搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

含重稀土元素的(Ln0.2La0.2Nd0.2Sm0.2Eu0.2) MnO3(Ln=Dy,Ho,Er)高熵钙钛矿陶瓷的制备及磁学性能

覃洁冬 冯兴民 文志勤 唐立 龙德凤 赵宇宏

引用本文:
Citation:

含重稀土元素的(Ln0.2La0.2Nd0.2Sm0.2Eu0.2) MnO3(Ln=Dy,Ho,Er)高熵钙钛矿陶瓷的制备及磁学性能

覃洁冬, 冯兴民, 文志勤, 唐立, 龙德凤, 赵宇宏

Preparation and Magnetic Properties of (Ln0.2La0.2Nd0.2Sm0.2Eu0.2)MnO3 (Ln = Dy, Ho, Er) High-Entropy Perovskite Ceramics Containing Heavy Rare Earth Elements

QIN Jiedong, FENG Xingmin, WEN Zhiqin, TANG Li, LONG Defeng, ZHAO Yuhong
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 等摩尔比高熵钙钛矿陶瓷因其优异的磁性能而备受关注。为了进一步提升其磁化强度,本文根据构型熵Sconfig,容差因子t和失配度σ2设计(Ln0.2La0.2Nd0.2Sm0.2Eu0.2) MnO3高熵钙钛矿陶瓷,并通过固相法合成了单相高熵钙钛矿陶瓷,系统地研究了重稀土元素Dy、Ho和Er对所制备陶瓷的结构和磁性能的影响。结果表明:在1250℃下烧结16 h后,所合成的高熵陶瓷试样均呈现出较高的结晶度且保持良好的结构稳定性。(Ln0.2La0.2Nd0.2Sm0.2Eu0.2) MnO3具有显著的晶格畸变效应,其样品形貌表面光滑且晶界清晰可辨。三种高熵陶瓷样品在T=5 K时表现出磁滞行为,居里温度TC随着引入稀土离子半径的减小而降低,而饱和磁化强度和矫顽力则随之增加。此外,与其它样品相比,(Er0.2La0.2Nd0.2Sm0.2Eu0.2) MnO3陶瓷显示出更高的饱和磁化强度(42.8 emu/g)和矫顽力(2.09 kOe),这归因于其磁体具有强磁晶各向异性、更大的晶格畸变σ2(6.52×10-3)以及更小的平均晶粒尺寸(440.49±22.02 nm)、晶胞体积(229.432Å3)和A位平均离子半径(1.24Å),其在磁记录材料方面具有应用潜力。
    Equimolar ratio high-entropy perovskite ceramics (HEPCs) have attracted much attention for their excellent magnetization intensity. To further enhance its magnetization intensity, (Ln0.2La0.2Nd0.2Sm0.2Eu0.2)MnO3 (Ln = Dy, Ho and Er, labeled as Ln-LNSEMO) HEPCs were designed based on the configuration entropy Sconfig, tolerance factor t and mismatch degree σ2. Single-phase HEPCs were synthesized by the solid-phase method in this work, which systematically studied the effects of the heavy rare-earth elements Dy, Ho and Er on the structure and magnetic properties of Ln-LNSEMO. The results show that all Ln-LNSEMO HEPCs exhibit a high crystallinity and maintain excellent structural stability after sintering at 1250 ℃ for 16 h. Ln-LNSEMO HEPCs exhibit significant lattice distortion effects, with smooth surface morphology, clearly distinguishable grain boundaries and irregular polygonal shapes. The present study investigates the influence of A-site average ion radius, grain size and lattice distortion on the magnetic interactions of Ln-LNSEMO HEPCs. The three high-entropy ceramic samples exhibit hysteresis behavior at T = 5 K, with the Curie temperature TC decreasing as the radius of the introduced rare-earth ions decreases, while the saturation magnetization and coercivity increase accordingly. When the average ionic radius of A-site decreases, the interaction between their valence electrons and local electrons in the crystal increases, thereby enhancing the conversion of electrons to oriented magnetic moments under an external magnetic field. Thus, Er-LNSEMO HEPCs show a higher saturation magnetization strength (42.8 emu/g) and coercivity (2.09 kOe) compared to the other samples, which is attributed to the strong magnetic crystal anisotropy, larger lattice distortion σ2 (6.52×10-3), smaller average grain size (440.49 ±22.02 nm), unit cell volume (229.432 Å3) and A-site average ion radius (1.24 Å) of its magnet, which has potential applications in magnetic recording materials.
  • [1]

