搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

含重稀土元素的(Ln0.2La0.2Nd0.2Sm0.2Eu0.2)MnO3 (Ln = Dy, Ho, Er)高熵钙钛矿陶瓷的制备及磁学性能

覃洁冬 冯兴民 文志勤 唐立 龙德凤 赵宇宏

引用本文:
Citation:

含重稀土元素的(Ln0.2La0.2Nd0.2Sm0.2Eu0.2)MnO3 (Ln = Dy, Ho, Er)高熵钙钛矿陶瓷的制备及磁学性能

覃洁冬, 冯兴民, 文志勤, 唐立, 龙德凤, 赵宇宏

Preparation and magnetic properties of (Ln0.2La0.2Nd0.2Sm0.2Eu0.2)MnO3 (Ln = Dy, Ho, Er) high-entropy perovskite ceramics containing heavy rare earth elements

QIN Jiedong, FENG Xingmin, WEN Zhiqin, TANG Li, LONG Defeng, ZHAO Yuhong
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 等摩尔比高熵钙钛矿陶瓷因具有优异的磁性能而备受关注. 为了进一步提升其磁化强度, 本文根据构型熵Sconfig、容差因子t和失配度σ2设计(Ln0.2La0.2Nd0.2Sm0.2Eu0.2)MnO3高熵钙钛矿陶瓷, 并通过固相法合成了单相高熵钙钛矿陶瓷, 系统研究了重稀土元素Dy, Ho和Er对所制备陶瓷的结构和磁性能的影响. 结果表明: 在1250 ℃下烧结16 h后, 所合成的高熵陶瓷试样均呈现出较高的结晶度且保持良好的结构稳定性. (Ln0.2La0.2Nd0.2Sm0.2Eu0.2)MnO3具有显著的晶格畸变效应, 其样品形貌表面光滑且晶界清晰可辨. 3种高熵陶瓷样品在T = 5 K时表现出磁滞行为, 居里温度TC随着引入稀土离子半径的减小而降低, 而饱和磁化强度和矫顽力则随之增大. 此外, 与其他样品相比, (Er0.2La0.2Nd0.2Sm0.2Eu0.2)MnO3陶瓷显示出更高的饱和磁化强度(42.8 emu/g)和矫顽力(2.09 kOe), 这归因于其磁体具有强磁晶各向异性、更大的晶格畸变σ2 (6.52×10–3)以及更小的平均晶粒尺寸(440.49 ± 22.02) nm、晶胞体积(229.432 Å3)和A位平均离子半径(1.24 Å), 其在磁记录材料方面具有应用潜力.
    Equimolar ratio high-entropy perovskite ceramics (HEPCs) have attracted much attention due to their excellent magnetization intensity. To further enhance their magnetization intensities, (Ln0.2La0.2Nd0.2Sm0.2Eu0.2)MnO3 (Ln = Dy, Ho and Er, labeled as Ln-LNSEMO) HEPCs are designed based on the configuration entropy Sconfig, tolerance factor t, and mismatch degree σ2. Single-phase HEPCs are synthesized by the solid-phase method in this work, in which the effects of the heavy rare-earth elements Dy, Ho and Er on the structure and magnetic properties of Ln-LNSEMO are systematically studied. The results show that all Ln-LNSEMO HEPCs exhibit high crystallinity and maintain excellent structural stability after sintering at 1250 °C for 16 h. Ln-LNSEMO HEPCs exhibit significant lattice distortion effects, with smooth surface morphology, clearly distinguishable grain boundaries, and irregular polygonal shapes. In the present work, the influences of A-site average ion radius, grain size and lattice distortion on the magnetic interactions of Ln-LNSEMO HEPCs are investigated. The three high-entropy ceramic samples exhibit hysteresis behavior at T = 5 K, with the Curie temperature TC decreasing as the radius of the introduced rare-earth ions decreases, while the saturation magnetization and coercivity increase accordingly. When the average ionic radius of A-site decreases, the interaction between their valence electrons and local electrons in the crystal increases, thereby enhancing the conversion of electrons to oriented magnetic moments under an external magnetic field. Thus, Er-LNSEMO HEPC shows a higher saturation magnetization strength (42.8 emu/g) and coercivity (2.09 kOe) than the other samples, which is attributed to the strong magnetic crystal anisotropy, larger lattice distortion σ2 (6.52×10–3), smaller average grain size (440.49 ± 22.02 nm), unit cell volume (229.432 Å3) and A-site average ion radius (1.24 Å) of its magnet. The Er-LNSEMO HEPC has potential applications in magnetic recording materials.
  • 图 1  1250 ℃下煅烧所得Ln-LNSEMO陶瓷的性质 (a) A位平均离子半径; (b)容差因子t、构型熵Sconfig和失配度σ2的理论计算值; (c) XRD图谱; (d)—(f) Rietveld精修图谱

