搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

轻金属Cr薄膜的逆轨道霍尔效应研究

陈锋 王平 张志佳 何康 冯正 张德林

引用本文:
Citation:

轻金属Cr薄膜的逆轨道霍尔效应研究

陈锋, 王平, 张志佳, 何康, 冯正, 张德林

Inverse orbital Hall effect in the light metal Cr films

CHEN Feng, WANG Ping, ZHANG Zhijia, HE Kang, FENG Zheng, ZHANG Delin
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 轻金属材料Cr具有较大的轨道霍尔电导,并且不依赖强自旋-轨道耦合即可实现高效的电荷-轨道流的转换,这些优点在自旋电子领域具有重要的应用前景,有助于开发新型的轨道-自旋电子器件.本研究采用磁控溅射的方法在Al2O3衬底上制备了Cr薄膜和Cr/Ni异质结.通过太赫兹发射谱测量观察到Cr中的逆轨道霍尔效应.在Cr/Ni异质结中由铁磁层Ni中自旋-轨道耦合所产生的轨道流通过Cr的逆轨道霍尔效应转换为电荷流.此外,研究了太赫兹信号对Ni层厚度的依赖性,Ni厚度的增加显著提高了自旋流-轨道流的转换效率,增强了轨道太赫兹发射信号.Cr的逆轨道霍尔效应为轨道-自旋电子器件的设计与性能调控提供了新的研究思路.
    Orbitronic devices have attracted considerable interest due to their unique advantage of independence from strong spin-orbit coupling. Light metal chromium (Cr), with high orbital Hall conductivity, exhibits significant potential for application in orbit-spintronic devices. In this study, we present experimental verification of the inverse orbital Hall effect (IOHE) in Cr thin films and systematically investigate the underlying physical mechanisms of orbital-to-charge current conversion. The Cr/Ni and Pt/Ni heterostructures were fabricated on Al2O3 substrates via magnetron sputtering. Terahertz time-domain spectroscopy was employed to measure the terahertz emission signal. The Cr/Ni heterostructures exhibits the same positive terahertz polarity as the ISHE-dominant Pt/Ni heterostructures, despite the Cr layer owing negative spin Hall angle, which confirms the IOHE of Cr/Ni heterostructure. In the Cr/Ni heterostructures, femtosecond laser excitation generates spin current in the ferromagnetic Ni layer, which is converted into orbital current via its spin-orbit coupling. This orbital current propagates into the Cr layer where it is transformed into charge current through the IOHE. Furthermore, increasing the Cr thickness (2-40 nm) weakens the terahertz emission of Cr/Ni heterostructures due to enhanced optical absorption of Cr layers reducing spin current generation in Ni layers. However, optimizing Ni thickness (3-10 nm) significantly enhances the terahertz emission by improving the spin-orbital conversion efficiency. This work provides experimental evidence for IOHE in Cr films and demonstrates the crucial role of ferromagnetic layer engineering in spin-to-orbit conversion efficiency, offering innovative perspectives for the design and performance optimization of orbitronic devices.
  • [1]

    Choi Y-G, Jo D, Ko K-H, Go D, Kim K-H, Park H G, Kim C, Min B-C, Choi G-M, Lee H-W 2023 Nature 619 52

    [2]

    Go D, Jo D, Kim C, Lee H-W 2018 Phys. Rev. Lett. 121 086602

    [3]

    Jo D, Go D, Lee H-W 2018 Phys. Rev. B 98 214405

    [4]

    Sala G, Gambardella P 2022 Phys. Rev. Res. 4 033037

    [5]

    Go D, Jo D, Kim K-W, Lee S, Kang M-G, Park B-G, Blügel S, Lee H-W, Mokrousov Y 2023 Phys. Rev. Lett. 130 246701

    [6]

    Zhang J, Xie H, Zhang X, Yan Z, Zhai Y, Chi J, Xu H, Zuo Y, Xi L 2022 Appl. Phys. Lett. 121 172405

    [7]

    Canonico L M, Cysne T P, Rappoport T G, Muniz R B 2020 Phys. Rev. B 101 075429

    [8]

    Sala G, Wang H, Legrand W, Gambardella P 2023 Phys. Rev. Lett. 131 156703

    [9]