    George E P, Ritchie R O 2022MRS Bull. 47 145

    [2]

    Rost C M, Sachet E, Borman T, Moballegh A, Dickey E C, Hou D, Jones J L, Curtarolo S, Maria J P 2015Nat. Commun. 6 8485

    [3]

    Hai W, Wu Z, Zhang S, Chen H, Hu L, Zhang H, Sun W, Liu M, Chen Y 2023Int. J. Refract. Met. Hard Mater. 112 106114

    [4]

    Zhou Q, Xu F, Gao C, Zhao W, Shu L, Shi X, Yuen M-F, Zuo D 2023Ceram. Int. 49 25964

    [5]

    Zhang Y, Guo W-M, Jiang Z-B, Zhu Q-Q, Sun S-K, You Y, Plucknett K, Lin H-T 2019Scr. Mater. 164 135

    [6]

    Li W G, Liu D G, Wang K W, Ma B S, Liu J L 2022J. Inorg. Mater. 37 1289(in Chinese) [李汪国,刘佃光,王珂玮,马百胜,刘金铃2022无机材料学报37 1289]

    [7]

    Gautam A, Das S, Ahmad M I 2024Surf. Interfaces 46 104054

    [8]

    Xie M, Lai Y, Xiang P, Liu F, Zhang L, Liao X, Huang H, Liu Q, Wu C, Li Y 2024Biochem. Eng. J. 154132

    [9]

    Xiong W, Zhang H, Cao S, Gao F, Svec P, Dusza J, Reece M J, Yan H 2021J. Eur. Ceram. Soc. 41 2979

    [10]

    Guo M, Zhang F N, Miao Y, Liu Y F, Yu J, Gao F 2021J. Inorg. Mater. 36 431(in Chinese) [郭猛,张丰年,苗洋,刘宇峰,郁军,高峰2021无机材料学报36 431]

    [11]

    Sang X, Grimley E D, Niu C, Irving D L, LeBeau J M 2015Appl. Phys. Lett. 106

    [12]

    Ning Y, Pu Y, Zhang Q, Zhou S, Wu C, Zhang L, Shi Y, Sun Z 2023Ceram. Int. 49 12214

    [13]

    Medarde M L 1997J. Phys.: Condens. Matter 9 1679

    [14]

    Shi Z H, Hu X Z, Zhou H B, Tian Z Y, Hu F X, Chen Y Z, Sun Z G, Shen B G 2025Acta. Phys. Sin. 74 163(in Chinese) [史镇华,胡新哲,周厚博,田正营,胡凤霞,陈允忠,孙志刚,沈保根2025物理学报74 163]

    [15]

    Zhao W, Zhang M, Xue L, Wang K, Yang F, Zhong J, Chen H 2024J. Rare Earths 42 1937

    [16]

    Krawczyk P A, Salamon W, Marzec M, Szuwarzynski M, Pawlak J, Kanak J, Dziubaniuk M, Kubiak W W, Zywczak A 2023Materials 164210

    [17]

    Witte R, Sarkar A, Velasco L, Kruk R, Brand R A, Eggert B, Ollefs K, Weschke E, Wende H, Hahn H 2020J. Appl. Phys. 127 185109

    [18]

    Qin J, Wen Z, Ma B, Wu Z, Lv Y, Yu J, Zhao Y 2024J. Magn. Magn. Mater. 597 172010

    [19]

    Qin J, Wen Z, Ma B, Wu Z, Yu J, Tang L, Lu T, Zhao Y 2024Ceram. Int. 50 26040

    [20]

    Stoica I, Abraham A R, Haghi A 2023Modern magnetic materials: properties and applications (CRC Press)