    Fig. 1.  Characteristics of Ln-LNSEMO ceramics sintered at 1250 ℃: (a) Average ionic radius of A-site; (b) theoretical calculation values of tolerance factor t, configuration entropy Sconfig and mismatch degree σ2; (c) X-ray diffraction patterns; (d)–(f) rietveld refinement.

    图 2  Ln-LNSEMO陶瓷Rietveld精修后的晶格参数(a)、晶胞体积(b)以及样品的晶体结构(c)

    Fig. 2.  Lattice parameters (a), cell volume (b) of Ln-LNSEMO ceramics after Rietveld refinement and crystal structure of samples (c)

    图 3  1250 °C下烧结的Ln-LNSEMO HEPCs的SEM图、粒度分布、EDS图谱和化学成分(%) (a), (a1) Dy-LNSEMO; (b), (b1) Ho-LNSEMO; (c), (c1) Er-LNSEMO

    Fig. 3.  SEM micrographs, particle size distribution, EDS mapping and chemical composition (%) of Ln-LNSEMO HEPCs sintered at 1250 °C: (a), (a1) Dy-LNSEMO; (b), (b1) Ho-LNSEMO; (c), (c1) Er-LNSEMO.

    图 4  Ln-LNSEMO HEPCs的高分辨率XPS光谱 (a) O 1s; (b) Mn 2p; (c) Dy 3d; (d) Ho 4d; (e) Er 4d

    Fig. 4.  High-resolution XPS spectra of Ln-LNSEMO HEPCs: (a) O 1s; (b) Mn 2p; (c) Dy 3d; (d) Ho 4d; (e) Er 4d.

    图 5  Ln-LNSEMO HEPCs的M-T曲线(a)和dM/dT-T曲线(b)

    Fig. 5.  M-T curves (a) and dM/dT-T curves (b) of Ln-LNSEMO HEPCs.

    图 6  Ln-LNSEMO HEPCs的T = 5 K时的磁滞回线(a)和低磁场区域(b)的磁化曲线

    Fig. 6.  Hysteresis loops at T = 5 K (a), the magnified magnetization curves in the low magnetic field region (b) of Ln-LNSEMO HEPCs.

    图 7  Ln-LNSEMO HEPCs的磁性能参数

    Fig. 7.  Magnetic properties parameters of Ln-LNSEMO HEPCs.

    表 1  氧化态、配位数(CN)和相应的离子半径(r)[23]

    Table 1.  Oxidation state, co-ordination number (CN) and corresponding ionic radius (r)[23].

    ElementOxidationCNr
    La3+XII1.36
    Nd3+XII1.27
    Sm3+XII1.24
    Eu3+XII1.22
    Dy3+XII1.19
    Ho3+XII1.18
    Er3+XII1.11
    Mn3+VI0.64
    O2VI1.40
    下载: 导出CSV

    表 2  三组样品Rietveld精修后的键长d和键角θ

    Table 2.  Bond length d and bond angle θ of three groups of Rietveld refined samples.

