搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于单层MoS2场效应管中等离子波的太赫兹探测仿真

王小云 范汇川 陈效双 王林

引用本文:
Citation:

基于单层MoS2场效应管中等离子波的太赫兹探测仿真

王小云, 范汇川, 陈效双, 王林

Terahertz detection simulation of plasma waves in monolayer MoS2 field-effect transistor

WANG Xiaoyun, FAN Huichuan, CHEN Xiaoshuang, WANG Lin
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 低维材料体系得益于其本身极高的载流子迁移率以及灵活的集成性,在太赫兹探测领域被研究并展现出极大的应用潜力。目前利用软件对半导体太赫兹探测进行仿真分析所依赖的结构主要面向体材料,而对于低维材料体系的太赫兹探测仿真分析则相对空白。本文章首次对单层MoS2场效应管中等离子体波效应的太赫兹探测进行了仿真分析,并且系统地阐述了利用等离子体波进行太赫兹探测的原理以及分析过程。通过调整不同的结构参数和外场条件,该单层MoS2场效应管太赫兹探测器最大的直流电压信号输出可以达到14μ V。该信号随着栅极与漏极之间的偏置电压呈现复杂的变化趋势,通过研究发现该变化趋势与偏置电压引起的载流子浓度变化以及随之改变的动量弛豫时间相关。该文章有望进一步指导低维材料太赫兹探测器的设计。
    Low-dimensional material systems benefit from their extremely high carrier mobility and flexible integrability, making them a subject of research in the terahertz detection field and demonstrating significant application potential. Currently, the structures relied upon for simulation and analysis of semiconductor terahertz detection using software primarily target bulk materials, while simulation analysis for terahertz detection in low-dimensional material systems remains relatively unexplored. Due to the low degrees of freedom in carrier motion within low-dimensional materials, the probability of scattering caused by collisions between electrons and the lattice in the channel during electron movement is effectively reduced, endowing these materials with immense potential in high-sensitivity detection. Their low equivalent noise power and high signal-to-noise ratio performance in signal detection highlight the broad development prospects of these materials in the field of communication. This paper presents, for the first time, a simulation analysis of plasmon wave effects in a monolayer MoS2 field-effect transistor (FET) for THz detection, systematically elucidating the principles and analytical processes of THz detection utilizing plasmon waves. The simulation measured the transfer characteristic curve of the device at a source-drain voltage of 0.5 V, and based on this curve, a gate-to-drain voltage of -0.1 V was selected for preliminary investigation of the device's THz response performance. By adjusting key parameters such as Ugs, THz wave irradiation frequency, and HfO2 layer thickness, it was determined that the monolayer MoS2 FET THz detector could output a maximum DC voltage signal of 14 μV. This signal exhibits a complex variation trend with the bias voltage between the gate and drain, which is correlated with the bias voltage-induced changes in carrier concentration and the corresponding momentum relaxation time. The research conducted in this paper can serve as an important reference for designing low-dimensional material THz detectors. Furthermore, it provides a foundation for optimizing the performance of two-dimensional material THz detectors through simulation analysis, thereby offering deeper insights into the study of THz photoelectric responses in 2D materials.
  • [1]

    Feng W, Wei S T, Cao J C 2021 Acta Phys. Sin. 70244303

    [2]

    Wang C X, Wang J, Hu S, Jiang Z H, Tao J, Yan F 2021 IEEE Veh. Technol. Mag 1627

    [3]

    Shafie A, Yang N, Han C, Jornet J M, Juntti M, Kürner T 2023 IEEE Network 37162

    [4]

    Jiang W, Zhou Q, He J, Habibi M A, Melnyk S, El-Absi M, Han B, Renzo M D, Schotten H D, Luo F L, El-Bawab T S, Juntti M, Debbah M, Leung V C M 2024 IEEE Commun. Surv. Tutorials 262326

    [5]

    Liu Z, Yang C, Peng M 2024 IEEE Network 38194

    [6]

