-
轻金属材料Cr具有较大的轨道霍尔电导, 并且不依赖强自旋-轨道耦合即可实现高效的电荷-轨道流的转换, 这些优点在自旋电子领域具有重要的应用前景, 有助于开发新型的轨道-自旋电子器件. 本研究采用磁控溅射的方法在Al2O3衬底上制备了Cr薄膜和Cr/Ni异质结. 通过太赫兹发射谱测量观察到Cr中的逆轨道霍尔效应. 在Cr/Ni异质结中由铁磁层Ni中自旋-轨道耦合所产生的轨道流通过Cr的逆轨道霍尔效应转换为电荷流. 此外, 研究了太赫兹信号对Ni层厚度的依赖性, Ni厚度的增加显著地提高了自旋流-轨道流的转换效率, 增强了轨道太赫兹发射信号.Cr的逆轨道霍尔效应为轨道-自旋电子器件的设计与性能调控提供了新的研究思路.Orbitronic devices have aroused considerable interest due to their unique advantage of being independent of strong spin-orbit coupling. Light metal chromium (Cr) with high orbital Hall conductivity has significant potential for application in orbit-spintronic devices. In this study, we present experimental verification of the inverse orbital Hall effect (IOHE) in Cr thin films and systematically investigate the underlying physical mechanisms of orbital-to-charge current conversion. The Cr/Ni and Pt/Ni heterostructures are fabricated on Al2O3 substrates via magnetron sputtering. Terahertz time-domain spectroscopy is employed to measure the terahertz emission signal. The Cr/Ni heterostructure exhibits the same positive terahertz polarity as the ISHE-dominant Pt/Ni heterostructure, despite the Cr layer owing negative spin Hall angle, which confirms the IOHE of Cr/Ni heterostructure. In the Cr/Ni heterostructures, femtosecond laser excitation generates spin current in the ferromagnetic Ni layer, which is converted into orbital current via its spin-orbit coupling. This orbital current propagates into the Cr layer where it is transformed into charge current through the IOHE. Furthermore, the increase of the Cr thickness (2–40 nm) weakens the terahertz emission of Cr/Ni heterostructures due to enhanced optical absorption of Cr layers reducing spin current generation in Ni layers. However, the optimization of Ni thickness (3–10 nm) significantly enhances the terahertz emission by improving the spin-orbital conversion efficiency. This work provides experimental evidence for IOHE in Cr films and demonstrates the crucial role of ferromagnetic layer engineering in spin-to-orbit conversion efficiency, providing innovative perspectives for designing and optimizing the performance of orbitronic devices.
-
Keywords:
- light material Cr film /
- inverse orbital Hall effect /
- terahertz
-
-
[1] Choi Y G, Jo D, Ko K H, Go D, Kim K H, Park H G, Kim C, Min B C, Choi G M, Lee H W 2023 Nature 619 52
Google Scholar
[2] Go D, Jo D, Kim C, Lee H W 2018 Phys. Rev. Lett. 121 086602
Google Scholar
[3] Jo D, Go D, Lee H W 2018 Phys. Rev. B 98 214405
Google Scholar
[4] Sala G, Gambardella P 2022 Phys. Rev. Res. 4 033037
Google Scholar
[5] Go D, Jo D, Kim K W, Lee S, Kang M G, Park B G, Blügel S, Lee H W, Mokrousov Y 2023 Phys. Rev. Lett. 130 246701
Google Scholar
[6] Zhang J, Xie H, Zhang X, Yan Z, Zhai Y, Chi J, Xu H, Zuo Y, Xi L 2022 Appl. Phys. Lett. 121 172405
Google Scholar
[7] Canonico L M, Cysne T P, Rappoport T G, Muniz R B 2020 Phys. Rev. B 101 075429
Google Scholar
[8] Sala G, Wang H, Legrand W, Gambardella P 2023 Phys. Rev. Lett. 131 156703