    Samplesd Mn-OθMn-O-Mn /(°)
    Dy-LNSEMO1.9157(3)148.167(6)
    Ho-LNSEMO1.9357(2)141.748(6)
    Er-LNSEMO1.9500(3)152.118(4)
    下载: 导出CSV
  • [1]

    George E P, Ritchie R O 2022 MRS Bull. 47 145Google Scholar

    [2]

    Rost C M, Sachet E, Borman T, Moballegh A, Dickey E C, Hou D, Jones J L, Curtarolo S, Maria J P 2015 Nat. Commun. 6 8485Google Scholar

    [3]

    Hai W X, Wu Z H, Zhang S B, Chen H, Hu L, Zhang H, Sun W Z, Liu M L, Chen Y H 2023 Int. J. Refract. Met. Hard Mater. 112 106114Google Scholar

    [4]

    Zhou Q, Xu F, Gao C Z, Zhao W X, Shu L, Shi X Q, Yuen M F, Zuo D W 2023 Ceram. Int. 49 25964Google Scholar

    [5]

    Zhang Y, Guo W M, Jiang Z B, Zhu Q Q, Sun S K, You Y, Plucknett K, Lin H T 2019 Scr. Mater. 164 135Google Scholar

    [6]

    李汪国, 刘佃光, 王珂玮, 马百胜, 刘金铃 2022 无机材料学报 37 1289Google Scholar

    Li W G, Liu D G, Wang K W, Ma B S, Liu J L 2022 J. Inorg. Mater. 37 1289Google Scholar

    [7]

    Gautam A, Das S, Ahmad M I 2024 Surf. Interfaces 46 104054Google Scholar

    [8]

    Xie M, Lai Y, Xiang P, Liu F, Zhang L, Liao X, Huang H, Liu Q, Wu C, Li Y 2024 Biochem. Eng. J. 154132

    [9]

    Xiong W, Zhang H F, Cao S Y, Gao F, Svec P, Dusza J, Reece M J, Yan H X 2021 J. Eur. Ceram. Soc. 41 2979Google Scholar

    [10]

    郭猛, 张丰年, 苗洋, 刘宇峰, 郁军, 高峰 2021 无机材料学报 36 431Google Scholar

    Guo M, Zhang F N, Miao Y, Liu Y F, Yu J, Gao F 2021 J. Inorg. Mater. 36 431Google Scholar

    [11]

    Sang X H, Grimley E D, Niu C N, Irving D L, LeBeau J M 2015 Appl. Phys. Lett. 106 061913Google Scholar

    [12]

    Ning Y T, Pu Y P, Zhang Q W, Zhou S Y, Wu C H, Zhang L, Shi Y, Sun Z X 2023 Ceram. Int. 49 12214Google Scholar

    [13]

    Medarde M L 1997 J. Phys. : Condens. Matter 9 1679Google Scholar

    [14]

    史镇华, 胡新哲, 周厚博, 田正营, 胡凤霞, 陈允忠, 孙志刚, 沈保根 2025 物理学报 74 027501Google Scholar

    Shi Z H, Hu X Z, Zhou H B, Tian Z Y, Hu F X, Chen Y Z, Sun Z G, Shen B G 2025 Acta. Phys. Sin. 74 027501Google Scholar

    [15]

    Zhao W J, Zhang M, Xue L Y, Wang K X, Yang F, Zhong J P, Chen H 2024 J. Rare Earths 42 1937Google Scholar

    [16]

    Krawczyk P A, Salamon W, Marzec M, Szuwarzynski M, Pawlak J, Kanak J, Dziubaniuk M, Kubiak W W, Zywczak A 2023 Materials 16 4210Google Scholar

    [17]

    Witte R, Sarkar A, Velasco L, Kruk R, Brand R A, Eggert B, Ollefs K, Weschke E, Wende H, Hahn H 2020 J. Appl. Phys. 127 185109Google Scholar

    [18]

    Qin J D, Wen Z Q, Ma B, Wu Z, Lv Y, Yu J, Zhao Y H 2024 J. Magn. Magn. Mater. 597 172010Google Scholar

    [19]

    Qin J D, Wen Z Q, Ma B, Wu Z Y, Yu J J, Tang L, Lu T Y, Zhao Y H 2024 Ceram. Int. 50 26040Google Scholar

    [20]

    Stoica I, Abraham A R, Haghi A 2023 Modern Magnetic Materials: Properties and Applications (CRC Press

    [21]

    李梅, 柳召刚, 吴锦绣, 胡艳宏 2009 稀土元素及其分析化学(北京: 化学工业出版社) 第49−55页

    Li M, Liu Z G, Wu J X, Hu Y H 2009 Rare Earth Elements and Their Analytical Chemistry (Beijing: Chemical Industry Press) pp49−55

    [22]

