-
Inorganic ferroelectric films exhibit excellent electric and optic properties, which have been widely used in dielectrics, memory, piezoelectric, photoelectric devices, etc. However, conventional synthesis strategies based on rigid single-crystal substrates severely limit their applications in flexible electronics. Realization of flexible inorganic ferroelectric films can introduce the excellent properties of inorganic ferroelectric materials into flexible devices, which is the developing trend for the next generation of electronic devices. In this review, the strategies to fabricate flexible inorganic perovskite structures’ ferroelectric films are summarized, including 1) direct growth on flexible substrates, 2) transferring ferroelectric film from a rigid substrate to a flexible one. Subsequently, the applications of flexible inorganic ferroelectric films are briefly introduced. Finally, research status, prospects and future development trend of flexible inorganic ferroelectric films are discussed.
-
Keywords:
- inorganic ferroelectric films /
- flexible /
- perovskite /
- fabrication
[1] Xu S, Zhang Y, Jia L, Mathewson K E, Jang K I, Kim J, Fu H, Huang X, Chava P, Wang R, Bhole S, Wang L, Na Y J, Guan Y, Flavin M, Han Z, Huang Y, Rogers J A 2014 Science 344 70Google Scholar
[2] Lacour S P 2015 Nat. Mater. 14 659Google Scholar
[3] Jung Y H, Hong S K, Wang H S, Han J H, Pham T X, Park H, Kim J, Kang S, Yoo C D, Lee K J 2020 Adv. Mater. 32 1904020
[4] Park B H, Kang B S, Bu S D, Noh T W, Lee J, Jo W 1999 Nature 401 682Google Scholar
[5] Lee H N, Hesse D, Zakharov N, Gösele U 2002 Science 296 2006Google Scholar
[6] Pan H, Li F, Liu Y, Zhang Q, Wang M, Lan S, Zheng Y, Ma J, Gu L, Shen Y, Yu P, Zhang S, Chen L Q, Lin Y H, Nan C W 2019 Science 365 578Google Scholar
[7] Zhao P, Wang H, Wu L, Chen L, Cai Z, Li L, Wang X 2019 Adv. Energy Mater. 9 1803048Google Scholar
[8] Kim J, Saremi S, Acharya M, Velarde G, Parsonnet E, Donahue P, Qualls A, Garcia D, Martin L W 2020 Science 369 81Google Scholar
[9] Cao H C, Evans A G 1993 J. Am. Ceram. Soc. 76 890Google Scholar
[10] Li P, Zhai J, Shen B, Zhang S, Li X, Zhu F, Zhang X 2018 Adv. Mater. 30 1705171Google Scholar
[11] Kakekhani A, Ismail Beigi S, Altman E I 2016 Surf. Sci. 650 302Google Scholar
[12] Khan M A, Nadeem M A, Idriss H 2016 Surf. Sci. Rep. 71 1Google Scholar
[13] Han X, Chen X, Tang X, Chen Y L, Liu J H, Shen Q D 2016 Adv. Funct. Mater. 26 3640Google Scholar
[14] Liu Y, Aziguli H, Zhang B, Xu W, Lu W, Bernholc J, Wang Q 2018 Nature 562 96Google Scholar
[15] Zhang X, Jiang J, Shen Z, Dan Z, Li M, Lin Y, Nan C W, Chen L, Shen Y 2018 Adv. Mater. 30 1707269Google Scholar
[16] Lim S, Son D, Kim J, Lee Y B, Song J K, Choi S, Lee D J, Kim J H, Lee M, Hyeon T, Kim D H 2015 Adv. Funct. Mater. 25 375Google Scholar
[17] Hwang S K, Bae I, Kim R H, Park C 2012 Adv. Mater. 24 5910Google Scholar
[18] Li Q, Chen L, Gadinski M R, Zhang S, Zhang G, Li H, Haque A, Chen L, Jackson T N, Wang Q 2015 Nature 523 576Google Scholar
[19] Kim K L, Lee W, Hwang S K, Joo S H, Cho S M, Song G, Cho S H, Jeong B, Hwang I, Ahn J H, Yu Y J, Shin T J, Kwak S K, Kang S J, Park C 2016 Nano Lett. 16 334Google Scholar
[20] Pan H, Ma J, Ma J, Zhang Q, Liu X, Guan B, Gu L, Zhang X, Zhang Y J, Li L, Shen Y, Lin Y H, Nan C W 2018 Nat. Commun. 9 1813Google Scholar
[21] Liang Z, Liu M, Ma C, Shen L, Lu L, Jia C L 2018 J. Mater. Chem. A 6 12291Google Scholar
[22] Jiang J, Shen Z, Qian J, Dan Z, Guo M, He Y, Lin Y, Nan C, Chen L, Shen Y 2019 Nano Energy 62 220Google Scholar
[23] Bao Z, Hou C, Shen Z, Sun H, Zhang G, Luo Z, Dai Z, Wang C, Chen X, Li L, Yin Y, Shen Y, Li X 2020 Adv. Mater. 32 1907227Google Scholar
[24] Li Q, Liu F, Yang T, Gadinski M R, Zhang G, Chen L, Wang Q 2016 Proc. Natl. Acad. Sci. U. S. A. 113 9995Google Scholar
[25] Zhang T, Chen X, Thakur Y, Lu B, Zhang Q, Runt J, Zhang Q M 2020 Sci. Adv. 6 6622Google Scholar
[26] Choi K J, Biegalski M, Li Y L, Sharan A, Schubert J, Uecker R, Reiche P, Chen Y B, Pan X Q, Gopalan V, Chen L Q, Schlom D G, Eom C B 2004 Science 306 1005Google Scholar
[27] Rojac T, Bencan A, Malic B, Tutuncu G, Jones J L, Daniels J E, Damjanovic D 2014 J. Am. Ceram. Soc. 97 1993Google Scholar
[28] Park S E, Shrout T R 1997 J. Appl. Phys. 82 1804Google Scholar
[29] Li F, Cabral M J, Xu B, Cheng Z, Dickey E C, LeBeau J M, Wang J, Luo J, Taylor S, Hackenberger W, Bellaiche L, Xu Z, Chen L Q, Shrout T R, Zhang S 2019 Science 364 264Google Scholar
[30] Won S S, Seo H, Kawahara M, Glinsek S, Lee J, Kim Y, Jeong C K, Kingon A I, Kim S 2019 Nano Energy 55 182Google Scholar
[31] Palneedi H, Yeo H G, Hwang G T, Annapureddy V, Kim J W, Choi J J, Trolier McKinstry S, Ryu J 2017 APL Mater. 5 096111Google Scholar
[32] Ko Y J, Kim D Y, Won S S, Ahn C W, Kim I W, Kingon A I, Kim S, Ko J, Jung J H 2016 ACS Appl. Mater. Interfaces 8 6504Google Scholar