    Zheng Z, Zeng T, Zhao T, Shi S, Ren L, Zhang T, Jia L, Gu Y, Xiao R, Zhou H, Zhang Q, Lu J, Wang G, Zhao C, Li H, Tay B K, Chen J 2024 Nat. Commun. 15 745

    [10]

    Sahu P, Bhowal S, Satpathy S 2021 Phys. Rev. B 103 085113

    [11]

    Kontani H, Tanaka T, Hirashima D S, Yamada K, Inoue J 2009 Phys. Rev. Lett. 102 016601

    [12]

    Tanaka T, Kontani H, Naito M, Naito T, Hirashima D S, Yamada K, Inoue J 2008 Phys. Rev. B 77 165117

    [13]

    Salemi L, Oppeneer P M 2022 Phys. Rev. Mater. 6 095001

    [14]

    Hayashi H, Jo D, Go D, Gao T, Haku S, Mokrousov Y, Lee H-W, Ando K 2023 Commun. Phys. 6 32

    [15]

    Seifert T, Jaiswal S, Martens U, Hannegan J, Braun L, Maldonado P, Freimuth F, Kronenberg A, Henrizi J, Radu I, Beaurepaire E, Mokrousov Y, Oppeneer P M, Jourdan M, Jakob G, Turchinovich D, Hayden L M, Wolf M, Münzenberg M, Kläui M, Kampfrath T 2016 Nat. Photonics 10 483

    [16]

    Zhu L, Buhrman R A 2021 Phys. Rev. Appl. 15 L031001

    [17]

    Feng Z, Qiu H, Wang D, Zhang C, Sun S, Jin B, Tan W 2021 J. Appl. Phys. 129 010901

    [18]

    Lee S, Kang M-G, Go D, Kim D, Kang J-H, Lee T, Lee G-H, Kang J, Lee N J, Mokrousov Y, Kim S, Kim K-J, Lee K-J, Park B-G 2021 Commun. Phys. 4 234

    [19]

    Guo Y, Zhang Y, Lv W, Wang B, Zhang B, Cao J 2023 Appl. Phys. Lett. 123 022408

    [20]

    Xie H, Chang Y, Guo X, Zhang J, Cui B, Zuo Y, Xi L 2023 Chin. Phys. B 32 037502

    [21]

    Lyu H C, Zhao Y C, Qi J, Yang G, Qin W D, Shao B K, Zhang Y, Hu C Q, Wang K, Zhang Q Q, Zhang J Y, Zhu T, Long Y W, Wei H X, Shen B G, Wang S G 2022 J. Appl. Phys. 132 013901

    [22]

    Xie H, Zhang N, Ma Y, Chen X, Ke L, Wu Y 2023 Nano Lett. 23 10274-10281

    [23]

    Go D, Lee H-W, Oppeneer P M, Blügel S, Mokrousov Y 2024 Phys. Rev. B 109 174435

    [24]

    Lee D, Go D, Park H-J, Jeong W, Ko H-W, Yun D, Jo D, Lee S, Go G, Oh J H, Kim K-J, Park B-G, Min B-C, Koo H C, Lee H-W, Lee O, Lee K-J 2021 Nat. Commun. 12 6710

    [25]

    Lyalin I, Alikhah S, Berritta M, Oppeneer P M, Kawakami R K 2023 Phys. Rev. Lett. 131 156702

    [26]

    Wang P, Feng Z, Yang Y, Zhang D, Liu Q, Xu Z, Jia Z, Wu Y, Yu G, Xu X, Jiang Y 2023 npj Quantum Mater. 8 28

    [27]

    Kumar S, Kumar S 2023 Nat. Commun. 14 8185

    [28]

    Xu Y, Zhang F, Fert A, Jaffres H-Y, Liu Y, Xu R, Jiang Y, Cheng H, Zhao W 2024 Nat. Commun. 15 2043

    [29]

    Mishra S S, Lourembam J, Lin D J X, Singh R 2024 Nat. Commun. 15 4568

    [30]

    Seifert T S, Go D, Hayashi H, Rouzegar R, Freimuth F, Ando K, Mokrousov Y, Kampfrath T 2023 Nat. Nanotechnol. 18 1132

    [31]

    Wu Y, Elyasi M, Qiu X, Chen M, Liu Y, Ke L, Yang H 2016 arxiv:1610.07020

    [32]

    Wang P, Chen F, Yang Y, Hu S, Li Y, Wang W, Zhang D, Jiang Y 2024 Adv. Electron. Mater. 11 2400554

