors based on tri-phase bulk heterojunction with wide sectrum and photoelectronic mltiplication

An Tao, Tu Chuan-Bao, Gong Wei
PDF
导出引用
  • 实验研究了P3HT:PBDT-TT-F:PCBM三相体异质结活性层光谱拓宽及其材料混合度对探测器光电特性的影响以及陷阱辅助光电倍增的机理.在此基础上,获得了一个覆盖350750 nm波长范围的彩色探测器.该探测器在-1 V低偏压下红绿蓝三基色的光响应度和外量子效率分别达到了470,381,450 mA/W和93%,89%,121%,比探测率均接近1012 Jones,且各基色的特性参数最大平均相对偏差均小于20%,同时频率带宽分别达到了5,8,8 kHz.结果表明:在保持二相体异质结薄膜原有微观形貌下,掺入少量光谱拓宽材料可实现活性层吸收光谱的拓宽.利用能级陷阱中电子的辅助作用引入外电路空穴注入,可实现探测器光电倍增.通过调节三相材料的混合度可实现基色间探测能力的均衡性.
    In order to obtain highly sensitive broadband organic photodetectors (OPDs) used for image sensors with the stable ability to detect three primary colors (RGB), in this paper, the spectral broadening of organic active layer based on tri-phase bulk heterojunction formed by P3HT:PCBM doped with narrow band material PBDT-TT-F which absorbs red light is investigated. The influences of PBDT-TT-F doping ratio on the morphology of active layer film and detector photoelectric properties are further analyzed. Finally, the operating mechanism of trap-assisted photoelectronic multiplication is discussed. On this basis, the detector with 350-750 nm wide spectrum is obtained where the optimum mixing ratio of P3HT:PCBM:PBDT-TT-F is 12:8:3. At a small reverse bias of 1 V, the values of responsivity and external quantum efficiency of the photodetector can reach 470, 381, 450 mA/W and 93%, 89%, 121% respectively under the illumination of three primary colors and its normalized detectivity to the RGB is close to 1012 Jones. Additionally, the maximum relative difference between each parameter and its average value is lower than 20%; the bandwidths are 5, 8, and 8 kHz respectively, which reach the imaging requirements for image sensors. The experimental results show that not only the absorption spectra of the active layer can be broadened but also the carriers collection efficiency of respective electrodes can be well maintained by adding a small quantity of spectral broadening material while keeping the microstructure of the original binary bulk heterojunction. Utilizing the reasonable combination of materials to form electron traps, photoelectronic multiplication can be realized by trap-assisted hole tunneling injection from the Al cathode into active layer, and thus improving the normalized detectivity. Moreover, in order to detect different light intensities, the hole injection barrier width should be controlled by the corresponding light intensity. The resulting OPD shows a good liner response to all three primary colors when light intensity increases from 0.1 to 10 mW/cm2. By adjusting the mixing ratio of the tri-phase materials, the stable ability to detect the primary color can be achieved. The present study paves the way for high responsivity broadband OPDs based on tri-phase bulk heterojunction.
      通信作者: 安涛, antao@xaut.edu.cn
    • 基金项目: 陕西省自然科学基金(批准号:2015JM6267)资助的课题.
      Corresponding author: An Tao, antao@xaut.edu.cn
    • Funds: Project supported by the Natural Science Foundation of Shaanxi, China (Grant No. 2015JM6267).
    [1]

    Ross D, Ardalan A, Ajay K P, Paul L B, Paul M 2016 Adv. Mater. 28 4766

    [2]

    Lei S Y, Zhong J, Zhou D L, Zhu F Y, Deng C X 2017 Chin. Phys. B 26 117001

    [3]

    Shuttle C G, Treat N D, Douglas J D, Frchet J M J, Chabinyc M L 2012 Adv. Energ. Mater. 2 111

    [4]

    Xiao B, Zhang M L, Wang H B, Liu J Y 2017 Acta Phys. Sin. 66 228501 (in Chinese) [肖标, 张敏莉, 王洪波, 刘继延 2017 物理学报 66 228501]