[33] Bretos I, Jimenez R, Wu A, Kingon A I, Vilarinho P M, Calzada M L 2014 Adv. Mater. 26 1405Google Scholar
[34] Tomczyk M, Bretos I, Jiménez R, Mahajan A, Ramana E V, Calzada M L, Vilarinho P M 2017 J. Mater. Chem. C 5 12529Google Scholar
[35] Yu H, Chung C C, Shewmon N, Ho S, Carpenter J H, Larrabee R, Sun T, Jones J L, Ade H, O'Connor B T, So F 2017 Adv. Funct. Mater. 27 1700461Google Scholar
[36] Ke S, Chen C, Fu N, Zhou H, Ye M, Lin P, Yuan W, Zeng X, Chen L, Huang H 2016 ACS Appl. Mater. Interfaces 8 28406Google Scholar
[37] Liu W Y, Liao J J, Jiang J, Zhou Y C, Chen Q, Mo S T, Yang Q, Peng Q X, Jiang L M 2020 J. Mater. Chem. C 8 3878Google Scholar
[38] Ma B, Tong S, Narayanan M, Liu S, Chao S, Balachandran U 2011 Mater. Res. Bull. 46 1124Google Scholar
[39] Yeo H G, Ma X, Rahn C D, Troliermckinstry S 2016 Adv. Funct. Mater. 26 5940Google Scholar
[40] Liang W, Li Z, Bi Z, Nan T, Du H, Nan C, Chen C, Jia Q, Lin Y 2014 J. Mater. Chem. C 2 708Google Scholar
[41] Lee H J, Won S S, Cho K H, Han C K, Mostovych N, Kingon A I, Kim S, Lee H Y 2018 Appl. Phys. Lett. 112 092901Google Scholar
[42] Yeo H G, Xue T, Roundy S, Ma X, Rahn C, Trolier McKinstry S 2018 Adv. Funct. Mater. 28 1801327Google Scholar
[43] Kingon A I, Srinivasan S 2005 Nat. Mater. 4 233Google Scholar
[44] Wu A, Vilarinho P M, Reaney I, Miranda Salvado I M 2003 Chem. Mater. 15 1147Google Scholar
[45] Bharadwaja S S N, Dechakupt T, Trolier McKinstry S, Beratan H 2008 J. Am. Ceram. Soc. 91 1580Google Scholar
[46] Wang Z J, Cao Z P, Otsuka Y, Yoshikawa N, Kokawa H, Taniguchi S 2008 Appl. Phys. Lett. 92 222905Google Scholar
[47] Bretos I, Jiménez R, Tomczyk M, Rodríguez Castellón E, Vilarinho P M, Calzada M L 2016 Sci. Rep. 6 20143Google Scholar
[48] Bretos I, Jiménez R, Ricote J, Sirera R, Calzada M L 2020 Adv. Funct. Mater. 30 2001897Google Scholar
[49] Arthur J R 2002 Surf. Sci. 500 189Google Scholar
[50] Kourkoutis L F, Song J H, Hwang H Y, Muller D A 2010 Proc. Natl. Acad. Sci. U. S. A. 107 11682Google Scholar
[51] Matthews J W, Blakeslee A E 1974 J. Cryst. Growth 27 118Google Scholar
[52] Koma A, Yoshimura K 1986 Surf. Sci. 174 556Google Scholar
[53] Koma A, Ueno K, Saiki K 1991 J. Cryst. Growth 111 1029Google Scholar
[54] Koma A 1999 J. Cryst. Growth 201 236Google Scholar
[55] Bitla Y, Chu Y H 2017 FlatChem 3 26Google Scholar
[56] Reichelt K, Lutz H O 1971 J. Cryst. Growth 10 103Google Scholar
[57] Derose J A, Thundat T, Nagahara L A, Lindsay S 1991 Surf. Sci. 256 102Google Scholar
[58] Baski A A, Fuchs H 1994 Surf. Sci. 313 275Google Scholar
[59] Dishner M H, Ivey M M, Gorer S, Hemminger J C, Feher F J 1998 J. Vac. Sci. Technol. 16 3295Google Scholar
[60] Ji Q, Zhang Y, Gao T, Zhang Y, Ma D, Liu M, Chen Y, Qiao X, Tan P H, Kan M, Feng J, Sun Q, Liu Z 2013 Nano Lett. 13 3870Google Scholar
[61] Zhou Y, Nie Y, Liu Y, Yan K, Hong J, Jin C, Zhou Y, Yin J, Liu Z, Peng H 2014 ACS Nano 8 1485Google Scholar
[62] Xia J, Zhu D, Wang L, Huang B, Huang X, Meng X 2015 Adv. Funct. Mater. 25 4255Google Scholar
[63] Bitla Y, Chu Y H 2016 International Conference of Asian Union of Magnetics Societies (ICAUMS) August 1–5, 2016, Tainan, China p18162406
[64] Amrillah T, Bitla Y, Shin K, Yang T, Hsieh Y H, Chiou Y Y, Liu H J, Do T H, Su D, Chen Y C, Jen S U, Chen L Q, Kim K H, Juang J Y, Chu Y H 2017 ACS Nano 11 6122Google Scholar
[65] Jiang J, Bitla Y, Huang C W, Do T H, Liu H J, Hsieh Y H, Ma C H, Jang C Y, Lai Y H, Chiu P W, Wu W W, Chen Y C, Zhou Y C, Chu Y H 2017 Sci. Adv. 3 1700121Google Scholar
[66] Liang Z, Liu M, Shen L, Lu L, Ma C, Lu X, Lou X, Jia C L 2019 ACS Appl. Mater. Interfaces 11 5247Google Scholar
[67] Qian J, Han Y, Yang C, Lv P, Zhang X, Feng C, Lin X, Huang S, Cheng X, Cheng Z 2020 Nano Energy 74 104862Google Scholar
[68] Yang Y, Yuan G, Yan Z, Wang Y, Lu X, Liu J M 2017 Adv. Mater. 29 1700425Google Scholar
[69] Konagai M, Sugimoto M, Takahashi K 1978 J. Cryst. Growth 45 277Google Scholar
[70] Park K I, Xu S, Liu Y, Hwang G T, Kang S J, Wang Z L, Lee K J 2010 Nano Lett. 10 4939Google Scholar
[71] Gan Q, Rao R A, Eom C B, Garrett J L, Lee M 1998 Appl. Phys. Lett. 72 978Google Scholar
[72] Deneke C, Wild E, Boldyreva K, Baunack S, Cendula P, Monch I, Simon M, Malachias A, Dorr K, Schmidt O G 2011 Nanoscale Res. Lett. 6 621Google Scholar
[73] Qi Y, Jafferis N T, Jr Lyons K, Lee C M, Ahmad H, McAlpine M C 2010 Nano Lett. 10 524Google Scholar
[74] Qi Y, Kim J, Nguyen T D, Lisko B, Purohit P K, McAlpine M C 2011 Nano Lett. 11 1331Google Scholar
[75] Bakaul S R, Serrao C R, Lee M, Yeung C W, Sarker A, Hsu S L, Yadav A K, Dedon L, You L, Khan A I, Clarkson J D, Hu C, Ramesh R, Salahuddin S 2016 Nat. Commun. 7 10547Google Scholar