    Zhivulin V E, Trofimov E A, Gudkova S A, Punda A Y, Valiulina A N, Gavrilyak A M, Zaitseva O V, Tishkevich D I, Zubar T I, Sun Z, Zhou D, Trukhanov S V, Vinnik D A, Trukhanov A V 2022 Ceram. Int. 48 9239Google Scholar

    [23]

    Sarkar A, Djenadic R, Wang D, Hein C, Kautenburger R, Clemens O, Hahn H 2018 J. Eur. Ceram. Soc. 38 2318Google Scholar

    [24]

    Goldschmidt V M 1926 Naturwiss 14 477Google Scholar

    [25]

    Shannon R D 1976 Acta Crystallogr. Sect. A 32 751Google Scholar

    [26]

    Han X, Yang Y, Fan Y, Ni H, Guo Y M, Chen Y, Ou X M, Ling Y H 2021 Ceram. Int. 47 17383Google Scholar

    [27]

    Liu J M, Jiang Y, Zhang W C, Cheng X, Zhao P Y, Zhen Y C, Hao Y N, Guo L M, Bi K, Wang X H 2024 Nat. Commun. 15 8651Google Scholar

    [28]

    Zhang P, Gong L Y, Xu X, Lou Z H, Wei Z Y, Chen P H, Wu Z Z, Xu J, Gao F 2023 Chem. Eng. J. 472 144974Google Scholar

    [29]

    Alonso J A, Martinez-Lope M J, Casais M T, Fernández-Díaz M T 2000 Inorg. Chem. 39 917Google Scholar

    [30]

    Shirley D A 1972 Phys. Rev. B 5 4709Google Scholar

    [31]

    Wei S Y, Chen X, Dong G Z, Liu L J, Zhang Q, Peng B L 2022 Ceram. Int. 48 15640Google Scholar

    [32]

    Lin J L, Wu S, Sun K T, Li H F, Chen W, Zhang Y K, Li L W 2024 Ceram. Int. 50 51269Google Scholar

    [33]

    Li A S, Wei J J, Lin J L, Zhang Y K 2024 Ceram. Int. 50 13732Google Scholar

    [34]

    Pashchenko A V, Pashchenko V P, Prokopenko V K, Revenko Y F, Mazur A S, Sychova V Y, Burkhoveckiy V V, Kisel N G, Sil'cheva A G, Liedienov N A 2014 Low Temp. Phys. 40 717Google Scholar

    [35]

    Kim M, Yang J, Cai Q, Zhou X, James W J, Yelon W B, Parris P E, Buddhikot D, Malik S K 2005 Phys. Rev. B: Condens. Matter 71 014433Google Scholar

    [36]

    Zener C 1951 Phys. Rev. 82 403Google Scholar

    [37]

    Benelli C, Gatteschi D 2002 Chem. Rev. 102 2369Google Scholar

    [38]

    Majetich S A, Scott J H, Kirkpatrick E M, Chowdary K, Gallagher K, McHenry M E 1997 Nanostruct. Mater. 9 291Google Scholar

    [39]

    Jiao Y T, Dai J, Fan Z H, Cheng J Y, Zheng G P, Grema L, Zhong J W, Li H F, Wang D W 2024 Mater. Today 77 92Google Scholar

    [40]

    Shen J Y, Mo J J, Lu Z Y, Tao Y C, Gao K Y, Liu M, Xia Y F 2022 Physica B 644 414213Google Scholar

    [41]

