-
实验研究了P3HT:PBDT-TT-F:PCBM三相体异质结活性层光谱拓宽及其材料混合度对探测器光电特性的影响以及陷阱辅助光电倍增的机理.在此基础上,获得了一个覆盖350750 nm波长范围的彩色探测器.该探测器在-1 V低偏压下红绿蓝三基色的光响应度和外量子效率分别达到了470,381,450 mA/W和93%,89%,121%,比探测率均接近1012 Jones,且各基色的特性参数最大平均相对偏差均小于20%,同时频率带宽分别达到了5,8,8 kHz.结果表明:在保持二相体异质结薄膜原有微观形貌下,掺入少量光谱拓宽材料可实现活性层吸收光谱的拓宽.利用能级陷阱中电子的辅助作用引入外电路空穴注入,可实现探测器光电倍增.通过调节三相材料的混合度可实现基色间探测能力的均衡性.In order to obtain highly sensitive broadband organic photodetectors (OPDs) used for image sensors with the stable ability to detect three primary colors (RGB), in this paper, the spectral broadening of organic active layer based on tri-phase bulk heterojunction formed by P3HT:PCBM doped with narrow band material PBDT-TT-F which absorbs red light is investigated. The influences of PBDT-TT-F doping ratio on the morphology of active layer film and detector photoelectric properties are further analyzed. Finally, the operating mechanism of trap-assisted photoelectronic multiplication is discussed. On this basis, the detector with 350-750 nm wide spectrum is obtained where the optimum mixing ratio of P3HT:PCBM:PBDT-TT-F is 12:8:3. At a small reverse bias of 1 V, the values of responsivity and external quantum efficiency of the photodetector can reach 470, 381, 450 mA/W and 93%, 89%, 121% respectively under the illumination of three primary colors and its normalized detectivity to the RGB is close to 1012 Jones. Additionally, the maximum relative difference between each parameter and its average value is lower than 20%; the bandwidths are 5, 8, and 8 kHz respectively, which reach the imaging requirements for image sensors. The experimental results show that not only the absorption spectra of the active layer can be broadened but also the carriers collection efficiency of respective electrodes can be well maintained by adding a small quantity of spectral broadening material while keeping the microstructure of the original binary bulk heterojunction. Utilizing the reasonable combination of materials to form electron traps, photoelectronic multiplication can be realized by trap-assisted hole tunneling injection from the Al cathode into active layer, and thus improving the normalized detectivity. Moreover, in order to detect different light intensities, the hole injection barrier width should be controlled by the corresponding light intensity. The resulting OPD shows a good liner response to all three primary colors when light intensity increases from 0.1 to 10 mW/cm2. By adjusting the mixing ratio of the tri-phase materials, the stable ability to detect the primary color can be achieved. The present study paves the way for high responsivity broadband OPDs based on tri-phase bulk heterojunction.
-
Keywords:
- organic color image sensor /
- photodetector /
- tri-phase bulk heterojunction /
- photoelectronic multiplication
[1] Ross D, Ardalan A, Ajay K P, Paul L B, Paul M 2016 Adv. Mater. 28 4766
[2] Lei S Y, Zhong J, Zhou D L, Zhu F Y, Deng C X 2017 Chin. Phys. B 26 117001
[3] Shuttle C G, Treat N D, Douglas J D, Frchet J M J, Chabinyc M L 2012 Adv. Energ. Mater. 2 111