[76] An F, Qu K, Zhong G, Dong Y, Ming W, Zi M, Liu Z, Wang Y, Qi B, Ding Z, Xu J, Luo Z, Gao X, Xie S, Gao P, Li J 2020 Adv. Funct. Mater. 31 2003495Google Scholar
[77] Lu D, Baek D J, Hong S S, Kourkoutis L F, Hikita Y, Hwang H Y 2016 Nat. Mater. 15 1255Google Scholar
[78] Ji D, Cai S, Paudel T R, Sun H, Zhang C, Han L, Wei Y, Zang Y, Gu M, Zhang Y, Gao W, Huyan H, Guo W, Wu D, Gu Z, Tsymbal E Y, Wang P, Nie Y, Pan X 2019 Nature 570 87Google Scholar
[79] Dong G, Li S, Yao M, Zhou Z, Zhang Y Q, Han X, Luo Z, Yao J, Peng B, Hu Z, Huang H, Jia T, Li J, Ren W, Ye Z G, Ding X, Sun J, Nan C W, Chen L Q, Li J, Liu M 2019 Science 366 475Google Scholar
[80] Han L, Fang Y, Zhao Y, Zang Y, Gu Z, Nie Y, Pan X 2020 Adv. Mater. Interfaces 7 1901604Google Scholar
[81] Takahashi R, Lippmaa M 2020 ACS Appl. Mater. Interfaces 12 25042Google Scholar
[82] Zhang Y, Ma C, Lu X, Liu M 2019 Mater. Horizons 6 911Google Scholar
[83] Do Y H, Kang M G, Kim J S, Kang C Y, Yoon S J 2012 Sens. Actuator A Phys. 184 124Google Scholar
[84] Delmdahl R, Patzel R, Brune J 2013 Phys. Procedia 41 241Google Scholar
[85] Lee H S, Chung J, Hwang G T, Jeong C K, Jung Y, Kwak J H, Kang H, Byun M, Kim W D, Hur S, Oh S H, Lee K J 2014 Adv. Funct. Mater. 24 6914Google Scholar
[86] Park K I, Son J H, Hwang G T, Jeong C K, Ryu J, Koo M, Choi I, Lee S H, Byun M, Wang Z L, Lee K J 2014 Adv. Mater. 26 2514Google Scholar
[87] Jeong C K, Park K, Son J H, Hwang G T, Lee S H, Park D Y, Lee H E, Lee H K, Byun M, Lee K J 2014 Energy Environ. Sci. 7 4035Google Scholar
[88] Kim S, Son J H, Lee S H, You B K, Park K I, Lee H K, Byun M, Lee K J 2014 Adv. Mater. 26 7480Google Scholar
[89] Lee H E, Kim S J, Ko J, Yeom H, Byun C, Lee S H, Joe D J, Im T, Park S K, Lee K J 2016 Adv. Funct. Mater. 26 6170Google Scholar
[90] Peng Y, Que M, Lee H E, Bao R, Wang X, Lu J, Yuan Z, Li X, Tao J, Sun J, Zhai J, Lee K J, Pan C 2019 Nano Energy 58 633Google Scholar
[91] Tsakalakos L, Sands T 2000 Appl. Phys. Lett. 76 227Google Scholar
[92] Kim J, Park H, Hannon J B, Bedell S W, Fogel K, Sadana D K, Dimitrakopoulos C 2013 Science 342 833Google Scholar
[93] Kim J, Bayram C, Park H, Cheng C W, Dimitrakopoulos C, Ott J A, Reuter K B, Bedell S W, Sadana D K 2014 Nat. Commun. 5 4836Google Scholar
[94] Kim Y, Cruz S S, Lee K, Alawode B O, Choi C, Song Y, Johnson J M, Heidelberger C, Kong W, Choi S, Qiao K, Almansouri I, Fitzgerald E A, Kong J, Kolpak A M, Hwang J, Kim J 2017 Nature 544 340Google Scholar
[95] Kong W, Li H, Qiao K, Kim Y, Lee K, Nie Y, Lee D, Osadchy T, Molnar R J, Gaskill D K, Myers Ward R L, Daniels K M, Zhang Y, Sundram S, Yu Y, Bae S H, Rajan S, Shao Horn Y, Cho K, Ougazzaden A, Grossman J C, Kim J 2018 Nat. Mater. 17 999Google Scholar
[96] Kum H S, Lee H, Kim S, Lindemann S, Kong W, Qiao K, Chen P, Irwin J, Lee J H, Xie S, Subramanian S, Shim J, Bae S H, Choi C, Ranno L, Seo S, Lee S, Bauer J, Li H, Lee K, Robinson J A, Ross C A, Schlom D G, Rzchowski M S, Eom C B, Kim J 2020 Nature 578 75Google Scholar
[97] Scott J F 2007 Science 315 954Google Scholar
[98] Gao W, You L, Wang Y, Yuan G, Chu Y, Liu Z, Liu J 2017 Adv. Electron. Mater. 3 1600542Google Scholar
[99] Gao D, Tan Z, Fan Z, Guo M, Hou Z, Chen D, Qin M, Zeng M, Zhou G, Gao X, Lu X, Liu J M 2019 ACS Appl. Mater. Interfaces 11 27088Google Scholar
[100] Yao Z, Song Z, Hao H, Yu Z, Cao M, Zhang S, Lanagan M T, Liu H 2017 Adv. Mater. 29 1601727Google Scholar
[101] Palneedi H, Peddigari M, Hwang G, Jeong D, Ryu J 2018 Adv. Funct. Mater. 28 1803665Google Scholar
[102] Zou K, Dan Y, Xu H, Zhang Q, Lu Y, Huang H, He Y 2019 Mater. Res. Bull. 113 190Google Scholar
[103] Yang L, Kong X, Li F, Hao H, Cheng Z, Liu H, Li J F, Zhang S 2019 Prog. Mater. Sci. 102 72Google Scholar
[104] Ma B, Kwon D K, Narayanan M, Balachandran U 2009 J. Electroceram. 22 383Google Scholar
[105] Zhang Y, Li Y, Hao X, Jiang H, Zhai J 2019 J. Am. Ceram. Soc. 102 6107Google Scholar
[106] Zhang Y, Li Y, Du J, Sun N, Hao X, Jiang H, Zhai J 2019 J. Mater. Sci.: Mater. Electron. 30 11945Google Scholar
[107] Michael Sapia E K, Li H U, Jackson T N, Trolier Mckinstry S 2015 J. Appl. Phys. 118 13574Google Scholar
[108] Sun Z, Ma C, Liu M, Cui J, Lu L, Lu J, Lou X, Jin L, Wang H, Jia C L 2017 Adv. Mater. 29 1604427Google Scholar
[109] Ma B, Hu Z, Koritala R E, Lee T H, Dorris S E, Balachandran U 2015 J. Mater. Sci.: Mater. Electron. 26 9279Google Scholar
[110] Yang C, Lv P, Qian J, Han Y, Ouyang J, Lin X, Huang S, Cheng Z 2019 Adv. Energy Mater. 9 1803949Google Scholar
[111] Lv P, Yang C, Qian J, Wu H, Huang S, Cheng X, Cheng Z 2020 Adv. Energy Mater. 10 1904229Google Scholar
[112] Liang Z, Ma C, Shen L, Lu L, Lu X, Lou X, Liu M, Jia C L 2019 Nano Energy 57 519Google Scholar
[113] Shen B z, Li Y, Hao X 2019 ACS Appl. Mater. Interfaces 11 34117Google Scholar
[114] Han S, Zhou Y, Roy V A L 2013 Adv. Mater. 25 5425Google Scholar
