-
等摩尔比高熵钙钛矿陶瓷因其优异的磁性能而备受关注。为了进一步提升其磁化强度,本文根据构型熵Sconfig,容差因子t和失配度σ2设计(Ln0.2La0.2Nd0.2Sm0.2Eu0.2) MnO3高熵钙钛矿陶瓷,并通过固相法合成了单相高熵钙钛矿陶瓷,系统地研究了重稀土元素Dy、Ho和Er对所制备陶瓷的结构和磁性能的影响。结果表明:在1250℃下烧结16 h后,所合成的高熵陶瓷试样均呈现出较高的结晶度且保持良好的结构稳定性。(Ln0.2La0.2Nd0.2Sm0.2Eu0.2) MnO3具有显著的晶格畸变效应,其样品形貌表面光滑且晶界清晰可辨。三种高熵陶瓷样品在T=5 K时表现出磁滞行为,居里温度TC随着引入稀土离子半径的减小而降低,而饱和磁化强度和矫顽力则随之增加。此外,与其它样品相比,(Er0.2La0.2Nd0.2Sm0.2Eu0.2) MnO3陶瓷显示出更高的饱和磁化强度(42.8 emu/g)和矫顽力(2.09 kOe),这归因于其磁体具有强磁晶各向异性、更大的晶格畸变σ2(6.52×10-3)以及更小的平均晶粒尺寸(440.49±22.02 nm)、晶胞体积(229.432Å3)和A位平均离子半径(1.24Å),其在磁记录材料方面具有应用潜力。Equimolar ratio high-entropy perovskite ceramics (HEPCs) have attracted much attention for their excellent magnetization intensity. To further enhance its magnetization intensity, (Ln0.2La0.2Nd0.2Sm0.2Eu0.2)MnO3 (Ln = Dy, Ho and Er, labeled as Ln-LNSEMO) HEPCs were designed based on the configuration entropy Sconfig, tolerance factor t and mismatch degree σ2. Single-phase HEPCs were synthesized by the solid-phase method in this work, which systematically studied the effects of the heavy rare-earth elements Dy, Ho and Er on the structure and magnetic properties of Ln-LNSEMO. The results show that all Ln-LNSEMO HEPCs exhibit a high crystallinity and maintain excellent structural stability after sintering at 1250 ℃ for 16 h. Ln-LNSEMO HEPCs exhibit significant lattice distortion effects, with smooth surface morphology, clearly distinguishable grain boundaries and irregular polygonal shapes. The present study investigates the influence of A-site average ion radius, grain size and lattice distortion on the magnetic interactions of Ln-LNSEMO HEPCs. The three high-entropy ceramic samples exhibit hysteresis behavior at T = 5 K, with the Curie temperature TC decreasing as the radius of the introduced rare-earth ions decreases, while the saturation magnetization and coercivity increase accordingly. When the average ionic radius of A-site decreases, the interaction between their valence electrons and local electrons in the crystal increases, thereby enhancing the conversion of electrons to oriented magnetic moments under an external magnetic field. Thus, Er-LNSEMO HEPCs show a higher saturation magnetization strength (42.8 emu/g) and coercivity (2.09 kOe) compared to the other samples, which is attributed to the strong magnetic crystal anisotropy, larger lattice distortion σ2 (6.52×10-3), smaller average grain size (440.49 ±22.02 nm), unit cell volume (229.432 Å3) and A-site average ion radius (1.24 Å) of its magnet, which has potential applications in magnetic recording materials.
-
Keywords:
- High-entropy ceramics /
- Rare-earths /
- Perovskite /
- Magnetic properties
-
[1] George E P, Ritchie R O 2022MRS Bull. 47 145
[2] Rost C M, Sachet E, Borman T, Moballegh A, Dickey E C, Hou D, Jones J L, Curtarolo S, Maria J P 2015Nat. Commun. 6 8485
[3] Hai W, Wu Z, Zhang S, Chen H, Hu L, Zhang H, Sun W, Liu M, Chen Y 2023Int. J. Refract. Met. Hard Mater. 112 106114
[4] Zhou Q, Xu F, Gao C, Zhao W, Shu L, Shi X, Yuen M-F, Zuo D 2023Ceram. Int. 49 25964
[5] Zhang Y, Guo W-M, Jiang Z-B, Zhu Q-Q, Sun S-K, You Y, Plucknett K, Lin H-T 2019Scr. Mater. 164 135
[6] Li W G, Liu D G, Wang K W, Ma B S, Liu J L 2022J. Inorg. Mater. 37 1289(in Chinese) [李汪国,刘佃光,王珂玮,马百胜,刘金铃2022无机材料学报37 1289]
[7] Gautam A, Das S, Ahmad M I 2024Surf. Interfaces 46 104054