    [5]

    Garcia-Belmonte G, Boix P P, Bisquert J, Sessolo M, Bolink H J 2010 Sol. Energ. Mat. Sol. Cell 94 366

    [6]

    Wang Y, Zhu L J, Hu Y F, Deg Z B, Lou Z D, Hou Y B, Teng F 2017 Opt. Express 25 7719

    [7]

    Shin H J, Kim J H, Lee C H 2017 J. Korean Phys. Soc. 71 196

    [8]

    Baierl D, Schmidt M, Scarpa G, Lugli P, Pancheri L, Stoppa D, Betta G F D 2011 7th Conference on Ph.D. Research in Microelectronics and Electronics IEEE Trento, Italy, July 3-7, 2011 p89

    [9]

    Baierl D, Pancheri L, Schmidt M, Stoppa D, Betta G F D, Scarpa G, Lugli P 2012 Nat. Commun. 3 1175

    [10]

    Mori M, Hirose Y, Segawa M, Miyanaga I 2013 Digest of Technical Papers Symposium on VLSI Technology Kyoto, Japan, June 12-14, 2013 T22

    [11]

    Isono S, Satake T, Hyakushima T, Taki K 2013 International Interconnect Technology Conference Kyoto, Japan, June 13-15, 2013 p6615587

    [12]

    Aihara S, Seo H, Namba M, Watabe T, Ohtake H, Kubota M, Egami N, Hiramatsu T, Matsuda T, Furuta M 2009 IEEE Tran. Electron Dev. 56 2570

    [13]

    Seo H, Aihara S, Watabe T, Ohtake H, Sakai T, Kubota M, Egami M 2011 Jpn. J. Appl. Phys. 50 024103

    [14]

    Seo H, Sakai T, Ohtake H, Furuta M 2014 IEEE SENSORS Valencia, Spain, November 2-5, 2014 p1672

    [15]

    Hu Z, Tang S, Ahlvers A, Khondaker S I, Gesquiere A J 2012 Appl. Phys. Lett. 101 053308

    [16]

    Yong J C, Lee J Y, Chin B D, Forrest S R 2013 Org. Electron. 14 1081

    [17]

    Huang J S, Goh T, Li X, Sfeir M Y, Bielinski E A, Tomasulo S, Lee M L, Hazari N, Taylor A D 2013 Nat. Photon. 7 479

    [18]

    Cha H, Chung D S, Bae S Y, Lee M J, An T K, Hwang J, Kim K H, Kim Y H, Choi D H, Park C E 2013 Adv. Funct. Mater. 23 1556

    [19]

    Deng L J, Zhao S L, Xu Z, Zhao L, Wang L 2016 Acta Phys. Sin. 65 078801 (in Chinese) [邓丽娟, 赵谡玲, 徐征, 赵玲, 王林 2016 物理学报 65 078801]

    [20]

    Chen F C, Chien S C, Cious G L 2010 Appl. Phys. Lett. 97 103301

    [21]

    Gao M, Wang W, Li L, Miao J, Zhang F 2017 Chin. Phys. B 26 018201

    [22]

    Nie R, Deng X, Feng L, Hu G, Wang Y, Yu G, Xu J 2017 Small 13 1603260

    [23]

    Nie R, Zhao Z, Deng X 2017 Synth. Met. 227 163

    [24]

    An T, Tu C B, Yang S, Wu J Y 2017 Chin. J. Lumin. 38 1643 (in Chinese) [安涛, 涂传宝, 杨圣, 吴俊宇 2017 发光学报 38 1643]

    [25]

    Wei G, Wang S, Renshaw K, Thompson M E, Forrest S R 2010 ACS Nano 4 1927

    [26]

    Guo X, Zhang M, Tan J, Zhang S, Huo L, Hu W, Li Y, Hou J 2012 Adv. Mater. 24 6536

    [27]

    Baumann A, Lorrmann J, Deibel C, Dyakonov V 2008 Appl. Phys. Lett. 93 252104

    [28]