[115] Gao H, Yang Y, Wang Y, Chen L, Wang J, Yuan G, Liu J 2019 ACS Appl. Mater. Interfaces 11 35169Google Scholar
[116] Arimoto Y, Ishiwara H 2004 MRS Bull. 29 823Google Scholar
[117] Sun J, Zheng X 2011 IEEE Trans. Electron Devices 58 3559Google Scholar
[118] Vasilopoulou M, Kim B S, Kim H P, da Silva W J, Schneider F K, Mat Teridi M A, Gao P, Mohd Yusoff A R b, Nazeeruddin M K 2020 Nano Lett. 20 5081Google Scholar
[119] Bakaul S R, Serrao C R, Lee O, Lu Z, Yadav A, Carraro C, Maboudian R, Ramesh R, Salahuddin S 2017 Adv. Mater. 29 1605699Google Scholar
[120] Su L, Lu X, Chen L, Wang Y, Yuan G, Liu J 2018 ACS Appl. Mater. Interfaces 10 21428Google Scholar
[121] Yang B, Li C, Liu M, Wei R, Tang X, Hu L, Song W, Zhu X, Sun Y 2020 Journal of Materiomics 6 600Google Scholar
[122] Yang C, Han Y, Qian J, Lv P, Lin X, Huang S, Cheng Z 2019 ACS Appl. Mater. Interfaces 11 12647Google Scholar
[123] Lee W, Kahya O, Toh C T, Özyilmaz B, Ahn J H 2013 Nanotechnology 24 475202Google Scholar
[124] Ren C, Zhong G, Xiao Q, Tan C, Feng M, Zhong X, An F, Wang J, Zi M, Tang M, Tang Y, Jia T, Li J 2019 Adv. Funct. Mater. 30 1906131Google Scholar
[125] Wang Z L, Song J 2006 Science 312 242Google Scholar
[126] Chang C, Tran V H, Wang J, Fuh Y, Lin L 2010 Nano Lett. 10 726Google Scholar
[127] Martins P, Lopes A C, Lancerosmendez S 2014 Prog. Polym. Sci. 39 683Google Scholar
[128] Kwon J, Seung W, Sharma B K, Kim S, Ahn J 2012 Energy Environ. Sci. 5 8970Google Scholar
[129] Hwang G T, Park H, Lee J H, Oh S, Park K I, Byun M, Park H, Ahn G, Jeong C K, No K, Kwon H, Lee S G, Joung B, Lee K J 2014 Adv. Mater. 26 4880Google Scholar
[130] Dagdeviren C, Su Y, Joe P, Yona R, Liu Y, Kim Y S, Huang Y, Damadoran A R, Xia J, Martin L W, Huang Y, Rogers J A 2014 Nat. Commun. 5 4496Google Scholar
[131] Inaoka T, Shintaku H, Nakagawa T, Kawano S, Ogita H, Sakamoto T, Hamanishi S, Wada H, Ito J 2011 Proc. Natl. Acad. Sci. U. S. A. 108 18390Google Scholar
[132] Peng B, Zhang Q, Li X, Sun T, Fan H, Ke S, Ye M, Wang Y, Lu W, Niu H, Scott J F, Zeng X, Huang H 2015 Adv. Electron. Mater. 1 1500052Google Scholar
[133] Fan Z, Fan H, Lu Z, Li P, Huang Z, Tian G, Yang L, Yao J, Chen C, Chen D, Yan Z, Lu X, Gao X, Liu J M 2017 Phys. Rev. Appl. 7 014020Google Scholar
[134] Zhang Q, Xie L, Liu G, Prokhorenko S, Nahas Y, Pan X, Bellaiche L, Gruverman A, Valanoor N 2017 Adv. Mater. 29 1702375Google Scholar
[135] Wang J J, Su Y J, Wang B, Ouyang J, Ren Y H, Chen L Q 2020 Nano Energy 72 104665Google Scholar
-
图 1 PZT/LNO/Ni-Cr柔性薄膜的(a)照片(插图为薄膜结构示意图)和(b)室温10 kHz下的电滞回线[32]; (c) PLZO柔性薄膜在1000次弯折前后的电滞回线对比(插图为柔性薄膜弯折照片)[41]; (d) 不同双氧水预处理时长的柔性BTO/Ni膜磁电耦合系数随磁场的变化[40]
Fig. 1. (a) Photograph of a flexible PZT film (inset: schematic structure illustration) and (b) P-E loop of the PZT film measured at 10 kHz[32]; (c) P-E loops of a flexible PLZO film before and after 1000 bending cycles (inset: photograph of the bending state of the PLZO film)[41]; (d) magneto-electric (ME) voltage coefficients of the flexible BTO/Ni assemblies as a function of dc magnetic field[40]. Plane (a), (b) reprinted with permission from Ref. [32]. Copyright 2016 American Chemical Society. Plane (c) reprinted from Ref. [41], with the permission of AIP Publishing.
图 2 (a) PhS方法的示意图[34]; (b) 400 ℃退火的PZT薄膜的P-E回线, 下方插图为非开关部分的贡献, 上方插图为开关部分[47]; (c) 不同工艺制备的BFO薄膜在140 K, 10 kHz条件下的P-E回线[34]
Fig. 2. (a) Schematic illustration of the PhS method[34]; (b) P-E loop of the PZT film annealed at 400 °C, the lower inset of (b) correspond to the non-switching contribution to the polarization, the upper inset correspond to the compensated ferroelectric hysteresis loop[47]; (c) P-E loops for seeded and seeded + UV-irradiated BFO films measured at 140 K and 10 kHz[34].
图 3 PZT(Zr/Ti = 20:80)/SRO/CFO/mica柔性铁电存储器[65] (a) 实物图及局部AFM图; (b) 面外θ-2θ扫面结果; (c) 面内Φ扫; (d) RSM图; (e) 断面TEM图像, PZT/SRO和SRO/CFO/mica界面局部放大图以及PZT, SRO和云母的选定区域衍射模式
Fig. 3. PZT(Zr/Ti = 20∶80)/SRO/CFO/mica flexible ferroelectric memory[65]: (a) Photograph of the flexible ferroelectric device on mica with corresponding AFM image of PZT surface; (b) θ-2θ scan of the heterostructure; (c) Φ scans at PZT {002}, SRO {002}, CFO {004}, and mica {202} diffraction peaks (a.u., arbitrary units); (d) reciprocal space mapping of the heterostructure around the PZT (002) peak (r.l.u., relative lattice units); (e) cross-sectional TEM images of PZT/SRO and SRO/CFO/mica interfaces, and the corresponding selected area electron diffraction patterns.
图 5 (a) LLO剥离-转印示意图[87]; (b), (c)使用不同能量激光的LLO工艺转印到PET基底上的PZT薄膜表面的SEM照片, 图(b)和(c)对应的激光能量分别为420和 500 mJ/cm2, 标尺为3 μm[87]
Fig. 5. (a) Schematic diagram of the LLO fabrication process[87]; (b), (c) SEM images of surfaces of the PZT films transferred to a PET substrate by the LLO process using different energy laser: (b) 420 and (c) 500 mJ/cm2[87]. Scale bars, 3 μm.