    [21]

    Li M, Liu Z G, Wu J X, Hu Y H 2009Rare earth elements and their analytical chemistry (Beijing: Chemical Industry Press) pp49-55(in Chinese) [李梅,柳召刚,吴锦绣,胡艳宏2009稀土元素及其分析化学(北京: 化学工业出版社)第49-55页]

    [22]

    Zhivulin V E, Trofimov E A, Gudkova S A, Punda A Y, Valiulina A N, Gavrilyak A M, Zaitseva O V, Tishkevich D I, Zubar T I, Sun Z, Zhou D, Trukhanov S V, Vinnik D A, Trukhanov A V 2022Ceram. Int. 48 9239

    [23]

    Sarkar A, Djenadic R, Wang D, Hein C, Kautenburger R, Clemens O, Hahn H 2018J. Eur. Ceram. Soc. 38 2318

    [24]

    Goldschmidt V M 1926Naturwiss. 14 477

    [25]

    Shannon R D 1976Acta Crystallogr. Sect. A 32 751

    [26]

    Han X, Yang Y, Fan Y, Ni H, Guo Y, Chen Y, Ou X, Ling Y 2021Ceram. Int. 47 17383

    [27]

    Liu J, Jiang Y, Zhang W, Cheng X, Zhao P, Zhen Y, Hao Y, Guo L, Bi K, Wang X 2024Nat. Commun. 15 8651

    [28]

    Zhang P, Gong L, Xu X, Lou Z, Wei Z, Chen P, Wu Z, Xu J, Gao F 2023Chem. Eng. J. 472 144974

    [29]

    Alonso J A, Martinez-Lope M J, Casais M T, Fernández-Díaz M T 2000Inorg. Chem. 39 917

    [30]

    Shirley D A 1972Phys. Rev. B 5 4709

    [31]

    Wei S, Chen X, Dong G, Liu L, Zhang Q, Peng B 2022Ceram. Int. 48 15640

    [32]

    Lin J, Wu S, Sun K, Li H-F, Chen W, Zhang Y, Li L 2024Ceram. Int. 50 51269

    [33]

    Li A, Wei J, Lin J, Zhang Y 2024Ceram. Int. 50 13732

    [34]

    Pashchenko A V, Pashchenko V P, Prokopenko V K, Revenko Y F, Mazur A S, Sychova V Y, Burkhoveckiy V V, Kisel N G, Sil'cheva A G, Liedienov N A 2014Low Temp. Phys. 40 717

    [35]

    Kim M, Yang J, Cai Q, Zhou X, James W J, Yelon W B, Parris P E, Buddhikot D, Malik S K 2005Phys. Rev. B: Condens. Matter 71 014433

    [36]

    Zener C 1951Phys. Rev. 82 403

    [37]

    Benelli C, Gatteschi D 2002Chem. Rev. 102 2369

    [38]

    Majetich S A, Scott J H, Kirkpatrick E M, Chowdary K, Gallagher K, McHenry M E 1997Nanostruct. Mater. 9 291

    [39]

    Jiao Y, Dai J, Fan Z, Cheng J, Zheng G, Grema L, Zhong J, Li H-F, Wang D 2024Mater. Today 77 92

    [40]

    Shen J, Mo J, Lu Z, Tao Y, Gao K, Liu M, Xia Y 2022Physica B 644 414213

    [41]

