-
To achieve multi-channel parallel transmission of complex signals and enhance spectral efficiency, this study presents a Rydberg atomic antenna system capable of demonstrating multiplexed communication schemes. Using 852-nm and 509-nm lasers, cesium atoms are excited to Rydberg states within a vapor cell, while differential detection techniques are employed to suppress common-mode noise, enabling high signal-to-noise ratio (SNR) Electromagnetically Induced Transparency (EIT) spectroscopy. Under weak electric field conditions, microwave field coupling induces atomic energy level shifts, leading to two-photon detuning and rendering the EIT transmission intensity nearly linearly dependent on the microwave electric field strength. Base on this effect, an integrated electrode configuration inside the atomic cell introduces time-varying electric fields, enabling measurements of waveform, amplitude, and frequency for both microwave and low-frequency electric fields.Building upon this principle, we decompose complex chaotic signals into three-dimensional orthogonal electric field components to demonstrate time-division multiplexing (TDM) of three-channel signals. Concurrently, frequency-division multiplexing (FDM) is realized by modulating the three channels with carriers at 3 kHz, 5 kHz, and 4 kHz, respectively. Quantitative analysis of correlation parameters between transmitted and reference signals reveals high-fidelity reconstruction, with achieved fidelity levels of 95% for TDM and 90% for FDM. These results validate the feasibility of complex signal waveform reconstruction using optical atomic antennas and underscore the potential of Rydberg-based systems for high-performance electromagnetic field sensing and communication applications.
-
Keywords:
- Rydberg atomic antenna /
- electromagnetically induced spectroscopy /
- signal transmission /
- three-dimensional chaotic signals
-
[1] He J, Liu Q, Yang Z, Niu Q Q, Ban X J, Wang J M 2021 Phys. Rev. A 104 063120
[2] Meyer D H, Kunz P D, Cox K C 2021 Phys. Rev. Appl. 15 014053
[3] Wu P, Wu F, 2022 Elec. Inf. Warfare Technol. 37 5 (in Chinese)[鲜佩,吴峰 2022 电子信息对抗技术 37 5]
[4] Fu Y Q, Lin Y, Wu B, An Q, Liu Y 2022 Chin. J. Radio. Sci. 37 279 (in Chinse) [付云起, 林沂, 武博, 安强, 刘燚 2022 电波科学学报 37 279]
[5] Liu H F 2014 M.S. Thesis (Shanxi: Shanxi University) (in Chinese)[ 刘 慧丰 2014 硕士学位论文 (山西: 山西大学)]
[6] Wang X F, Liu C T, Lu X D, Li J J, Deng Y C, Xu Q F 2025 Laser Optoelectron. Prog. 62 125 (in Chinese)[王学锋, 刘崇泰, 卢向东, 李建军, 邓意成, 徐强锋 2025 激光与光电子学进展 62 125]
[7] Zhang L H 2024 Ph. D. Dissertation (Hefei: University of Science and Technology of China) (in Chinese)[张力华 2024 博士学位论文 (合肥: 中国 科学技术大学)]
[8] Sun F Y, Ma J, Hou D, Huang X H 2018 J. Time Freq. 41 171 (in Chinese)[孙富 宇, 马杰, 侯冬, 黄显核 2018 时间频率学报 41 171]
[9] Sedlacek J A, Schwettmann A, Kübler H, Löw R, Pfau T, Shaffer J P 2012 Nat. Phys. 8 819
[10] Kumar S, Fan H Q, Kübler H, Sheng J T, Shaffer J P. 2017 Sci Rep 7 42981
[11] Gordon J A, Simons M T, Haddab A H, Holloway C L 2019 AIP Adv. 9 045030
[12] Jing M Y, Hu Y, Ma J, Zhang H, Zhang L J, Xiao L T, Jia S T 2020 Nat. Phys. 16 911
[13] Ding D S, Liu Z K, Shi B S, Guo G C, Mølmer K, Adams C S 2022 Nat. Phys. 18 1447
[14] Simons M T, Haddab A H, Gordon J A, and Holloway C L 2019 Appl. Phys. Lett. 114 114101
[15] Holloway C L, Simons M T, Gordon J A, Novotny D 2019 IEEE Antennas Wirel. Propag. Lett. 18 1853
[16] Anderson D A, Sapiro R E, Raithel G 2020 IEEE Trans. Antennas Propag. 69 2455
[17] Wang Q X 2023 Ph. D. Dissertatio (Shanxi:Shanxi University) (in Chinese)[王 勤霞 2023 博士学位论文 (山西:山西大学)]
[18] Jia C Y, Chen X H, Cong N, Luo W H, Zhang X N, Yang R F 2024 Telecommunications Network Technology 50 85 (in Chinese)[贾春阳, 陈雪花, 丛楠, 罗文浩, 张笑楠, 杨仁福 2024 信息通信技术与政策 50 85]
[19] Deb A B, Kjærgaard N 2018 Appl. Phys. Lett. 112 211106
[20] Meyer D H, Cox K C, Fatemi F K, Kunz P D 2018 Appl. Phys. Lett. 112 211108
[21] Jiao Y C, Han X X, Fan J B, Raithel G, Zhao J M, Jia S T 2019 Appl. Phys. Express 12 126002
[22] Song Z F, Liu H P, Liu X C, Zhang W F, Zou H Y, Zhang J, Qu J F 2019 Opt. Express 27 8848
[23] Robinson A K, Prajapati N, Senic D, Simons M T, Holloway C L 2021 Appl. Phys. Lett. 118 114001
[24] Meyer D H, Cox K C, Fatemi F K, Kunz P D 2018 Appl. Phys. Lett. 112 211108
[25] Du Y J, Cong N, Wei X G, Zhang X N, Luo W H, He J, Yang R F 2022 AIP Adv. 12 065118
[26] Gao Y S, Wen W, Pang X Y, Yan S C, Zhai W L, Cui W Z, Wang L 2025 CN202411680275.4
[27] Otto J S, Hunter M K, Kjærgaard N, Deb A B 2021 Appl. Phys. Lett. 129 140503
[28] Chen Y 2019 M.S. Thesis (Jiangsu:Jiangsu University) (in Chinese)[陈远 2019 硕士学位论文 (江苏:江苏大学)]
[29] Ding C, Hu S S, Deng S, Song H T, Zhang Y, Wang B S, Yan S, Xiao D P, Zhang H Q 2025 Acta Phys. Sin.74 043201 (in Chinese)[丁超, 胡珊珊, 邓松, 宋宏天, 张英, 王保帅, 阎晟, 肖冬萍, 张淮清 2025 物理学报 74 043201]
[30] Li W, Zhang C G, Zhang H, Jing M Y, Zhang L J 2021 Laser Optoelectron. Prog. 58 144 (in Chinese)[李伟, 张淳刚, 张好, 景明勇, 张临杰 2021 激光与光电 子学进展 58 144]
计量
- 文章访问数: 111
- PDF下载量: 6
- 被引次数: 0