[4] Xiao B, Zhang M L, Wang H B, Liu J Y 2017 Acta Phys. Sin. 66 228501 (in Chinese) [肖标, 张敏莉, 王洪波, 刘继延 2017 物理学报 66 228501]
[5] Garcia-Belmonte G, Boix P P, Bisquert J, Sessolo M, Bolink H J 2010 Sol. Energ. Mat. Sol. Cell 94 366
[6] Wang Y, Zhu L J, Hu Y F, Deg Z B, Lou Z D, Hou Y B, Teng F 2017 Opt. Express 25 7719
[7] Shin H J, Kim J H, Lee C H 2017 J. Korean Phys. Soc. 71 196
[8] Baierl D, Schmidt M, Scarpa G, Lugli P, Pancheri L, Stoppa D, Betta G F D 2011 7th Conference on Ph.D. Research in Microelectronics and Electronics IEEE Trento, Italy, July 3-7, 2011 p89
[9] Baierl D, Pancheri L, Schmidt M, Stoppa D, Betta G F D, Scarpa G, Lugli P 2012 Nat. Commun. 3 1175
[10] Mori M, Hirose Y, Segawa M, Miyanaga I 2013 Digest of Technical Papers Symposium on VLSI Technology Kyoto, Japan, June 12-14, 2013 T22
[11] Isono S, Satake T, Hyakushima T, Taki K 2013 International Interconnect Technology Conference Kyoto, Japan, June 13-15, 2013 p6615587
[12] Aihara S, Seo H, Namba M, Watabe T, Ohtake H, Kubota M, Egami N, Hiramatsu T, Matsuda T, Furuta M 2009 IEEE Tran. Electron Dev. 56 2570
[13] Seo H, Aihara S, Watabe T, Ohtake H, Sakai T, Kubota M, Egami M 2011 Jpn. J. Appl. Phys. 50 024103
[14] Seo H, Sakai T, Ohtake H, Furuta M 2014 IEEE SENSORS Valencia, Spain, November 2-5, 2014 p1672
[15] Hu Z, Tang S, Ahlvers A, Khondaker S I, Gesquiere A J 2012 Appl. Phys. Lett. 101 053308
[16] Yong J C, Lee J Y, Chin B D, Forrest S R 2013 Org. Electron. 14 1081
[17] Huang J S, Goh T, Li X, Sfeir M Y, Bielinski E A, Tomasulo S, Lee M L, Hazari N, Taylor A D 2013 Nat. Photon. 7 479
[18] Cha H, Chung D S, Bae S Y, Lee M J, An T K, Hwang J, Kim K H, Kim Y H, Choi D H, Park C E 2013 Adv. Funct. Mater. 23 1556
[19] Deng L J, Zhao S L, Xu Z, Zhao L, Wang L 2016 Acta Phys. Sin. 65 078801 (in Chinese) [邓丽娟, 赵谡玲, 徐征, 赵玲, 王林 2016 物理学报 65 078801]
[20] Chen F C, Chien S C, Cious G L 2010 Appl. Phys. Lett. 97 103301
[21] Gao M, Wang W, Li L, Miao J, Zhang F 2017 Chin. Phys. B 26 018201
[22] Nie R, Deng X, Feng L, Hu G, Wang Y, Yu G, Xu J 2017 Small 13 1603260
[23] Nie R, Zhao Z, Deng X 2017 Synth. Met. 227 163
[24] An T, Tu C B, Yang S, Wu J Y 2017 Chin. J. Lumin. 38 1643 (in Chinese) [安涛, 涂传宝, 杨圣, 吴俊宇 2017 发光学报 38 1643]
[25] Wei G, Wang S, Renshaw K, Thompson M E, Forrest S R 2010 ACS Nano 4 1927
[26] Guo X, Zhang M, Tan J, Zhang S, Huo L, Hu W, Li Y, Hou J 2012 Adv. Mater. 24 6536
[27] Baumann A, Lorrmann J, Deibel C, Dyakonov V 2008 Appl. Phys. Lett. 93 252104
[28] Vakhshouri K, Kozub D R, Wang C, Salleo A, Gomez E D 2012 Phys. Rev. Lett. 108 026601
[29] Arredondo B, Dios C D, Vergaz R, Criado A R, Romero B, Zimmermann B, Wrfel U 2013 Org. Electron 14 2484
[30] Li L, Zhang F, Wang W, An Q, Wang J, Sun Q, Zhang M 2015 ACS Appl. Mater. Interf. 7 5890
[31] Gao Y L 2010 Mater. Sci. Eng. R. 68 39
[32] Liu X D, L L F, Hou Y B (in Chinese) [刘贤德, 吕龙峰, 侯延冰 2015 发光学报 36 666]
-
[1] Ross D, Ardalan A, Ajay K P, Paul L B, Paul M 2016 Adv. Mater. 28 4766
[2] Lei S Y, Zhong J, Zhou D L, Zhu F Y, Deng C X 2017 Chin. Phys. B 26 117001
