搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

二维电磁感应光子带隙的动态生成与调控

张岩 刘一谋 韩明 王刚成 崔淬砺 郑泰玉

引用本文:
Citation:

二维电磁感应光子带隙的动态生成与调控

张岩, 刘一谋, 韩明, 王刚成, 崔淬砺, 郑泰玉

Dynamic generation and manipulaition of electromagnetically induced 2D phtonic band-gaps

Zhang Yan, Liu Yi-Mou, Han Ming, Wang Gang-Cheng, Cui Cui-Li, Zheng Tai-Yu
PDF
导出引用
  • 研究了由两个垂直传播的强驻波激光场共同耦合的一个四能级Tripod型冷87Rb原子介质的稳态光学响应特性. 结果发现, 当两驻波场满足双光失谐条件时, 可在这两驻波场的传播方向上同时获得反射率高达95%以上的电磁感应光子带隙结构; 通过适当调节强激光场, 还可实现一个方向为光子带隙而另一个方向为透明窗口或者两个方向均为透明窗口的结构. 并且光子带隙和透明窗口的频宽和位置是可调谐的. 这种全光控制的二维的信号光禁闭和导通机制可用于实现全光开关和全光路由, 有利于复杂的全光通讯网络的开发.
    We study the steady optical responses of a four-level Tripod cold 87Rb atomic system, which is driven by two mutually perpendicular strong standing-wave laser fields. It is found that satisfying the condition of a proper detuning between two strong fields, one nearly perfect structure of double photonic band-gap, where reflectivity can reach 95%, can be generated along each direction, respectively. Shifting a strong field (two strong fields) to a travelling-wave field (two travelling-wave fields), we can achieve a reflectivity platform and a transmissivity window (two transmissivity windows). Our new findings are beneficial to a novel all-optical switching and routing, which may have applications in complex all-optical information networks.
    • 基金项目: 国家自然科学基金(批准号:11175044,11104112,11247005)、中央高校基本科研业务费专项资金(批准号:12QNJJ006)、中国博士后科学基金(批准号:2013T60316)和吉林省博士后科研项目启动经费(批准号:RB201330)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11175044, 11104112, 11247005), the Fundamental Research Funds for the Central Universities, China (Grant No. 12QNJJ006), the China Postdoctoral Science Foundation (Grant No. 2013T60316 ), and the Jilin Postdoctoral Science Research Program, China (Grant No. RB201330).
    [1]

    Hammerer K, Soensen A S, Polzik E 2010 Rev. Mod. Phys. 82 1041

    [2]

    Simon C, Afzelius M, Appel J, Giroday A B, Dewhurst S J, Gisin N, Hu C Y, Jelezko F, Kroll S, Muller J H, Nunn J, Polzik E, Rarity J, Reidmatten H, Rosenfeld W, Shields A J, Skold N, Stevenson R M, Thew R, Walmsley I, Weber M, Weinfurter H, Wrachtrup J, Young R 2010 Eur. Phys. J. D 58 1

    [3]

    Wang H, Goorskey D, Xiao M 2001 Phys. Rev. Lett. 87 073601

    [4]

    He Q Y, Zhang B, Wei X G 2008 Phys. Rev. A 77 063827

    [5]

    Fleischhauer M, Imamoglu A, Marangos J P 2005 Rev. Mod. Phys. 77 633

    [6]

    Cui C L, Jia J K, Gao J W, Xue Y, Wang G, Wu J H 2007 Phys. Rev. A 76 033815

    [7]

    Zhang X H, Bao Q Q, Zhang Y, Su M C, Cui C L, Wu J H 2012 Chin. Phys. B 21 054209

    [8]

    Guo H, Tang P 2013 Chin. Phys. B 22 054204

    [9]

    Vagizov F, Antonov V, Radeonychev Y V, Shakhmuratov R N, Kocharovskaya O 2014 Nature 508 80

    [10]

    Ling H Y, Li Y Q, Xiao M 1998 Phys. Rev. A 57 1338

    [11]

    Ba N, Wang L, Wu X Y, Liu X J, Wang H H, Cui C L, Li A J 2013 Appl. Opt. 52 4264

    [12]

    Zhang Y Q, Wu Z K, Zheng H B, Wang Z G, Zhang Y Z, Tian H, Zhang Y P 2014 Laser Phys. 24 045402

    [13]

    Wan R G, Kou J, Jiang L, Jiang Y, Gao J Y 2011 J. Opt. Soc. Am. B 28 622

    [14]

    Chen Y H, Lee M J, Hung W L, Chen Y C, Chen Y F, Yu I A 2012 Phys. Rev. Lett. 108 173603

    [15]

    Zhang Y, Zhang Y, Zhang X H, Yu M, Cui C L, Wu J H 2012 Phys. Lett. A 376 656

    [16]

    Bao Q Q, Zhang X H, Gao J Y, Zhang Y, Cui C L, Wu J H 2011 Phys. Rev. A 84 063812

    [17]

    Artoni M, La Rocca G C 2006 Phys. Rev. Lett. 96 073905

    [18]