  • [1] 卢文强, 易颖婷, 宋前举, 周自刚, 易有根, 曾庆栋, 易早. 基于狄拉克半金属纳米线的太赫兹可调七波段完美吸收器的模拟仿真. 物理学报, doi: 10.7498/aps.74.20241516
    [2] 徐振, 罗曼, 李吉宁, 刘龙海, 徐德刚. 太赫兹金属线波导传输特性实验研究及模拟分析. 物理学报, doi: 10.7498/aps.73.20240279
    [3] 陈闻博, 陈鹤鸣. 基于超材料复合结构的太赫兹液晶移相器. 物理学报, doi: 10.7498/aps.71.20212400
    [4] 冯龙呈, 杜琛, 杨圣新, 张彩虹, 吴敬波, 范克彬, 金飚兵, 陈健, 吴培亨. 太赫兹实时近场光谱成像研究. 物理学报, doi: 10.7498/aps.71.20220131
    [5] 刘紫玉, 亓丽梅, 道日娜, 戴林林, 武利勤. 基于VO2的波束可调太赫兹天线. 物理学报, doi: 10.7498/aps.71.20220817
    [6] 葛宏义, 李丽, 蒋玉英, 李广明, 王飞, 吕明, 张元, 李智. 基于双开口金属环的太赫兹超材料吸波体传感器. 物理学报, doi: 10.7498/aps.71.20212303
    [7] 闫志巾, 施卫. 太赫兹GaAs光电导天线阵列辐射特性. 物理学报, doi: 10.7498/aps.70.20211210
    [8] 郭良浩, 王少萌, 杨利霞, 王凯程, 马佳路, 周俊, 宫玉彬. 太赫兹波在神经细胞中传输的弱谐振效应. 物理学报, doi: 10.7498/aps.70.20211677
    [9] 冯正, 王大承, 孙松, 谭为. 自旋太赫兹源:性能、调控及其应用. 物理学报, doi: 10.7498/aps.69.20200757
    [10] 李晓楠, 周璐, 赵国忠. 基于反射超表面产生太赫兹涡旋波束. 物理学报, doi: 10.7498/aps.68.20191055
    [11] 张真真, 黎华, 曹俊诚. 高速太赫兹探测器. 物理学报, doi: 10.7498/aps.67.20180226
    [12] 张学进, 陆延青, 陈延峰, 朱永元, 祝世宁. 太赫兹表面极化激元. 物理学报, doi: 10.7498/aps.66.148705
    [13] 牟媛, 吴振森, 张耿, 高艳卿, 阳志强. 基于Kramers-Kronig关系建立金属太赫兹色散模型. 物理学报, doi: 10.7498/aps.66.120202
    [14] 张镜水, 孔令琴, 董立泉, 刘明, 左剑, 张存林, 赵跃进. 太赫兹互补金属氧化物半导体场效应管探测器理论模型中扩散效应研究. 物理学报, doi: 10.7498/aps.66.127302
    [15] 冯伟, 张戎, 曹俊诚. 基于石墨烯的太赫兹器件研究进展. 物理学报, doi: 10.7498/aps.64.229501
    [16] 鲍迪, 沈晓鹏, 崔铁军. 太赫兹人工电磁媒质研究进展. 物理学报, doi: 10.7498/aps.64.228701
    [17] 戴雨涵, 陈小浪, 赵强, 张继华, 陈宏伟, 杨传仁. 太赫兹波段谐振频率可调的开口谐振环结构. 物理学报, doi: 10.7498/aps.62.064101
    [18] 韩煜, 袁学松, 马春燕, 鄢扬. 波瓣波导谐振腔太赫兹回旋管的研究. 物理学报, doi: 10.7498/aps.61.064102
    [19] 刘建丰, 周庆莉, 施宇蕾, 李磊, 赵冬梅, 张存林. 基底对亚波长金属双环结构太赫兹透射性质的影响. 物理学报, doi: 10.7498/aps.61.048101
    [20] 王玥, 贺训军, 吴昱明, 吴群, 梅金硕, 李龙威, 杨福杏, 赵拓, 李乐伟. 碳纳米管薄膜周期结构的太赫兹表面等离子波特性研究. 物理学报, doi: 10.7498/aps.60.107301
计量
  • 文章访问数:  170
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 上网日期:  2025-05-06

/

返回文章
返回