    Vakhshouri K, Kozub D R, Wang C, Salleo A, Gomez E D 2012 Phys. Rev. Lett. 108 026601

    [29]

    Arredondo B, Dios C D, Vergaz R, Criado A R, Romero B, Zimmermann B, Wrfel U 2013 Org. Electron 14 2484

    [30]

    Li L, Zhang F, Wang W, An Q, Wang J, Sun Q, Zhang M 2015 ACS Appl. Mater. Interf. 7 5890

    [31]

    Gao Y L 2010 Mater. Sci. Eng. R. 68 39

    [32]

    Liu X D, L L F, Hou Y B (in Chinese) [刘贤德, 吕龙峰, 侯延冰 2015 发光学报 36 666]

  • [1]

    Ross D, Ardalan A, Ajay K P, Paul L B, Paul M 2016 Adv. Mater. 28 4766

    [2]

    Lei S Y, Zhong J, Zhou D L, Zhu F Y, Deng C X 2017 Chin. Phys. B 26 117001

    [3]

    Shuttle C G, Treat N D, Douglas J D, Frchet J M J, Chabinyc M L 2012 Adv. Energ. Mater. 2 111

    [4]

    Xiao B, Zhang M L, Wang H B, Liu J Y 2017 Acta Phys. Sin. 66 228501 (in Chinese) [肖标, 张敏莉, 王洪波, 刘继延 2017 物理学报 66 228501]

    [5]

    Garcia-Belmonte G, Boix P P, Bisquert J, Sessolo M, Bolink H J 2010 Sol. Energ. Mat. Sol. Cell 94 366

    [6]

    Wang Y, Zhu L J, Hu Y F, Deg Z B, Lou Z D, Hou Y B, Teng F 2017 Opt. Express 25 7719

    [7]

    Shin H J, Kim J H, Lee C H 2017 J. Korean Phys. Soc. 71 196

    [8]

    Baierl D, Schmidt M, Scarpa G, Lugli P, Pancheri L, Stoppa D, Betta G F D 2011 7th Conference on Ph.D. Research in Microelectronics and Electronics IEEE Trento, Italy, July 3-7, 2011 p89

    [9]

    Baierl D, Pancheri L, Schmidt M, Stoppa D, Betta G F D, Scarpa G, Lugli P 2012 Nat. Commun. 3 1175

    [10]

    Mori M, Hirose Y, Segawa M, Miyanaga I 2013 Digest of Technical Papers Symposium on VLSI Technology Kyoto, Japan, June 12-14, 2013 T22

    [11]

    Isono S, Satake T, Hyakushima T, Taki K 2013 International Interconnect Technology Conference Kyoto, Japan, June 13-15, 2013 p6615587

    [12]

    Aihara S, Seo H, Namba M, Watabe T, Ohtake H, Kubota M, Egami N, Hiramatsu T, Matsuda T, Furuta M 2009 IEEE Tran. Electron Dev. 56 2570

    [13]

    Seo H, Aihara S, Watabe T, Ohtake H, Sakai T, Kubota M, Egami M 2011 Jpn. J. Appl. Phys. 50 024103

    [14]

    Seo H, Sakai T, Ohtake H, Furuta M 2014 IEEE SENSORS Valencia, Spain, November 2-5, 2014 p1672

    [15]

    Hu Z, Tang S, Ahlvers A, Khondaker S I, Gesquiere A J 2012 Appl. Phys. Lett. 101 053308

    [16]

    Yong J C, Lee J Y, Chin B D, Forrest S R 2013 Org. Electron. 14 1081

    [17]

    Huang J S, Goh T, Li X, Sfeir M Y, Bielinski E A, Tomasulo S, Lee M L, Hazari N, Taylor A D 2013 Nat. Photon. 7 479

    [18]

    Cha H, Chung D S, Bae S Y, Lee M J, An T K, Hwang J, Kim K H, Kim Y H, Choi D H, Park C E 2013 Adv. Funct. Mater. 23 1556