[3] Shuttle C G, Treat N D, Douglas J D, Frchet J M J, Chabinyc M L 2012 Adv. Energ. Mater. 2 111
[4] Xiao B, Zhang M L, Wang H B, Liu J Y 2017 Acta Phys. Sin. 66 228501 (in Chinese) [肖标, 张敏莉, 王洪波, 刘继延 2017 物理学报 66 228501]
[5] Garcia-Belmonte G, Boix P P, Bisquert J, Sessolo M, Bolink H J 2010 Sol. Energ. Mat. Sol. Cell 94 366
[6] Wang Y, Zhu L J, Hu Y F, Deg Z B, Lou Z D, Hou Y B, Teng F 2017 Opt. Express 25 7719
[7] Shin H J, Kim J H, Lee C H 2017 J. Korean Phys. Soc. 71 196
[8] Baierl D, Schmidt M, Scarpa G, Lugli P, Pancheri L, Stoppa D, Betta G F D 2011 7th Conference on Ph.D. Research in Microelectronics and Electronics IEEE Trento, Italy, July 3-7, 2011 p89
[9] Baierl D, Pancheri L, Schmidt M, Stoppa D, Betta G F D, Scarpa G, Lugli P 2012 Nat. Commun. 3 1175
[10] Mori M, Hirose Y, Segawa M, Miyanaga I 2013 Digest of Technical Papers Symposium on VLSI Technology Kyoto, Japan, June 12-14, 2013 T22
[11] Isono S, Satake T, Hyakushima T, Taki K 2013 International Interconnect Technology Conference Kyoto, Japan, June 13-15, 2013 p6615587
[12] Aihara S, Seo H, Namba M, Watabe T, Ohtake H, Kubota M, Egami N, Hiramatsu T, Matsuda T, Furuta M 2009 IEEE Tran. Electron Dev. 56 2570
[13] Seo H, Aihara S, Watabe T, Ohtake H, Sakai T, Kubota M, Egami M 2011 Jpn. J. Appl. Phys. 50 024103
[14] Seo H, Sakai T, Ohtake H, Furuta M 2014 IEEE SENSORS Valencia, Spain, November 2-5, 2014 p1672
[15] Hu Z, Tang S, Ahlvers A, Khondaker S I, Gesquiere A J 2012 Appl. Phys. Lett. 101 053308
[16] Yong J C, Lee J Y, Chin B D, Forrest S R 2013 Org. Electron. 14 1081
[17] Huang J S, Goh T, Li X, Sfeir M Y, Bielinski E A, Tomasulo S, Lee M L, Hazari N, Taylor A D 2013 Nat. Photon. 7 479
[18] Cha H, Chung D S, Bae S Y, Lee M J, An T K, Hwang J, Kim K H, Kim Y H, Choi D H, Park C E 2013 Adv. Funct. Mater. 23 1556
[19] Deng L J, Zhao S L, Xu Z, Zhao L, Wang L 2016 Acta Phys. Sin. 65 078801 (in Chinese) [邓丽娟, 赵谡玲, 徐征, 赵玲, 王林 2016 物理学报 65 078801]
[20] Chen F C, Chien S C, Cious G L 2010 Appl. Phys. Lett. 97 103301
[21] Gao M, Wang W, Li L, Miao J, Zhang F 2017 Chin. Phys. B 26 018201
[22] Nie R, Deng X, Feng L, Hu G, Wang Y, Yu G, Xu J 2017 Small 13 1603260
[23] Nie R, Zhao Z, Deng X 2017 Synth. Met. 227 163
[24] An T, Tu C B, Yang S, Wu J Y 2017 Chin. J. Lumin. 38 1643 (in Chinese) [安涛, 涂传宝, 杨圣, 吴俊宇 2017 发光学报 38 1643]
[25] Wei G, Wang S, Renshaw K, Thompson M E, Forrest S R 2010 ACS Nano 4 1927
[26] Guo X, Zhang M, Tan J, Zhang S, Huo L, Hu W, Li Y, Hou J 2012 Adv. Mater. 24 6536
[27] Baumann A, Lorrmann J, Deibel C, Dyakonov V 2008 Appl. Phys. Lett. 93 252104
[28] Vakhshouri K, Kozub D R, Wang C, Salleo A, Gomez E D 2012 Phys. Rev. Lett. 108 026601
[29] Arredondo B, Dios C D, Vergaz R, Criado A R, Romero B, Zimmermann B, Wrfel U 2013 Org. Electron 14 2484
[30] Li L, Zhang F, Wang W, An Q, Wang J, Sun Q, Zhang M 2015 ACS Appl. Mater. Interf. 7 5890
[31] Gao Y L 2010 Mater. Sci. Eng. R. 68 39
[32] Liu X D, L L F, Hou Y B (in Chinese) [刘贤德, 吕龙峰, 侯延冰 2015 发光学报 36 666]
计量
- 文章访问数: 5875
- PDF下载量: 88
- 被引次数: 0