图 7 BST[99]柔性薄膜在(a)不同半径弯折时与弯折后的介电频谱(flat-1为初始态, flat-2为r = 5 mm弯折之后; flat-3为r = 2 mm弯折之后)和(b) r = 5 mm时18.6 GHz的介电常数和损耗随弯折次数的变化
Fig. 7. (a) Frequency domain spectroscopy of BST flexible film in the bending states and flat states after bending with different radii (flat 1−3: initial state and flat states after bending at r = 5 mm and 2 mm, respectively); (b) εr and tanδ of BST flexible film at 18.6 GHz as a function of bending cycle (r = 5 mm)[99]. Reprinted with permission from Ref. [99]. Copyright 2019 American Chemical Society.
图 8 FeRAM[115]和FeFET[118]的示意图 (a) P-E回线, 插图为FeRAM结构示意图; (b) FeRAM1疲劳特性; (c) FeFET结构示意图; (d) FeFET的转移特性
Fig. 8. Schematic of FeRAM[115] and FeFET[118]: (a) P-E loop and the insert is the schematic illustration of FeRAM; (b) fatigue characterization of FeRAM; (c) the schematic illustration of FeFET; (d) transfer characteristics of the FeFET. Plane (a), (b) reprinted with permission from Ref [115]. Copyright 2019 American Chemical Society. Plane (c), (d) reprinted with permission from Ref [118]. Copyright 2020 American Chemical Society.
图 9 几种云母基柔性铁电存储器的性能数据对比 (a), (d) PZT (Zr/Ti = 20:80)[65], (a)不同弯折半径时的P-E回线和(d) 1000次弯折前后拉伸、压缩和平整状态的疲劳性能; (b), (e) BLT[120], (b) 10000次弯折前后及弯折时的P-E回线和(e)疲劳性能; (c), (f) BFO[122], (c)不同弯折半径时拉伸、压缩条件下的P-E回线和(f)1000次弯折前后的疲劳性能
Fig. 9. Performance of mica-based flexible ferroelectric memories. (a) P-E loops of PZT (Zr/Ti = 20:80) -based memories with various tensile and compressive radii and (d) fatigue performance at unbent, compressively bent and tensilely bent before and after 1000 cycle conditions[65]; (b) P-E loops of BLT-based memories at bending state and flat states before and after 10000 cycle conditions and (e) fatigue performance[120]; (c) P-E loops of BFO-based memories with various compressive and tensile bending radii and (f) fatigue performance an unbent and compressively and tensilely bent for 1000 cycle conditions[122]. Plane (b), (e) reprinted with permission from Ref. [120]. Copyright 2018 American Chemical Society. Plane (c), (f) reprinted with permission from Ref. [122]. Copyright 2019 American Chemical Society.
表 1 最近报道的有代表性的柔性和刚性基底的介电薄膜的储能性能
Table 1. Energy storage properties of recently-reported representative dielectrics on rigid and flexible substrates.
材料 基底 Ue/J·cm–3 η/% Eb/MV·m–1 Tw/℃ 疲劳次数 弯折次数 0.25BFO-0.3BTO-0.45STO[6] Nb:STO 112 80 490 –100—150 108 — BCT/BZT multilayer[108] Nb:STO 83.9 78.4 800 –100—200 106 — BZT[21] Nb:STO 78.7 80.5 697 –150—200 106 — PLZT[109] LNO/Ni 85 65 450 — — — Mn:NBT-BT-BFO[110] Pt/F-mica 81.9 64.4 229 25—200 109 103 (r = 4 mm) NKBT/BSMT multilayer[111] Pt/F-mica 91 68 303 –50—200 108 104 (r = 4 mm) BZT[112] LSMO/STO/F-mica 65.1 72.9 615 –100—200 106 103 (r = 4 mm) PLZT[113] LNO/F-mica 40.2 58 200 30—180 107 2 × 103 (r = 4 mm) -
[1] Xu S, Zhang Y, Jia L, Mathewson K E, Jang K I, Kim J, Fu H, Huang X, Chava P, Wang R, Bhole S, Wang L, Na Y J, Guan Y, Flavin M, Han Z, Huang Y, Rogers J A 2014 Science 344 70Google Scholar
[2] Lacour S P 2015 Nat. Mater. 14 659Google Scholar
[3] Jung Y H, Hong S K, Wang H S, Han J H, Pham T X, Park H, Kim J, Kang S, Yoo C D, Lee K J 2020 Adv. Mater. 32 1904020
[4] Park B H, Kang B S, Bu S D, Noh T W, Lee J, Jo W 1999 Nature 401 682Google Scholar
[5] Lee H N, Hesse D, Zakharov N, Gösele U 2002 Science 296 2006Google Scholar
[6] Pan H, Li F, Liu Y, Zhang Q, Wang M, Lan S, Zheng Y, Ma J, Gu L, Shen Y, Yu P, Zhang S, Chen L Q, Lin Y H, Nan C W 2019 Science 365 578Google Scholar
[7] Zhao P, Wang H, Wu L, Chen L, Cai Z, Li L, Wang X 2019 Adv. Energy Mater. 9 1803048Google Scholar
[8] Kim J, Saremi S, Acharya M, Velarde G, Parsonnet E, Donahue P, Qualls A, Garcia D, Martin L W 2020 Science 369 81Google Scholar
[9] Cao H C, Evans A G 1993 J. Am. Ceram. Soc. 76 890Google Scholar
[10] Li P, Zhai J, Shen B, Zhang S, Li X, Zhu F, Zhang X 2018 Adv. Mater. 30 1705171Google Scholar
[11] Kakekhani A, Ismail Beigi S, Altman E I 2016 Surf. Sci. 650 302Google Scholar
[12] Khan M A, Nadeem M A, Idriss H 2016 Surf. Sci. Rep. 71 1Google Scholar
[13] Han X, Chen X, Tang X, Chen Y L, Liu J H, Shen Q D 2016 Adv. Funct. Mater. 26 3640Google Scholar
[14] Liu Y, Aziguli H, Zhang B, Xu W, Lu W, Bernholc J, Wang Q 2018 Nature 562 96Google Scholar
[15] Zhang X, Jiang J, Shen Z, Dan Z, Li M, Lin Y, Nan C W, Chen L, Shen Y 2018 Adv. Mater. 30 1707269Google Scholar
[16] Lim S, Son D, Kim J, Lee Y B, Song J K, Choi S, Lee D J, Kim J H, Lee M, Hyeon T, Kim D H 2015 Adv. Funct. Mater. 25 375Google Scholar
[17] Hwang S K, Bae I, Kim R H, Park C 2012 Adv. Mater. 24 5910Google Scholar
[18] Li Q, Chen L, Gadinski M R, Zhang S, Zhang G, Li H, Haque A, Chen L, Jackson T N, Wang Q 2015 Nature 523 576Google Scholar