    [19]

    Deng L J, Zhao S L, Xu Z, Zhao L, Wang L 2016 Acta Phys. Sin. 65 078801 (in Chinese) [邓丽娟, 赵谡玲, 徐征, 赵玲, 王林 2016 物理学报 65 078801]

    [20]

    Chen F C, Chien S C, Cious G L 2010 Appl. Phys. Lett. 97 103301

    [21]

    Gao M, Wang W, Li L, Miao J, Zhang F 2017 Chin. Phys. B 26 018201

    [22]

    Nie R, Deng X, Feng L, Hu G, Wang Y, Yu G, Xu J 2017 Small 13 1603260

    [23]

    Nie R, Zhao Z, Deng X 2017 Synth. Met. 227 163

    [24]

    An T, Tu C B, Yang S, Wu J Y 2017 Chin. J. Lumin. 38 1643 (in Chinese) [安涛, 涂传宝, 杨圣, 吴俊宇 2017 发光学报 38 1643]

    [25]

    Wei G, Wang S, Renshaw K, Thompson M E, Forrest S R 2010 ACS Nano 4 1927

    [26]

    Guo X, Zhang M, Tan J, Zhang S, Huo L, Hu W, Li Y, Hou J 2012 Adv. Mater. 24 6536

    [27]

    Baumann A, Lorrmann J, Deibel C, Dyakonov V 2008 Appl. Phys. Lett. 93 252104

    [28]

    Vakhshouri K, Kozub D R, Wang C, Salleo A, Gomez E D 2012 Phys. Rev. Lett. 108 026601

    [29]

    Arredondo B, Dios C D, Vergaz R, Criado A R, Romero B, Zimmermann B, Wrfel U 2013 Org. Electron 14 2484

    [30]

    Li L, Zhang F, Wang W, An Q, Wang J, Sun Q, Zhang M 2015 ACS Appl. Mater. Interf. 7 5890

    [31]

    Gao Y L 2010 Mater. Sci. Eng. R. 68 39

    [32]

    Liu X D, L L F, Hou Y B (in Chinese) [刘贤德, 吕龙峰, 侯延冰 2015 发光学报 36 666]