    Chatterjee S, Das K, Das I 2022 J. Magn. Magn. Mater. 557 169473Google Scholar

  • [1] 袁翔, 张子发, 王明吉, 何丹敏, 鹿颖申, 洪峰, 蒋最敏, 徐闰, 王应民, 马忠权, 宋宏伟, 徐飞. 双吸收层钙钛矿异质结策略提升全钙钛矿叠层太阳电池的光伏性能. 物理学报, doi: 10.7498/aps.74.20250372
    [2] 隽珽, 邢家赫, 曾凡聪, 郑鑫, 徐琳. 基于SnO2:DPEPO混合电子传输层的钙钛矿太阳能电池性能研究. 物理学报, doi: 10.7498/aps.73.20240827
    [3] 郑明, 杨健, 张怡笑, 关朋飞, 程奥, 范贺良. Sm3+掺杂0.94Bi0.5Na0.5TiO3-0.06BaTiO3无机多功能陶瓷的储能行为和光致发光性质. 物理学报, doi: 10.7498/aps.72.20230685
    [4] 李家森, 梁春军, 姬超, 宫宏康, 宋奇, 张慧敏, 刘宁. 在空穴传输层聚(3-己基噻吩)中添加1, 8-二碘辛烷改善碳基钙钛矿太阳能电池的性能. 物理学报, doi: 10.7498/aps.70.20210586
    [5] 陈佳楣, 苏杭, 李婉, 张立来, 索鑫磊, 钦敬, 朱坤, 李国龙. 钙钛矿发光二极管光提取性能增强的研究进展. 物理学报, doi: 10.7498/aps.69.20200755
    [6] 杨自欣, 高章然, 孙晓帆, 蔡宏灵, 张凤鸣, 吴小山. 铅基钙钛矿铁电晶体高临界转变温度的机器学习研究. 物理学报, doi: 10.7498/aps.68.20190942
    [7] 夏俊民, 梁超, 邢贵川. 喷墨打印钙钛矿太阳能电池研究进展与展望. 物理学报, doi: 10.7498/aps.68.20190302
    [8] 宋蕊, 冯凯, 林上金, 何曼丽, 仝亮. 钙钛矿NaFeF3结构物性的理论研究及应力和掺杂调控. 物理学报, doi: 10.7498/aps.68.20190573
    [9] 熊辉辉, 张慧宁. 稀土元素在α-Fe和Fe3C中分配行为的第一性原理研究. 物理学报, doi: 10.7498/aps.65.248101
    [10] 侯育花, 黄有林, 刘仲武, 曾德长. 稀土掺杂对钴铁氧体电子结构和磁性能影响的理论研究. 物理学报, doi: 10.7498/aps.64.037501
    [11] 吴迪, 赵纪军, 田华. Fe2+取代对MgSiO3钙钛矿高温高压物性的影响. 物理学报, doi: 10.7498/aps.62.049101
    [12] 李泓霖, 张仲, 吕英波, 黄金昭, 张英, 刘如喜. 第一性原理研究稀土掺杂ZnO结构的光电性质. 物理学报, doi: 10.7498/aps.62.047101
    [13] 孟振华, 李俊斌, 郭永权, 王义. 稀土元素的价电子结构和熔点、结合能的关联性. 物理学报, doi: 10.7498/aps.61.107101
    [14] 李颉, 张怀武, 李元勋, 李强, 秦军锋. 稀土元素La掺杂BaFe12O19 微结构和磁性能的研究. 物理学报, doi: 10.7498/aps.61.227501
    [15] 李岫梅, 刘 涛, 郭朝晖, 朱明刚, 李 卫. 稀土含量对速凝工艺制备(Nd,Dy)-(Fe,Al)-B合金结构和磁性能的影响. 物理学报, doi: 10.7498/aps.57.3823
    [16] 刘贵立, 李荣德. ZA27合金晶界处铁、稀土元素的有序化与交互作用. 物理学报, doi: 10.7498/aps.55.776
    [17] 刘贵立. 稀土对镁合金应力腐蚀影响电子理论研究. 物理学报, doi: 10.7498/aps.55.6570
    [18] 刘贵立, 李荣德. ZA27合金中稀土及铁的晶界偏聚与交互作用. 物理学报, doi: 10.7498/aps.53.3482
    [19] 许北雪, 吴锦雷, 邵庆益, 张兆祥, 刘惟敏, 薛增泉, 吴全德. 稀土镧对薄膜中银纳米粒子的细化作用. 物理学报, doi: 10.7498/aps.51.1103
    [20] 许北雪, 吴锦雷, 刘惟敏, 杨海, 邵庆益, 刘盛, 薛增泉, 吴全德. 稀土对金属纳米粒子-介质复合薄膜(Ag-BaO)光电发射性能的增强. 物理学报, doi: 10.7498/aps.50.977
计量
  • 文章访问数:  222
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-03-01
  • 修回日期:  2025-04-29
  • 上网日期:  2025-05-10

/

返回文章
返回