    Chen W, Li L, Chen Z, Liu Y, Ning B, Quek T Q S 2024 IEEE Trans. Veh. Technol. 7319019

    [7]

    Han C, Wu Y, Chen Z, Chen Y, Wang G 2024 IEEE Commun. Mag. 62102

    [8]

    Taghinejad M, Xia C, Hrton M, Lee K T, Kim A S, Li Q, Guzelturk B, Kalousek R, Xu F, Cai W, Lindenberg A M, Brongersma M L 2023 Science 382299

    [9]

    Mihnev M T, Kadi F, Divin C J, Winzer T, Lee S, Liu C H, Zhong Z, Berger C, de Heer W A, Malic E, Knorr A, Norris T B 2016 Nat. Commun. 711617

    [10]

    Zhang D, Xu Z, Cheng G, Liu Z, Gutierrez A R, Zang W, Norris T B, Zhong Z 2022 Nat. Commun. 136404

    [11]

    Krishna Kumar R, Li G, Bertini R, Chaudhary S, Nowakowski K, Park J M, Castilla S, Zhan Z, Pantaleón P A, Agarwal H, Batlle-Porro S, Icking E, Ceccanti M, Reserbat-Plantey A, Piccinini G, Barrier J, Khestanova E, Taniguchi T, Watanabe K, Stampfer C, Refael G, Guinea F, Jarillo-Herrero P, Song J C W, Stepanov P, Lewandowski C, Koppens F H L 2025 Nat. Mater. 1

    [12]

    Dyakonov M, Shur M 1996 IEEE Trans. Electron Devices 43380

    [13]

    Dyakonov M, Shur M 1993 Phys. Rev. Lett. 712465

    [14]

    Liu X, Shur M 2019 IEEE RWS 1

    [15]

    Liu X, Shur M S 2020 IEEE Trans. Terahertz Sci. Technol. 1015

    [16]

    Meng Q, Lin Q, Jing W, Han F, Zhao M, Jiang Z 2018 IEEE Trans. Electron Devices 654807

    [17]

    Zhu Y, Ji X, Liao Y, Wu F, Yan F 2014201412th IEEE ICSICT 1

    [18]

    Tong J, Muthee M, Chen S Y, Yngvesson S K, Yan J 2015 Nano Lett. 155295

    [19]

    Zhou J, Wang X, Chen Z, Zhang L, Yao C, Du W, Zhang J, Xing H, Fu N, Chen G, Wang L 2022 Chin. Phys. B 31050701

    [20]

    Shen J, Xing H, Wang L, Hu Z, Zhang L, Wang X, Chen Z, Yao C, Jiang M, Fei F, Chen G, Han L, Song F, Chen X 2022 Appl. Phys. Lett. 120063501

    [21]

    Shen Y, Tian H, Ren T L 2022 J. Semicond. 43082002

    [22]

    Wang D, Yang L, Hu Z, Wang F, Yang Y, Pan X, Dong Z, Tian S, Zhang L, Han L, Jiang M, Tang K, Dai F, Zhang K, Lu W, Chen X, Wang L, Hu W 2025 Nat. Commun. 1625

    [23]

    Han L, Zhang S, Tian S, Zhang L, Wei Y, Zhang K, Jiang M, He Y, Liu C, Tang W, He J, Shu H, Politano A, Chen X, Wang L 2025 ACS Nano 193740

    [24]

    Xiao K, Zhang S, Zhang K, Zhang L, Wen Y, Tian S, Xiao Y, Shi C, Hou S, Liu C, Han L, He J, Tang W, Li G, Wang L, Chen X 2024 Adv. Sci. 112401716

