-
等摩尔比高熵钙钛矿陶瓷因具有优异的磁性能而备受关注. 为了进一步提升其磁化强度, 本文根据构型熵Sconfig、容差因子t和失配度σ2设计(Ln0.2La0.2Nd0.2Sm0.2Eu0.2)MnO3高熵钙钛矿陶瓷, 并通过固相法合成了单相高熵钙钛矿陶瓷, 系统研究了重稀土元素Dy, Ho和Er对所制备陶瓷的结构和磁性能的影响. 结果表明: 在1250 ℃下烧结16 h后, 所合成的高熵陶瓷试样均呈现出较高的结晶度且保持良好的结构稳定性. (Ln0.2La0.2Nd0.2Sm0.2Eu0.2)MnO3具有显著的晶格畸变效应, 其样品形貌表面光滑且晶界清晰可辨. 3种高熵陶瓷样品在T = 5 K时表现出磁滞行为, 居里温度TC随着引入稀土离子半径的减小而降低, 而饱和磁化强度和矫顽力则随之增大. 此外, 与其他样品相比, (Er0.2La0.2Nd0.2Sm0.2Eu0.2)MnO3陶瓷显示出更高的饱和磁化强度(42.8 emu/g)和矫顽力(2.09 kOe), 这归因于其磁体具有强磁晶各向异性、更大的晶格畸变σ2 (6.52×10–3)以及更小的平均晶粒尺寸(440.49 ± 22.02) nm、晶胞体积(229.432 Å3)和A位平均离子半径(1.24 Å), 其在磁记录材料方面具有应用潜力.Equimolar ratio high-entropy perovskite ceramics (HEPCs) have attracted much attention due to their excellent magnetization intensity. To further enhance their magnetization intensities, (Ln0.2La0.2Nd0.2Sm0.2Eu0.2)MnO3 (Ln = Dy, Ho and Er, labeled as Ln-LNSEMO) HEPCs are designed based on the configuration entropy Sconfig, tolerance factor t, and mismatch degree σ2. Single-phase HEPCs are synthesized by the solid-phase method in this work, in which the effects of the heavy rare-earth elements Dy, Ho and Er on the structure and magnetic properties of Ln-LNSEMO are systematically studied. The results show that all Ln-LNSEMO HEPCs exhibit high crystallinity and maintain excellent structural stability after sintering at 1250 °C for 16 h. Ln-LNSEMO HEPCs exhibit significant lattice distortion effects, with smooth surface morphology, clearly distinguishable grain boundaries, and irregular polygonal shapes. In the present work, the influences of A-site average ion radius, grain size and lattice distortion on the magnetic interactions of Ln-LNSEMO HEPCs are investigated. The three high-entropy ceramic samples exhibit hysteresis behavior at T = 5 K, with the Curie temperature TC decreasing as the radius of the introduced rare-earth ions decreases, while the saturation magnetization and coercivity increase accordingly. When the average ionic radius of A-site decreases, the interaction between their valence electrons and local electrons in the crystal increases, thereby enhancing the conversion of electrons to oriented magnetic moments under an external magnetic field. Thus, Er-LNSEMO HEPC shows a higher saturation magnetization strength (42.8 emu/g) and coercivity (2.09 kOe) than the other samples, which is attributed to the strong magnetic crystal anisotropy, larger lattice distortion σ2 (6.52×10–3), smaller average grain size (440.49 ± 22.02 nm), unit cell volume (229.432 Å3) and A-site average ion radius (1.24 Å) of its magnet. The Er-LNSEMO HEPC has potential applications in magnetic recording materials.
-
Keywords:
- high-entropy ceramics /
- rare-earths /
- perovskite /
- magnetic properties
-
图 1 1250 ℃下煅烧所得Ln-LNSEMO陶瓷的性质 (a) A位平均离子半径; (b)容差因子t、构型熵Sconfig和失配度σ2的理论计算值; (c) XRD图谱; (d)—(f) Rietveld精修图谱
Fig. 1. Characteristics of Ln-LNSEMO ceramics sintered at 1250 ℃: (a) Average ionic radius of A-site; (b) theoretical calculation values of tolerance factor t, configuration entropy Sconfig and mismatch degree σ2; (c) X-ray diffraction patterns; (d)–(f) rietveld refinement.
图 3 1250 °C下烧结的Ln-LNSEMO HEPCs的SEM图、粒度分布、EDS图谱和化学成分(%) (a), (a1) Dy-LNSEMO; (b), (b1) Ho-LNSEMO; (c), (c1) Er-LNSEMO
Fig. 3. SEM micrographs, particle size distribution, EDS mapping and chemical composition (%) of Ln-LNSEMO HEPCs sintered at 1250 °C: (a), (a1) Dy-LNSEMO; (b), (b1) Ho-LNSEMO; (c), (c1) Er-LNSEMO.