[19] Kim K L, Lee W, Hwang S K, Joo S H, Cho S M, Song G, Cho S H, Jeong B, Hwang I, Ahn J H, Yu Y J, Shin T J, Kwak S K, Kang S J, Park C 2016 Nano Lett. 16 334Google Scholar
[20] Pan H, Ma J, Ma J, Zhang Q, Liu X, Guan B, Gu L, Zhang X, Zhang Y J, Li L, Shen Y, Lin Y H, Nan C W 2018 Nat. Commun. 9 1813Google Scholar
[21] Liang Z, Liu M, Ma C, Shen L, Lu L, Jia C L 2018 J. Mater. Chem. A 6 12291Google Scholar
[22] Jiang J, Shen Z, Qian J, Dan Z, Guo M, He Y, Lin Y, Nan C, Chen L, Shen Y 2019 Nano Energy 62 220Google Scholar
[23] Bao Z, Hou C, Shen Z, Sun H, Zhang G, Luo Z, Dai Z, Wang C, Chen X, Li L, Yin Y, Shen Y, Li X 2020 Adv. Mater. 32 1907227Google Scholar
[24] Li Q, Liu F, Yang T, Gadinski M R, Zhang G, Chen L, Wang Q 2016 Proc. Natl. Acad. Sci. U. S. A. 113 9995Google Scholar
[25] Zhang T, Chen X, Thakur Y, Lu B, Zhang Q, Runt J, Zhang Q M 2020 Sci. Adv. 6 6622Google Scholar
[26] Choi K J, Biegalski M, Li Y L, Sharan A, Schubert J, Uecker R, Reiche P, Chen Y B, Pan X Q, Gopalan V, Chen L Q, Schlom D G, Eom C B 2004 Science 306 1005Google Scholar
[27] Rojac T, Bencan A, Malic B, Tutuncu G, Jones J L, Daniels J E, Damjanovic D 2014 J. Am. Ceram. Soc. 97 1993Google Scholar
[28] Park S E, Shrout T R 1997 J. Appl. Phys. 82 1804Google Scholar
[29] Li F, Cabral M J, Xu B, Cheng Z, Dickey E C, LeBeau J M, Wang J, Luo J, Taylor S, Hackenberger W, Bellaiche L, Xu Z, Chen L Q, Shrout T R, Zhang S 2019 Science 364 264Google Scholar
[30] Won S S, Seo H, Kawahara M, Glinsek S, Lee J, Kim Y, Jeong C K, Kingon A I, Kim S 2019 Nano Energy 55 182Google Scholar
[31] Palneedi H, Yeo H G, Hwang G T, Annapureddy V, Kim J W, Choi J J, Trolier McKinstry S, Ryu J 2017 APL Mater. 5 096111Google Scholar
[32] Ko Y J, Kim D Y, Won S S, Ahn C W, Kim I W, Kingon A I, Kim S, Ko J, Jung J H 2016 ACS Appl. Mater. Interfaces 8 6504Google Scholar
[33] Bretos I, Jimenez R, Wu A, Kingon A I, Vilarinho P M, Calzada M L 2014 Adv. Mater. 26 1405Google Scholar
[34] Tomczyk M, Bretos I, Jiménez R, Mahajan A, Ramana E V, Calzada M L, Vilarinho P M 2017 J. Mater. Chem. C 5 12529Google Scholar
[35] Yu H, Chung C C, Shewmon N, Ho S, Carpenter J H, Larrabee R, Sun T, Jones J L, Ade H, O'Connor B T, So F 2017 Adv. Funct. Mater. 27 1700461Google Scholar
[36] Ke S, Chen C, Fu N, Zhou H, Ye M, Lin P, Yuan W, Zeng X, Chen L, Huang H 2016 ACS Appl. Mater. Interfaces 8 28406Google Scholar
[37] Liu W Y, Liao J J, Jiang J, Zhou Y C, Chen Q, Mo S T, Yang Q, Peng Q X, Jiang L M 2020 J. Mater. Chem. C 8 3878Google Scholar
[38] Ma B, Tong S, Narayanan M, Liu S, Chao S, Balachandran U 2011 Mater. Res. Bull. 46 1124Google Scholar
[39] Yeo H G, Ma X, Rahn C D, Troliermckinstry S 2016 Adv. Funct. Mater. 26 5940Google Scholar
[40] Liang W, Li Z, Bi Z, Nan T, Du H, Nan C, Chen C, Jia Q, Lin Y 2014 J. Mater. Chem. C 2 708Google Scholar
[41] Lee H J, Won S S, Cho K H, Han C K, Mostovych N, Kingon A I, Kim S, Lee H Y 2018 Appl. Phys. Lett. 112 092901Google Scholar
[42] Yeo H G, Xue T, Roundy S, Ma X, Rahn C, Trolier McKinstry S 2018 Adv. Funct. Mater. 28 1801327Google Scholar
[43] Kingon A I, Srinivasan S 2005 Nat. Mater. 4 233Google Scholar
[44] Wu A, Vilarinho P M, Reaney I, Miranda Salvado I M 2003 Chem. Mater. 15 1147Google Scholar
[45] Bharadwaja S S N, Dechakupt T, Trolier McKinstry S, Beratan H 2008 J. Am. Ceram. Soc. 91 1580Google Scholar
[46] Wang Z J, Cao Z P, Otsuka Y, Yoshikawa N, Kokawa H, Taniguchi S 2008 Appl. Phys. Lett. 92 222905Google Scholar
[47] Bretos I, Jiménez R, Tomczyk M, Rodríguez Castellón E, Vilarinho P M, Calzada M L 2016 Sci. Rep. 6 20143Google Scholar
[48] Bretos I, Jiménez R, Ricote J, Sirera R, Calzada M L 2020 Adv. Funct. Mater. 30 2001897Google Scholar
[49] Arthur J R 2002 Surf. Sci. 500 189Google Scholar
[50] Kourkoutis L F, Song J H, Hwang H Y, Muller D A 2010 Proc. Natl. Acad. Sci. U. S. A. 107 11682Google Scholar
[51] Matthews J W, Blakeslee A E 1974 J. Cryst. Growth 27 118Google Scholar
[52] Koma A, Yoshimura K 1986 Surf. Sci. 174 556Google Scholar
[53] Koma A, Ueno K, Saiki K 1991 J. Cryst. Growth 111 1029Google Scholar
[54] Koma A 1999 J. Cryst. Growth 201 236Google Scholar
[55] Bitla Y, Chu Y H 2017 FlatChem 3 26Google Scholar
[56] Reichelt K, Lutz H O 1971 J. Cryst. Growth 10 103Google Scholar
[57] Derose J A, Thundat T, Nagahara L A, Lindsay S 1991 Surf. Sci. 256 102Google Scholar
[58] Baski A A, Fuchs H 1994 Surf. Sci. 313 275Google Scholar
[59] Dishner M H, Ivey M M, Gorer S, Hemminger J C, Feher F J 1998 J. Vac. Sci. Technol. 16 3295Google Scholar
[60] Ji Q, Zhang Y, Gao T, Zhang Y, Ma D, Liu M, Chen Y, Qiao X, Tan P H, Kan M, Feng J, Sun Q, Liu Z 2013 Nano Lett. 13 3870Google Scholar