  • [1] 卢文强, 易颖婷, 宋前举, 周自刚, 易有根, 曾庆栋, 易早. 基于狄拉克半金属纳米线的太赫兹可调七波段完美吸收器的模拟仿真. 物理学报, doi: 10.7498/aps.74.20241516
    [2] 汪静丽, 杨志雄, 董先超, 尹亮, 万洪丹, 陈鹤鸣, 钟凯. 基于VO2的太赫兹各向异性编码超表面. 物理学报, doi: 10.7498/aps.72.20222171
    [3] 冯龙呈, 杜琛, 杨圣新, 张彩虹, 吴敬波, 范克彬, 金飚兵, 陈健, 吴培亨. 太赫兹实时近场光谱成像研究. 物理学报, doi: 10.7498/aps.71.20220131
    [4] 杨泽浩, 刘紫威, 杨博, 张成龙, 蔡宸, 祁志美. 基于多孔金膜的太赫兹导模共振生化传感特性仿真. 物理学报, doi: 10.7498/aps.71.20220722
    [5] 刘紫玉, 亓丽梅, 道日娜, 戴林林, 武利勤. 基于VO2的波束可调太赫兹天线. 物理学报, doi: 10.7498/aps.71.20220817
    [6] 闫志巾, 施卫. 太赫兹GaAs光电导天线阵列辐射特性. 物理学报, doi: 10.7498/aps.70.20211210
    [7] 张朋, 刘政, 戴建明, 杨昭荣, 苏付海. 强磁场在ZnCr2Se4中诱导的各向异性太赫兹共振吸收. 物理学报, doi: 10.7498/aps.69.20201507
    [8] 李晓楠, 周璐, 赵国忠. 基于反射超表面产生太赫兹涡旋波束. 物理学报, doi: 10.7498/aps.68.20191055
    [9] 张旭涛, 阙肖峰, 蔡禾, 孙金海, 张景, 李粮生, 刘永强. 太赫兹雷达散射截面的仿真与时域光谱测量. 物理学报, doi: 10.7498/aps.68.20190552
    [10] 张真真, 黎华, 曹俊诚. 高速太赫兹探测器. 物理学报, doi: 10.7498/aps.67.20180226
    [11] 张学进, 陆延青, 陈延峰, 朱永元, 祝世宁. 太赫兹表面极化激元. 物理学报, doi: 10.7498/aps.66.148705
    [12] 陶泽华, 董海明. MoS2电子屏蔽长度和等离激元. 物理学报, doi: 10.7498/aps.66.247701
    [13] 李娜, 白亚, 刘鹏. 激光等离子体太赫兹辐射源的频率控制. 物理学报, doi: 10.7498/aps.65.110701
    [14] 李丹, 刘勇, 王怀兴, 肖龙胜, 凌福日, 姚建铨. 太赫兹波段石墨烯等离子体的增益特性. 物理学报, doi: 10.7498/aps.65.015201
    [15] 刘亚青, 张玉萍, 张会云, 吕欢欢, 李彤彤, 任广军. 光抽运多层石墨烯太赫兹表面等离子体增益特性的研究. 物理学报, doi: 10.7498/aps.63.075201
    [16] 刘俊, 梁培, 舒海波, 沈涛, 邢凇, 吴琼. 单层MoS2分子掺杂的第一性原理研究. 物理学报, doi: 10.7498/aps.63.117101
    [17] 赖占平. 二维辉钼材料及器件研究进展. 物理学报, doi: 10.7498/aps.62.056801
    [18] 胡海峰, 蔡利康, 白文理, 张晶, 王立娜, 宋国峰. 基于表面等离子体的太赫兹光束方向调控的模拟研究. 物理学报, doi: 10.7498/aps.60.014220
    [19] 王玥, 贺训军, 吴昱明, 吴群, 梅金硕, 李龙威, 杨福杏, 赵拓, 李乐伟. 碳纳米管薄膜周期结构的太赫兹表面等离子波特性研究. 物理学报, doi: 10.7498/aps.60.107301
    [20] 黎华, 韩英军, 谭智勇, 张戎, 曹俊诚. 半绝缘等离子体波导太赫兹量子级联激光器工艺研究. 物理学报, doi: 10.7498/aps.59.2169
计量
  • 文章访问数:  15
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 上网日期:  2025-06-06

/

返回文章
返回