表 1 氧化态、配位数(CN)和相应的离子半径(r)[23]
Table 1. Oxidation state, co-ordination number (CN) and corresponding ionic radius (r)[23].
Element Oxidation CN r/Å La 3+ XII 1.36 Nd 3+ XII 1.27 Sm 3+ XII 1.24 Eu 3+ XII 1.22 Dy 3+ XII 1.19 Ho 3+ XII 1.18 Er 3+ XII 1.11 Mn 3+ VI 0.64 O 2– VI 1.40 表 2 三组样品Rietveld精修后的键长d和键角θ
Table 2. Bond length d and bond angle θ of three groups of Rietveld refined samples.
Samples d Mn-O /Å θMn-O-Mn /(°) Dy-LNSEMO 1.9157(3) 148.167(6) Ho-LNSEMO 1.9357(2) 141.748(6) Er-LNSEMO 1.9500(3) 152.118(4) -
[1] George E P, Ritchie R O 2022 MRS Bull. 47 145
Google Scholar
[2] Rost C M, Sachet E, Borman T, Moballegh A, Dickey E C, Hou D, Jones J L, Curtarolo S, Maria J P 2015 Nat. Commun. 6 8485
Google Scholar
[3] Hai W X, Wu Z H, Zhang S B, Chen H, Hu L, Zhang H, Sun W Z, Liu M L, Chen Y H 2023 Int. J. Refract. Met. Hard Mater. 112 106114
Google Scholar
[4] Zhou Q, Xu F, Gao C Z, Zhao W X, Shu L, Shi X Q, Yuen M F, Zuo D W 2023 Ceram. Int. 49 25964
Google Scholar
[5] Zhang Y, Guo W M, Jiang Z B, Zhu Q Q, Sun S K, You Y, Plucknett K, Lin H T 2019 Scr. Mater. 164 135
Google Scholar
[6] 李汪国, 刘佃光, 王珂玮, 马百胜, 刘金铃 2022 无机材料学报 37 1289
Google Scholar
Li W G, Liu D G, Wang K W, Ma B S, Liu J L 2022 J. Inorg. Mater. 37 1289
Google Scholar
[7] Gautam A, Das S, Ahmad M I 2024 Surf. Interfaces 46 104054
Google Scholar
[8] Xie M, Lai Y, Xiang P, Liu F, Zhang L, Liao X, Huang H, Liu Q, Wu C, Li Y 2024 Biochem. Eng. J. 154132
[9] Xiong W, Zhang H F, Cao S Y, Gao F, Svec P, Dusza J, Reece M J, Yan H X 2021 J. Eur. Ceram. Soc. 41 2979
Google Scholar
[10] 郭猛, 张丰年, 苗洋, 刘宇峰, 郁军, 高峰 2021 无机材料学报 36 431
Google Scholar
Guo M, Zhang F N, Miao Y, Liu Y F, Yu J, Gao F 2021 J. Inorg. Mater. 36 431
Google Scholar
[11] Sang X H, Grimley E D, Niu C N, Irving D L, LeBeau J M 2015 Appl. Phys. Lett. 106 061913
Google Scholar
[12] Ning Y T, Pu Y P, Zhang Q W, Zhou S Y, Wu C H, Zhang L, Shi Y, Sun Z X 2023 Ceram. Int. 49 12214
Google Scholar
[13] Medarde M L 1997 J. Phys. : Condens. Matter 9 1679
Google Scholar
[14] 史镇华, 胡新哲, 周厚博, 田正营, 胡凤霞, 陈允忠, 孙志刚, 沈保根 2025 物理学报 74 027501
Google Scholar
Shi Z H, Hu X Z, Zhou H B, Tian Z Y, Hu F X, Chen Y Z, Sun Z G, Shen B G 2025 Acta. Phys. Sin. 74 027501
Google Scholar
[15] Zhao W J, Zhang M, Xue L Y, Wang K X, Yang F, Zhong J P, Chen H 2024 J. Rare Earths 42 1937
Google Scholar
[16] Krawczyk P A, Salamon W, Marzec M, Szuwarzynski M, Pawlak J, Kanak J, Dziubaniuk M, Kubiak W W, Zywczak A 2023 Materials 16 4210
Google Scholar
[17] Witte R, Sarkar A, Velasco L, Kruk R, Brand R A, Eggert B, Ollefs K, Weschke E, Wende H, Hahn H 2020 J. Appl. Phys. 127 185109
Google Scholar
[18] Qin J D, Wen Z Q, Ma B, Wu Z, Lv Y, Yu J, Zhao Y H 2024 J. Magn. Magn. Mater. 597 172010