  • [1] 孙堂友, 余燕丽, 覃祖彬, 陈赞辉, 陈均丽, 江玥, 张法碧. 基于TiO2纳米柱的多波段响应Cs2AgBiBr6双钙钛矿光电探测器. 物理学报, 2024, 73(7): 078502. doi: 10.7498/aps.73.20231919
    [2] 程学明, 崔文宇, 祝鲁平, 王霞, 刘宗明, 曹丙强. 具有快响应速度和低暗电流的垂直MSM型CsPbBr3薄膜光电探测器. 物理学报, 2024, 73(20): 208501. doi: 10.7498/aps.73.20241075
    [3] 宿冉, 奚昭颖, 李山, 张嘉汉, 姜明明, 刘增, 唐为华. 基于GaSe/Ga2O3异质结的自供电日盲紫外光电探测器. 物理学报, 2024, 73(11): 118502. doi: 10.7498/aps.73.20240267
    [4] 王爱伟, 祝鲁平, 单衍苏, 刘鹏, 曹学蕾, 曹丙强. 利用脉冲激光沉积外延制备CsSnBr3/Si异质结高性能光电探测器. 物理学报, 2024, 73(5): 058503. doi: 10.7498/aps.73.20231645
    [5] 张茂林, 马万煜, 王磊, 刘增, 杨莉莉, 李山, 唐为华, 郭宇锋. WO3/β-Ga2O3异质结深紫外光电探测器的高温性能. 物理学报, 2023, 72(16): 160201. doi: 10.7498/aps.72.20230638
    [6] 武鹏, 谈论, 李炜, 曹立伟, 赵俊博, 曲尧, 李昂. 大面积单层二硫化钼的制备及其光电性能. 物理学报, 2023, 72(11): 118101. doi: 10.7498/aps.72.20230273
    [7] 赵吉玉, 谭秋红, 刘磊, 杨伟业, 王前进, 刘应开. 基于Au纳米岛修饰的CdSSe纳米带光电探测器. 物理学报, 2023, 72(9): 098103. doi: 10.7498/aps.72.20222021
    [8] 刘晓轩, 孙飞扬, 吴颖, 杨盛谊, 邹炳锁. 硅纳米线阵列光电探测器研究进展. 物理学报, 2023, 72(6): 068501. doi: 10.7498/aps.72.20222303
    [9] 郭越, 孙一鸣, 宋伟东. 多孔GaN/CuZnS异质结窄带近紫外光电探测器. 物理学报, 2022, 71(21): 218501. doi: 10.7498/aps.71.20220990
    [10] 傅群东, 王小伟, 周修贤, 朱超, 刘政. 硅基底上二维硒氧化铋的化学气相沉积法合成及其光电探测应用. 物理学报, 2022, 71(16): 166101. doi: 10.7498/aps.71.20220388
    [11] 胡紫婷, 舒鑫, 王香, 李跃, 徐闰, 洪峰, 马忠权, 蒋最敏, 徐飞. 双配体策略制备大气环境下性能稳定的CsPbIBr2光电探测器. 物理学报, 2022, 71(11): 116801. doi: 10.7498/aps.71.20212143
    [12] 雷挺, 吕伟明, 吕文星, 崔博垚, 胡瑞, 时文华, 曾中明. 光栅局域调控二维光电探测器. 物理学报, 2021, 70(2): 027801. doi: 10.7498/aps.70.20201325
    [13] 赵一默, 黄志伟, 彭仁苗, 徐鹏鹏, 吴强, 毛亦琛, 余春雨, 黄巍, 汪建元, 陈松岩, 李成. 超薄介质插层调制的氧化铟锡/锗肖特基光电探测器. 物理学报, 2021, 70(17): 178506. doi: 10.7498/aps.70.20210138
    [14] 舒衍涛, 张有为, 王顺. 基于过渡金属硫族化合物同质结的光电探测器. 物理学报, 2021, 70(17): 177301. doi: 10.7498/aps.70.20210859
    [15] 孟宪成, 田贺, 安侠, 袁硕, 范超, 王蒙军, 郑宏兴. 基于二维材料二硒化锡场效应晶体管的光电探测器. 物理学报, 2020, 69(13): 137801. doi: 10.7498/aps.69.20191960
    [16] 刘洁, 王禄, 孙令, 王文奇, 吴海燕, 江洋, 马紫光, 王文新, 贾海强, 陈弘. 基于p-n结中反常光电转换现象的新型带间跃迁量子阱红外探测器. 物理学报, 2018, 67(12): 128101. doi: 10.7498/aps.67.20180588
    [17] 郑加金, 王雅如, 余柯涵, 徐翔星, 盛雪曦, 胡二涛, 韦玮. 基于石墨烯-钙钛矿量子点场效应晶体管的光电探测器. 物理学报, 2018, 67(11): 118502. doi: 10.7498/aps.67.20180129
    [18] 王尘, 许怡红, 李成, 林海军. 高性能SOI基GePIN波导光电探测器的制备及特性研究. 物理学报, 2017, 66(19): 198502. doi: 10.7498/aps.66.198502
    [19] 尹伟红, 韩勤, 杨晓红. 基于石墨烯的半导体光电器件研究进展. 物理学报, 2012, 61(24): 248502. doi: 10.7498/aps.61.248502
    [20] 郭剑川, 左玉华, 张云, 张岭梓, 成步文, 王启明. 单行载流子光电探测器中空间电荷屏蔽效应理论分析和实验研究. 物理学报, 2010, 59(7): 4524-4529. doi: 10.7498/aps.59.4524
计量
  • 文章访问数:  5875
  • PDF下载量:  88
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-03-20
  • 修回日期:  2018-07-11
  • 刊出日期:  2018-10-05

/

返回文章
返回