[61] Zhou Y, Nie Y, Liu Y, Yan K, Hong J, Jin C, Zhou Y, Yin J, Liu Z, Peng H 2014 ACS Nano 8 1485Google Scholar
[62] Xia J, Zhu D, Wang L, Huang B, Huang X, Meng X 2015 Adv. Funct. Mater. 25 4255Google Scholar
[63] Bitla Y, Chu Y H 2016 International Conference of Asian Union of Magnetics Societies (ICAUMS) August 1–5, 2016, Tainan, China p18162406
[64] Amrillah T, Bitla Y, Shin K, Yang T, Hsieh Y H, Chiou Y Y, Liu H J, Do T H, Su D, Chen Y C, Jen S U, Chen L Q, Kim K H, Juang J Y, Chu Y H 2017 ACS Nano 11 6122Google Scholar
[65] Jiang J, Bitla Y, Huang C W, Do T H, Liu H J, Hsieh Y H, Ma C H, Jang C Y, Lai Y H, Chiu P W, Wu W W, Chen Y C, Zhou Y C, Chu Y H 2017 Sci. Adv. 3 1700121Google Scholar
[66] Liang Z, Liu M, Shen L, Lu L, Ma C, Lu X, Lou X, Jia C L 2019 ACS Appl. Mater. Interfaces 11 5247Google Scholar
[67] Qian J, Han Y, Yang C, Lv P, Zhang X, Feng C, Lin X, Huang S, Cheng X, Cheng Z 2020 Nano Energy 74 104862Google Scholar
[68] Yang Y, Yuan G, Yan Z, Wang Y, Lu X, Liu J M 2017 Adv. Mater. 29 1700425Google Scholar
[69] Konagai M, Sugimoto M, Takahashi K 1978 J. Cryst. Growth 45 277Google Scholar
[70] Park K I, Xu S, Liu Y, Hwang G T, Kang S J, Wang Z L, Lee K J 2010 Nano Lett. 10 4939Google Scholar
[71] Gan Q, Rao R A, Eom C B, Garrett J L, Lee M 1998 Appl. Phys. Lett. 72 978Google Scholar
[72] Deneke C, Wild E, Boldyreva K, Baunack S, Cendula P, Monch I, Simon M, Malachias A, Dorr K, Schmidt O G 2011 Nanoscale Res. Lett. 6 621Google Scholar
[73] Qi Y, Jafferis N T, Jr Lyons K, Lee C M, Ahmad H, McAlpine M C 2010 Nano Lett. 10 524Google Scholar
[74] Qi Y, Kim J, Nguyen T D, Lisko B, Purohit P K, McAlpine M C 2011 Nano Lett. 11 1331Google Scholar
[75] Bakaul S R, Serrao C R, Lee M, Yeung C W, Sarker A, Hsu S L, Yadav A K, Dedon L, You L, Khan A I, Clarkson J D, Hu C, Ramesh R, Salahuddin S 2016 Nat. Commun. 7 10547Google Scholar
[76] An F, Qu K, Zhong G, Dong Y, Ming W, Zi M, Liu Z, Wang Y, Qi B, Ding Z, Xu J, Luo Z, Gao X, Xie S, Gao P, Li J 2020 Adv. Funct. Mater. 31 2003495Google Scholar
[77] Lu D, Baek D J, Hong S S, Kourkoutis L F, Hikita Y, Hwang H Y 2016 Nat. Mater. 15 1255Google Scholar
[78] Ji D, Cai S, Paudel T R, Sun H, Zhang C, Han L, Wei Y, Zang Y, Gu M, Zhang Y, Gao W, Huyan H, Guo W, Wu D, Gu Z, Tsymbal E Y, Wang P, Nie Y, Pan X 2019 Nature 570 87Google Scholar
[79] Dong G, Li S, Yao M, Zhou Z, Zhang Y Q, Han X, Luo Z, Yao J, Peng B, Hu Z, Huang H, Jia T, Li J, Ren W, Ye Z G, Ding X, Sun J, Nan C W, Chen L Q, Li J, Liu M 2019 Science 366 475Google Scholar
[80] Han L, Fang Y, Zhao Y, Zang Y, Gu Z, Nie Y, Pan X 2020 Adv. Mater. Interfaces 7 1901604Google Scholar
[81] Takahashi R, Lippmaa M 2020 ACS Appl. Mater. Interfaces 12 25042Google Scholar
[82] Zhang Y, Ma C, Lu X, Liu M 2019 Mater. Horizons 6 911Google Scholar
[83] Do Y H, Kang M G, Kim J S, Kang C Y, Yoon S J 2012 Sens. Actuator A Phys. 184 124Google Scholar
[84] Delmdahl R, Patzel R, Brune J 2013 Phys. Procedia 41 241Google Scholar
[85] Lee H S, Chung J, Hwang G T, Jeong C K, Jung Y, Kwak J H, Kang H, Byun M, Kim W D, Hur S, Oh S H, Lee K J 2014 Adv. Funct. Mater. 24 6914Google Scholar
[86] Park K I, Son J H, Hwang G T, Jeong C K, Ryu J, Koo M, Choi I, Lee S H, Byun M, Wang Z L, Lee K J 2014 Adv. Mater. 26 2514Google Scholar
[87] Jeong C K, Park K, Son J H, Hwang G T, Lee S H, Park D Y, Lee H E, Lee H K, Byun M, Lee K J 2014 Energy Environ. Sci. 7 4035Google Scholar
[88] Kim S, Son J H, Lee S H, You B K, Park K I, Lee H K, Byun M, Lee K J 2014 Adv. Mater. 26 7480Google Scholar
[89] Lee H E, Kim S J, Ko J, Yeom H, Byun C, Lee S H, Joe D J, Im T, Park S K, Lee K J 2016 Adv. Funct. Mater. 26 6170Google Scholar
[90] Peng Y, Que M, Lee H E, Bao R, Wang X, Lu J, Yuan Z, Li X, Tao J, Sun J, Zhai J, Lee K J, Pan C 2019 Nano Energy 58 633Google Scholar
[91] Tsakalakos L, Sands T 2000 Appl. Phys. Lett. 76 227Google Scholar
[92] Kim J, Park H, Hannon J B, Bedell S W, Fogel K, Sadana D K, Dimitrakopoulos C 2013 Science 342 833Google Scholar
[93] Kim J, Bayram C, Park H, Cheng C W, Dimitrakopoulos C, Ott J A, Reuter K B, Bedell S W, Sadana D K 2014 Nat. Commun. 5 4836Google Scholar
[94] Kim Y, Cruz S S, Lee K, Alawode B O, Choi C, Song Y, Johnson J M, Heidelberger C, Kong W, Choi S, Qiao K, Almansouri I, Fitzgerald E A, Kong J, Kolpak A M, Hwang J, Kim J 2017 Nature 544 340Google Scholar
[95] Kong W, Li H, Qiao K, Kim Y, Lee K, Nie Y, Lee D, Osadchy T, Molnar R J, Gaskill D K, Myers Ward R L, Daniels K M, Zhang Y, Sundram S, Yu Y, Bae S H, Rajan S, Shao Horn Y, Cho K, Ougazzaden A, Grossman J C, Kim J 2018 Nat. Mater. 17 999Google Scholar