Google Scholar
[19] Qin J D, Wen Z Q, Ma B, Wu Z Y, Yu J J, Tang L, Lu T Y, Zhao Y H 2024 Ceram. Int. 50 26040
Google Scholar
[20] Stoica I, Abraham A R, Haghi A 2023 Modern Magnetic Materials: Properties and Applications (CRC Press
[21] 李梅, 柳召刚, 吴锦绣, 胡艳宏 2009 稀土元素及其分析化学(北京: 化学工业出版社) 第49−55页
Li M, Liu Z G, Wu J X, Hu Y H 2009 Rare Earth Elements and Their Analytical Chemistry (Beijing: Chemical Industry Press) pp49−55
[22] Zhivulin V E, Trofimov E A, Gudkova S A, Punda A Y, Valiulina A N, Gavrilyak A M, Zaitseva O V, Tishkevich D I, Zubar T I, Sun Z, Zhou D, Trukhanov S V, Vinnik D A, Trukhanov A V 2022 Ceram. Int. 48 9239
Google Scholar
[23] Sarkar A, Djenadic R, Wang D, Hein C, Kautenburger R, Clemens O, Hahn H 2018 J. Eur. Ceram. Soc. 38 2318
Google Scholar
[24] Goldschmidt V M 1926 Naturwiss 14 477
Google Scholar
[25] Shannon R D 1976 Acta Crystallogr. Sect. A 32 751
Google Scholar
[26] Han X, Yang Y, Fan Y, Ni H, Guo Y M, Chen Y, Ou X M, Ling Y H 2021 Ceram. Int. 47 17383
Google Scholar
[27] Liu J M, Jiang Y, Zhang W C, Cheng X, Zhao P Y, Zhen Y C, Hao Y N, Guo L M, Bi K, Wang X H 2024 Nat. Commun. 15 8651
Google Scholar
[28] Zhang P, Gong L Y, Xu X, Lou Z H, Wei Z Y, Chen P H, Wu Z Z, Xu J, Gao F 2023 Chem. Eng. J. 472 144974
Google Scholar
[29] Alonso J A, Martinez-Lope M J, Casais M T, Fernández-Díaz M T 2000 Inorg. Chem. 39 917
Google Scholar
[30] Shirley D A 1972 Phys. Rev. B 5 4709
Google Scholar
[31] Wei S Y, Chen X, Dong G Z, Liu L J, Zhang Q, Peng B L 2022 Ceram. Int. 48 15640
Google Scholar
[32] Lin J L, Wu S, Sun K T, Li H F, Chen W, Zhang Y K, Li L W 2024 Ceram. Int. 50 51269
Google Scholar
[33] Li A S, Wei J J, Lin J L, Zhang Y K 2024 Ceram. Int. 50 13732
Google Scholar
[34] Pashchenko A V, Pashchenko V P, Prokopenko V K, Revenko Y F, Mazur A S, Sychova V Y, Burkhoveckiy V V, Kisel N G, Sil'cheva A G, Liedienov N A 2014 Low Temp. Phys. 40 717
Google Scholar
[35] Kim M, Yang J, Cai Q, Zhou X, James W J, Yelon W B, Parris P E, Buddhikot D, Malik S K 2005 Phys. Rev. B: Condens. Matter 71 014433
Google Scholar
[36] Zener C 1951 Phys. Rev. 82 403
Google Scholar
[37] Benelli C, Gatteschi D 2002 Chem. Rev. 102 2369
Google Scholar
[38] Majetich S A, Scott J H, Kirkpatrick E M, Chowdary K, Gallagher K, McHenry M E 1997 Nanostruct. Mater. 9 291
Google Scholar
[39] Jiao Y T, Dai J, Fan Z H, Cheng J Y, Zheng G P, Grema L, Zhong J W, Li H F, Wang D W 2024 Mater. Today 77 92
Google Scholar
[40] Shen J Y, Mo J J, Lu Z Y, Tao Y C, Gao K Y, Liu M, Xia Y F 2022 Physica B 644 414213
Google Scholar
[41] Chatterjee S, Das K, Das I 2022 J. Magn. Magn. Mater. 557 169473
Google Scholar
计量
- 文章访问数: 222
- PDF下载量: 4
- 被引次数: 0