-
低维材料体系得益于其本身极高的载流子迁移率以及灵活的集成性,在太赫兹探测领域被研究并展现出极大的应用潜力。目前利用软件对半导体太赫兹探测进行仿真分析所依赖的结构主要面向体材料,而对于低维材料体系的太赫兹探测仿真分析则相对空白。本文章首次对单层MoS2场效应管中等离子体波效应的太赫兹探测进行了仿真分析,并且系统地阐述了利用等离子体波进行太赫兹探测的原理以及分析过程。通过调整不同的结构参数和外场条件,该单层MoS2场效应管太赫兹探测器最大的直流电压信号输出可以达到14μ V。该信号随着栅极与漏极之间的偏置电压呈现复杂的变化趋势,通过研究发现该变化趋势与偏置电压引起的载流子浓度变化以及随之改变的动量弛豫时间相关。该文章有望进一步指导低维材料太赫兹探测器的设计。Low-dimensional material systems benefit from their extremely high carrier mobility and flexible integrability, making them a subject of research in the terahertz detection field and demonstrating significant application potential. Currently, the structures relied upon for simulation and analysis of semiconductor terahertz detection using software primarily target bulk materials, while simulation analysis for terahertz detection in low-dimensional material systems remains relatively unexplored. Due to the low degrees of freedom in carrier motion within low-dimensional materials, the probability of scattering caused by collisions between electrons and the lattice in the channel during electron movement is effectively reduced, endowing these materials with immense potential in high-sensitivity detection. Their low equivalent noise power and high signal-to-noise ratio performance in signal detection highlight the broad development prospects of these materials in the field of communication. This paper presents, for the first time, a simulation analysis of plasmon wave effects in a monolayer MoS2 field-effect transistor (FET) for THz detection, systematically elucidating the principles and analytical processes of THz detection utilizing plasmon waves. The simulation measured the transfer characteristic curve of the device at a source-drain voltage of 0.5 V, and based on this curve, a gate-to-drain voltage of -0.1 V was selected for preliminary investigation of the device's THz response performance. By adjusting key parameters such as Ugs, THz wave irradiation frequency, and HfO2 layer thickness, it was determined that the monolayer MoS2 FET THz detector could output a maximum DC voltage signal of 14 μV. This signal exhibits a complex variation trend with the bias voltage between the gate and drain, which is correlated with the bias voltage-induced changes in carrier concentration and the corresponding momentum relaxation time. The research conducted in this paper can serve as an important reference for designing low-dimensional material THz detectors. Furthermore, it provides a foundation for optimizing the performance of two-dimensional material THz detectors through simulation analysis, thereby offering deeper insights into the study of THz photoelectric responses in 2D materials.
-
Keywords:
- MoS2 /
- Plasma wave /
- Terahertz /
- TCAD simulation
-
[1] Feng W, Wei S T, Cao J C 2021 Acta Phys. Sin. 70244303
[2] Wang C X, Wang J, Hu S, Jiang Z H, Tao J, Yan F 2021 IEEE Veh. Technol. Mag 1627
[3] Shafie A, Yang N, Han C, Jornet J M, Juntti M, Kürner T 2023 IEEE Network 37162
[4] Jiang W, Zhou Q, He J, Habibi M A, Melnyk S, El-Absi M, Han B, Renzo M D, Schotten H D, Luo F L, El-Bawab T S, Juntti M, Debbah M, Leung V C M 2024 IEEE Commun. Surv. Tutorials 262326
[5] Liu Z, Yang C, Peng M 2024 IEEE Network 38194
[6] Chen W, Li L, Chen Z, Liu Y, Ning B, Quek T Q S 2024 IEEE Trans. Veh. Technol. 7319019
[7] Han C, Wu Y, Chen Z, Chen Y, Wang G 2024 IEEE Commun. Mag. 62102
[8] Taghinejad M, Xia C, Hrton M, Lee K T, Kim A S, Li Q, Guzelturk B, Kalousek R, Xu F, Cai W, Lindenberg A M, Brongersma M L 2023 Science 382299
[9] Mihnev M T, Kadi F, Divin C J, Winzer T, Lee S, Liu C H, Zhong Z, Berger C, de Heer W A, Malic E, Knorr A, Norris T B 2016 Nat. Commun. 711617
[10] Zhang D, Xu Z, Cheng G, Liu Z, Gutierrez A R, Zang W, Norris T B, Zhong Z 2022 Nat. Commun. 136404
[11] Krishna Kumar R, Li G, Bertini R, Chaudhary S, Nowakowski K, Park J M, Castilla S, Zhan Z, Pantaleón P A, Agarwal H, Batlle-Porro S, Icking E, Ceccanti M, Reserbat-Plantey A, Piccinini G, Barrier J, Khestanova E, Taniguchi T, Watanabe K, Stampfer C, Refael G, Guinea F, Jarillo-Herrero P, Song J C W, Stepanov P, Lewandowski C, Koppens F H L 2025 Nat. Mater. 1
[12] Dyakonov M, Shur M 1996 IEEE Trans. Electron Devices 43380
[13] Dyakonov M, Shur M 1993 Phys. Rev. Lett. 712465
[14] Liu X, Shur M 2019 IEEE RWS 1
[15] Liu X, Shur M S 2020 IEEE Trans. Terahertz Sci. Technol. 1015
[16] Meng Q, Lin Q, Jing W, Han F, Zhao M, Jiang Z 2018 IEEE Trans. Electron Devices 654807
[17] Zhu Y, Ji X, Liao Y, Wu F, Yan F 2014201412th IEEE ICSICT 1
[18] Tong J, Muthee M, Chen S Y, Yngvesson S K, Yan J 2015 Nano Lett. 155295
[19] Zhou J, Wang X, Chen Z, Zhang L, Yao C, Du W, Zhang J, Xing H, Fu N, Chen G, Wang L 2022 Chin. Phys. B 31050701
[20] Shen J, Xing H, Wang L, Hu Z, Zhang L, Wang X, Chen Z, Yao C, Jiang M, Fei F, Chen G, Han L, Song F, Chen X 2022 Appl. Phys. Lett. 120063501
[21] Shen Y, Tian H, Ren T L 2022 J. Semicond. 43082002
[22] Wang D, Yang L, Hu Z, Wang F, Yang Y, Pan X, Dong Z, Tian S, Zhang L, Han L, Jiang M, Tang K, Dai F, Zhang K, Lu W, Chen X, Wang L, Hu W 2025 Nat. Commun. 1625
[23] Han L, Zhang S, Tian S, Zhang L, Wei Y, Zhang K, Jiang M, He Y, Liu C, Tang W, He J, Shu H, Politano A, Chen X, Wang L 2025 ACS Nano 193740
[24] Xiao K, Zhang S, Zhang K, Zhang L, Wen Y, Tian S, Xiao Y, Shi C, Hou S, Liu C, Han L, He J, Tang W, Li G, Wang L, Chen X 2024 Adv. Sci. 112401716
计量
- 文章访问数: 15
- PDF下载量: 0
- 被引次数: 0