[96] Kum H S, Lee H, Kim S, Lindemann S, Kong W, Qiao K, Chen P, Irwin J, Lee J H, Xie S, Subramanian S, Shim J, Bae S H, Choi C, Ranno L, Seo S, Lee S, Bauer J, Li H, Lee K, Robinson J A, Ross C A, Schlom D G, Rzchowski M S, Eom C B, Kim J 2020 Nature 578 75Google Scholar
[97] Scott J F 2007 Science 315 954Google Scholar
[98] Gao W, You L, Wang Y, Yuan G, Chu Y, Liu Z, Liu J 2017 Adv. Electron. Mater. 3 1600542Google Scholar
[99] Gao D, Tan Z, Fan Z, Guo M, Hou Z, Chen D, Qin M, Zeng M, Zhou G, Gao X, Lu X, Liu J M 2019 ACS Appl. Mater. Interfaces 11 27088Google Scholar
[100] Yao Z, Song Z, Hao H, Yu Z, Cao M, Zhang S, Lanagan M T, Liu H 2017 Adv. Mater. 29 1601727Google Scholar
[101] Palneedi H, Peddigari M, Hwang G, Jeong D, Ryu J 2018 Adv. Funct. Mater. 28 1803665Google Scholar
[102] Zou K, Dan Y, Xu H, Zhang Q, Lu Y, Huang H, He Y 2019 Mater. Res. Bull. 113 190Google Scholar
[103] Yang L, Kong X, Li F, Hao H, Cheng Z, Liu H, Li J F, Zhang S 2019 Prog. Mater. Sci. 102 72Google Scholar
[104] Ma B, Kwon D K, Narayanan M, Balachandran U 2009 J. Electroceram. 22 383Google Scholar
[105] Zhang Y, Li Y, Hao X, Jiang H, Zhai J 2019 J. Am. Ceram. Soc. 102 6107Google Scholar
[106] Zhang Y, Li Y, Du J, Sun N, Hao X, Jiang H, Zhai J 2019 J. Mater. Sci.: Mater. Electron. 30 11945Google Scholar
[107] Michael Sapia E K, Li H U, Jackson T N, Trolier Mckinstry S 2015 J. Appl. Phys. 118 13574Google Scholar
[108] Sun Z, Ma C, Liu M, Cui J, Lu L, Lu J, Lou X, Jin L, Wang H, Jia C L 2017 Adv. Mater. 29 1604427Google Scholar
[109] Ma B, Hu Z, Koritala R E, Lee T H, Dorris S E, Balachandran U 2015 J. Mater. Sci.: Mater. Electron. 26 9279Google Scholar
[110] Yang C, Lv P, Qian J, Han Y, Ouyang J, Lin X, Huang S, Cheng Z 2019 Adv. Energy Mater. 9 1803949Google Scholar
[111] Lv P, Yang C, Qian J, Wu H, Huang S, Cheng X, Cheng Z 2020 Adv. Energy Mater. 10 1904229Google Scholar
[112] Liang Z, Ma C, Shen L, Lu L, Lu X, Lou X, Liu M, Jia C L 2019 Nano Energy 57 519Google Scholar
[113] Shen B z, Li Y, Hao X 2019 ACS Appl. Mater. Interfaces 11 34117Google Scholar
[114] Han S, Zhou Y, Roy V A L 2013 Adv. Mater. 25 5425Google Scholar
[115] Gao H, Yang Y, Wang Y, Chen L, Wang J, Yuan G, Liu J 2019 ACS Appl. Mater. Interfaces 11 35169Google Scholar
[116] Arimoto Y, Ishiwara H 2004 MRS Bull. 29 823Google Scholar
[117] Sun J, Zheng X 2011 IEEE Trans. Electron Devices 58 3559Google Scholar
[118] Vasilopoulou M, Kim B S, Kim H P, da Silva W J, Schneider F K, Mat Teridi M A, Gao P, Mohd Yusoff A R b, Nazeeruddin M K 2020 Nano Lett. 20 5081Google Scholar
[119] Bakaul S R, Serrao C R, Lee O, Lu Z, Yadav A, Carraro C, Maboudian R, Ramesh R, Salahuddin S 2017 Adv. Mater. 29 1605699Google Scholar
[120] Su L, Lu X, Chen L, Wang Y, Yuan G, Liu J 2018 ACS Appl. Mater. Interfaces 10 21428Google Scholar
[121] Yang B, Li C, Liu M, Wei R, Tang X, Hu L, Song W, Zhu X, Sun Y 2020 Journal of Materiomics 6 600Google Scholar
[122] Yang C, Han Y, Qian J, Lv P, Lin X, Huang S, Cheng Z 2019 ACS Appl. Mater. Interfaces 11 12647Google Scholar
[123] Lee W, Kahya O, Toh C T, Özyilmaz B, Ahn J H 2013 Nanotechnology 24 475202Google Scholar
[124] Ren C, Zhong G, Xiao Q, Tan C, Feng M, Zhong X, An F, Wang J, Zi M, Tang M, Tang Y, Jia T, Li J 2019 Adv. Funct. Mater. 30 1906131Google Scholar
[125] Wang Z L, Song J 2006 Science 312 242Google Scholar
[126] Chang C, Tran V H, Wang J, Fuh Y, Lin L 2010 Nano Lett. 10 726Google Scholar
[127] Martins P, Lopes A C, Lancerosmendez S 2014 Prog. Polym. Sci. 39 683Google Scholar
[128] Kwon J, Seung W, Sharma B K, Kim S, Ahn J 2012 Energy Environ. Sci. 5 8970Google Scholar
[129] Hwang G T, Park H, Lee J H, Oh S, Park K I, Byun M, Park H, Ahn G, Jeong C K, No K, Kwon H, Lee S G, Joung B, Lee K J 2014 Adv. Mater. 26 4880Google Scholar
[130] Dagdeviren C, Su Y, Joe P, Yona R, Liu Y, Kim Y S, Huang Y, Damadoran A R, Xia J, Martin L W, Huang Y, Rogers J A 2014 Nat. Commun. 5 4496Google Scholar
[131] Inaoka T, Shintaku H, Nakagawa T, Kawano S, Ogita H, Sakamoto T, Hamanishi S, Wada H, Ito J 2011 Proc. Natl. Acad. Sci. U. S. A. 108 18390Google Scholar
[132] Peng B, Zhang Q, Li X, Sun T, Fan H, Ke S, Ye M, Wang Y, Lu W, Niu H, Scott J F, Zeng X, Huang H 2015 Adv. Electron. Mater. 1 1500052Google Scholar
[133] Fan Z, Fan H, Lu Z, Li P, Huang Z, Tian G, Yang L, Yao J, Chen C, Chen D, Yan Z, Lu X, Gao X, Liu J M 2017 Phys. Rev. Appl. 7 014020Google Scholar
[134] Zhang Q, Xie L, Liu G, Prokhorenko S, Nahas Y, Pan X, Bellaiche L, Gruverman A, Valanoor N 2017 Adv. Mater. 29 1702375Google Scholar
[135] Wang J J, Su Y J, Wang B, Ouyang J, Ren Y H, Chen L Q 2020 Nano Energy 72 104665Google Scholar
计量
- 文章访问数: 15172
- PDF下载量: 715
- 被引次数: 0