Google Scholar
[9] Zheng Z, Zeng T, Zhao T, Shi S, Ren L, Zhang T, Jia L, Gu Y, Xiao R, Zhou H, Zhang Q, Lu J, Wang G, Zhao C, Li H, Tay B K, Chen J 2024 Nat. Commun. 15 745
Google Scholar
[10] Sahu P, Bhowal S, Satpathy S 2021 Phys. Rev. B 103 085113
Google Scholar
[11] Kontani H, Tanaka T, Hirashima D S, Yamada K, Inoue J 2009 Phys. Rev. Lett. 102 016601
Google Scholar
[12] Tanaka T, Kontani H, Naito M, Naito T, Hirashima D S, Yamada K, Inoue J 2008 Phys. Rev. B 77 165117
Google Scholar
[13] Salemi L, Oppeneer P M 2022 Phys. Rev. Mater. 6 095001
Google Scholar
[14] Hayashi H, Jo D, Go D, Gao T, Haku S, Mokrousov Y, Lee H W, Ando K 2023 Commun. Phys. 6 32
Google Scholar
[15] Seifert T, Jaiswal S, Martens U, Hannegan J, Braun L, Maldonado P, Freimuth F, Kronenberg A, Henrizi J, Radu I, Beaurepaire E, Mokrousov Y, Oppeneer P M, Jourdan M, Jakob G, Turchinovich D, Hayden L M, Wolf M, Münzenberg M, Kläui M, Kampfrath T 2016 Nat. Photonics 10 483
Google Scholar
[16] Zhu L, Buhrman R A 2021 Phys. Rev. Appl. 15 L031001
Google Scholar
[17] Feng Z, Qiu H, Wang D, Zhang C, Sun S, Jin B, Tan W 2021 J. Appl. Phys. 129 010901
Google Scholar
[18] Lee S, Kang M G, Go D, Kim D, Kang J H, Lee T, Lee G H, Kang J, Lee N J, Mokrousov Y, Kim S, Kim K J, Lee K J, Park B G 2021 Commun. Phys. 4 234
Google Scholar
[19] Guo Y, Zhang Y, Lü W, Wang B, Zhang B, Cao J 2023 Appl. Phys. Lett. 123 022408
Google Scholar
[20] Xie H, Chang Y, Guo X, Zhang J, Cui B, Zuo Y, Xi L 2023 Chin. Phys. B 32 037502
Google Scholar
[21] Lyu H C, Zhao Y C, Qi J, Yang G, Qin W D, Shao B K, Zhang Y, Hu C Q, Wang K, Zhang Q Q, Zhang J Y, Zhu T, Long Y W, Wei H X, Shen B G, Wang S G 2022 J. Appl. Phys. 132 013901
Google Scholar
[22] Xie H, Zhang N, Ma Y, Chen X, Ke L, Wu Y 2023 Nano Lett. 23 10274
Google Scholar
[23] Go D, Lee H W, Oppeneer P M, Blügel S, Mokrousov Y 2024 Phys. Rev. B 109 174435
Google Scholar
[24] Lee D, Go D, Park H J, Jeong W, Ko H W, Yun D, Jo D, Lee S, Go G, Oh J H, Kim K J, Park B G, Min B C, Koo H C, Lee H W, Lee O, Lee K J 2021 Nat. Commun. 12 6710
Google Scholar
[25] Lyalin I, Alikhah S, Berritta M, Oppeneer P M, Kawakami R K 2023 Phys. Rev. Lett. 131 156702
Google Scholar
[26] Wang P, Feng Z, Yang Y, Zhang D, Liu Q, Xu Z, Jia Z, Wu Y, Yu G, Xu X, Jiang Y 2023 npj Quantum Mater. 8 28
Google Scholar
[27] Kumar S, Kumar S 2023 Nat. Commun. 14 8185
Google Scholar
[28] Xu Y, Zhang F, Fert A, Jaffres H Y, Liu Y, Xu R, Jiang Y, Cheng H, Zhao W 2024 Nat. Commun. 15 2043
Google Scholar
[29] Mishra S S, Lourembam J, Lin D J X, Singh R 2024 Nat. Commun. 15 4568
Google Scholar
[30] Seifert T S, Go D, Hayashi H, Rouzegar R, Freimuth F, Ando K, Mokrousov Y, Kampfrath T 2023 Nat. Nanotechnol. 18 1132
Google Scholar
[31] Wu Y, Elyasi M, Qiu X, Chen M, Liu Y, Ke L, Yang H 2016 arxiv: 1610.07020
[32] Wang P, Chen F, Yang Y, Hu S, Li Y, Wang W, Zhang D, Jiang Y 2024 Adv. Electron. Mater. 11 2400554
计量
- 文章访问数: 310
- PDF下载量: 15
- 被引次数: 0