[8] Xie M, Lai Y, Xiang P, Liu F, Zhang L, Liao X, Huang H, Liu Q, Wu C, Li Y 2024Biochem. Eng. J. 154132
[9] Xiong W, Zhang H, Cao S, Gao F, Svec P, Dusza J, Reece M J, Yan H 2021J. Eur. Ceram. Soc. 41 2979
[10] Guo M, Zhang F N, Miao Y, Liu Y F, Yu J, Gao F 2021J. Inorg. Mater. 36 431(in Chinese) [郭猛,张丰年,苗洋,刘宇峰,郁军,高峰2021无机材料学报36 431]
[11] Sang X, Grimley E D, Niu C, Irving D L, LeBeau J M 2015Appl. Phys. Lett. 106
[12] Ning Y, Pu Y, Zhang Q, Zhou S, Wu C, Zhang L, Shi Y, Sun Z 2023Ceram. Int. 49 12214
[13] Medarde M L 1997J. Phys.: Condens. Matter 9 1679
[14] Shi Z H, Hu X Z, Zhou H B, Tian Z Y, Hu F X, Chen Y Z, Sun Z G, Shen B G 2025Acta. Phys. Sin. 74 163(in Chinese) [史镇华,胡新哲,周厚博,田正营,胡凤霞,陈允忠,孙志刚,沈保根2025物理学报74 163]
[15] Zhao W, Zhang M, Xue L, Wang K, Yang F, Zhong J, Chen H 2024J. Rare Earths 42 1937
[16] Krawczyk P A, Salamon W, Marzec M, Szuwarzynski M, Pawlak J, Kanak J, Dziubaniuk M, Kubiak W W, Zywczak A 2023Materials 164210
[17] Witte R, Sarkar A, Velasco L, Kruk R, Brand R A, Eggert B, Ollefs K, Weschke E, Wende H, Hahn H 2020J. Appl. Phys. 127 185109
[18] Qin J, Wen Z, Ma B, Wu Z, Lv Y, Yu J, Zhao Y 2024J. Magn. Magn. Mater. 597 172010
[19] Qin J, Wen Z, Ma B, Wu Z, Yu J, Tang L, Lu T, Zhao Y 2024Ceram. Int. 50 26040
[20] Stoica I, Abraham A R, Haghi A 2023Modern magnetic materials: properties and applications (CRC Press)
[21] Li M, Liu Z G, Wu J X, Hu Y H 2009Rare earth elements and their analytical chemistry (Beijing: Chemical Industry Press) pp49
-55(in Chinese) [李梅,柳召刚,吴锦绣,胡艳宏2009稀土元素及其分析化学(北京: 化学工业出版社)第49 -55页] [22] Zhivulin V E, Trofimov E A, Gudkova S A, Punda A Y, Valiulina A N, Gavrilyak A M, Zaitseva O V, Tishkevich D I, Zubar T I, Sun Z, Zhou D, Trukhanov S V, Vinnik D A, Trukhanov A V 2022Ceram. Int. 48 9239
[23] Sarkar A, Djenadic R, Wang D, Hein C, Kautenburger R, Clemens O, Hahn H 2018J. Eur. Ceram. Soc. 38 2318
[24] Goldschmidt V M 1926Naturwiss. 14 477
[25] Shannon R D 1976Acta Crystallogr. Sect. A 32 751
[26] Han X, Yang Y, Fan Y, Ni H, Guo Y, Chen Y, Ou X, Ling Y 2021Ceram. Int. 47 17383
[27] Liu J, Jiang Y, Zhang W, Cheng X, Zhao P, Zhen Y, Hao Y, Guo L, Bi K, Wang X 2024Nat. Commun. 15 8651
[28] Zhang P, Gong L, Xu X, Lou Z, Wei Z, Chen P, Wu Z, Xu J, Gao F 2023Chem. Eng. J. 472 144974
[29] Alonso J A, Martinez-Lope M J, Casais M T, Fernández-Díaz M T 2000Inorg. Chem. 39 917
[30] Shirley D A 1972Phys. Rev. B 5 4709
[31] Wei S, Chen X, Dong G, Liu L, Zhang Q, Peng B 2022Ceram. Int. 48 15640
[32] Lin J, Wu S, Sun K, Li H-F, Chen W, Zhang Y, Li L 2024Ceram. Int. 50 51269
[33] Li A, Wei J, Lin J, Zhang Y 2024Ceram. Int. 50 13732
[34] Pashchenko A V, Pashchenko V P, Prokopenko V K, Revenko Y F, Mazur A S, Sychova V Y, Burkhoveckiy V V, Kisel N G, Sil'cheva A G, Liedienov N A 2014Low Temp. Phys. 40 717
[35] Kim M, Yang J, Cai Q, Zhou X, James W J, Yelon W B, Parris P E, Buddhikot D, Malik S K 2005Phys. Rev. B: Condens. Matter 71 014433
[36] Zener C 1951Phys. Rev. 82 403
[37] Benelli C, Gatteschi D 2002Chem. Rev. 102 2369
[38] Majetich S A, Scott J H, Kirkpatrick E M, Chowdary K, Gallagher K, McHenry M E 1997Nanostruct. Mater. 9 291
[39] Jiao Y, Dai J, Fan Z, Cheng J, Zheng G, Grema L, Zhong J, Li H-F, Wang D 2024Mater. Today 77 92
[40] Shen J, Mo J, Lu Z, Tao Y, Gao K, Liu M, Xia Y 2022Physica B 644 414213
[41] Chatterjee S, Das K, Das I 2022J. Magn. Magn. Mater. 557 169473
计量
- 文章访问数: 17
- PDF下载量: 0
- 被引次数: 0