    Chatterjee S, Das K, Das I 2022J. Magn. Magn. Mater. 557 169473

  • [1] 隽珽, 邢家赫, 曾凡聪, 郑鑫, 徐琳. 基于SnO2:DPEPO混合电子传输层的钙钛矿太阳能电池性能研究. 物理学报, doi: 10.7498/aps.73.20240827
    [2] 郑明, 杨健, 张怡笑, 关朋飞, 程奥, 范贺良. Sm3+掺杂0.94Bi0.5Na0.5TiO3-0.06BaTiO3无机多功能陶瓷的储能行为和光致发光性质. 物理学报, doi: 10.7498/aps.72.20230685
    [3] 李家森, 梁春军, 姬超, 宫宏康, 宋奇, 张慧敏, 刘宁. 在空穴传输层聚(3-己基噻吩)中添加1, 8-二碘辛烷改善碳基钙钛矿太阳能电池的性能. 物理学报, doi: 10.7498/aps.70.20210586
    [4] 陈佳楣, 苏杭, 李婉, 张立来, 索鑫磊, 钦敬, 朱坤, 李国龙. 钙钛矿发光二极管光提取性能增强的研究进展. 物理学报, doi: 10.7498/aps.69.20200755
    [5] 瞿子涵, 储泽马, 张兴旺, 游经碧. 高效绿光钙钛矿发光二极管研究进展. 物理学报, doi: 10.7498/aps.68.20190647
    [6] 杨自欣, 高章然, 孙晓帆, 蔡宏灵, 张凤鸣, 吴小山. 铅基钙钛矿铁电晶体高临界转变温度的机器学习研究. 物理学报, doi: 10.7498/aps.68.20190942
    [7] 夏俊民, 梁超, 邢贵川. 喷墨打印钙钛矿太阳能电池研究进展与展望. 物理学报, doi: 10.7498/aps.68.20190302
    [8] 宋蕊, 冯凯, 林上金, 何曼丽, 仝亮. 钙钛矿NaFeF3结构物性的理论研究及应力和掺杂调控. 物理学报, doi: 10.7498/aps.68.20190573
    [9] 熊辉辉, 张慧宁. 稀土元素在α-Fe和Fe3C中分配行为的第一性原理研究. 物理学报, doi: 10.7498/aps.65.248101
    [10] 侯育花, 黄有林, 刘仲武, 曾德长. 稀土掺杂对钴铁氧体电子结构和磁性能影响的理论研究. 物理学报, doi: 10.7498/aps.64.037501
    [11] 吴迪, 赵纪军, 田华. Fe2+取代对MgSiO3钙钛矿高温高压物性的影响. 物理学报, doi: 10.7498/aps.62.049101
    [12] 李泓霖, 张仲, 吕英波, 黄金昭, 张英, 刘如喜. 第一性原理研究稀土掺杂ZnO结构的光电性质. 物理学报, doi: 10.7498/aps.62.047101
    [13] 孟振华, 李俊斌, 郭永权, 王义. 稀土元素的价电子结构和熔点、结合能的关联性. 物理学报, doi: 10.7498/aps.61.107101
    [14] 李颉, 张怀武, 李元勋, 李强, 秦军锋. 稀土元素La掺杂BaFe12O19 微结构和磁性能的研究. 物理学报, doi: 10.7498/aps.61.227501
    [15] 李岫梅, 刘 涛, 郭朝晖, 朱明刚, 李 卫. 稀土含量对速凝工艺制备(Nd,Dy)-(Fe,Al)-B合金结构和磁性能的影响. 物理学报, doi: 10.7498/aps.57.3823
    [16] 刘贵立, 李荣德. ZA27合金晶界处铁、稀土元素的有序化与交互作用. 物理学报, doi: 10.7498/aps.55.776
    [17] 刘贵立. 稀土对镁合金应力腐蚀影响电子理论研究. 物理学报, doi: 10.7498/aps.55.6570
    [18] 刘贵立, 李荣德. ZA27合金中稀土及铁的晶界偏聚与交互作用. 物理学报, doi: 10.7498/aps.53.3482
    [19] 许北雪, 吴锦雷, 邵庆益, 张兆祥, 刘惟敏, 薛增泉, 吴全德. 稀土镧对薄膜中银纳米粒子的细化作用. 物理学报, doi: 10.7498/aps.51.1103
    [20] 许北雪, 吴锦雷, 刘惟敏, 杨海, 邵庆益, 刘盛, 薛增泉, 吴全德. 稀土对金属纳米粒子-介质复合薄膜(Ag-BaO)光电发射性能的增强. 物理学报, doi: 10.7498/aps.50.977
计量
  • 文章访问数:  17
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 上网日期:  2025-05-10

/

返回文章
返回