    Zhang Y, Xue Y, Wang G, Cui C L, Wang R, Wu J H 2011 Opt. Express 19 2111

    [19]

    Yao Y P, Zhang T Y, Kou J, Wan R G 2013 Phys. Lett. A 377 1416

    [20]

    Artoni M, La Rocca G C, Bassani F 2005 Phys. Rev. E 72 046604

    [21]

    Zhang Y, Gao J W, Cui C L, Jiang Y, Wu J H 2010 Phys. Lett. A 374 1088

    [22]

    Wu J H, Artoni M, La Rocca G C 2009 Phys. Rev. Lett. 103 133601

    [23]

    Ba N, Wang L, Zhang Y 2014 Acta Phys. Sin. 63 034209 (in Chinese) [巴诺, 王磊, 张岩 2014 物理学报 63 034209]

  • [1]

    Hammerer K, Soensen A S, Polzik E 2010 Rev. Mod. Phys. 82 1041

    [2]

    Simon C, Afzelius M, Appel J, Giroday A B, Dewhurst S J, Gisin N, Hu C Y, Jelezko F, Kroll S, Muller J H, Nunn J, Polzik E, Rarity J, Reidmatten H, Rosenfeld W, Shields A J, Skold N, Stevenson R M, Thew R, Walmsley I, Weber M, Weinfurter H, Wrachtrup J, Young R 2010 Eur. Phys. J. D 58 1

    [3]

    Wang H, Goorskey D, Xiao M 2001 Phys. Rev. Lett. 87 073601

    [4]

    He Q Y, Zhang B, Wei X G 2008 Phys. Rev. A 77 063827

    [5]

    Fleischhauer M, Imamoglu A, Marangos J P 2005 Rev. Mod. Phys. 77 633

    [6]

    Cui C L, Jia J K, Gao J W, Xue Y, Wang G, Wu J H 2007 Phys. Rev. A 76 033815

    [7]

    Zhang X H, Bao Q Q, Zhang Y, Su M C, Cui C L, Wu J H 2012 Chin. Phys. B 21 054209

    [8]

    Guo H, Tang P 2013 Chin. Phys. B 22 054204

    [9]

    Vagizov F, Antonov V, Radeonychev Y V, Shakhmuratov R N, Kocharovskaya O 2014 Nature 508 80

    [10]

    Ling H Y, Li Y Q, Xiao M 1998 Phys. Rev. A 57 1338

    [11]

    Ba N, Wang L, Wu X Y, Liu X J, Wang H H, Cui C L, Li A J 2013 Appl. Opt. 52 4264

    [12]

    Zhang Y Q, Wu Z K, Zheng H B, Wang Z G, Zhang Y Z, Tian H, Zhang Y P 2014 Laser Phys. 24 045402

    [13]

    Wan R G, Kou J, Jiang L, Jiang Y, Gao J Y 2011 J. Opt. Soc. Am. B 28 622

    [14]

    Chen Y H, Lee M J, Hung W L, Chen Y C, Chen Y F, Yu I A 2012 Phys. Rev. Lett. 108 173603

    [15]

    Zhang Y, Zhang Y, Zhang X H, Yu M, Cui C L, Wu J H 2012 Phys. Lett. A 376 656

    [16]

    Bao Q Q, Zhang X H, Gao J Y, Zhang Y, Cui C L, Wu J H 2011 Phys. Rev. A 84 063812

    [17]

    Artoni M, La Rocca G C 2006 Phys. Rev. Lett. 96 073905

    [18]

    Zhang Y, Xue Y, Wang G, Cui C L, Wang R, Wu J H 2011 Opt. Express 19 2111

    [19]

    Yao Y P, Zhang T Y, Kou J, Wan R G 2013 Phys. Lett. A 377 1416

    [20]

    Artoni M, La Rocca G C, Bassani F 2005 Phys. Rev. E 72 046604

    [21]

    Zhang Y, Gao J W, Cui C L, Jiang Y, Wu J H 2010 Phys. Lett. A 374 1088

    [22]

    Wu J H, Artoni M, La Rocca G C 2009 Phys. Rev. Lett. 103 133601

    [23]

    Ba N, Wang L, Zhang Y 2014 Acta Phys. Sin. 63 034209 (in Chinese) [巴诺, 王磊, 张岩 2014 物理学报 63 034209]

  • [1] 裴丽娅, 郑世阳, 牛金艳. 基于调控原子相干的Λ-型电磁感应透明与吸收. 物理学报, 2022, 0(0): 0-0. doi: 10.7498/aps.71.20220950
    [2] 严冬, 王彬彬, 白文杰, 刘兵, 杜秀国, 任春年. 里德伯电磁感应透明中的相位. 物理学报, 2019, 68(8): 084203. doi: 10.7498/aps.68.20181938
    [3] 杨智伟, 焦月春, 韩小萱, 赵建明, 贾锁堂. 弱射频场中Rydberg原子的电磁感应透明. 物理学报, 2017, 66(9): 093202. doi: 10.7498/aps.66.093202
    [4] 杨智伟, 焦月春, 韩小萱, 赵建明, 贾锁堂. 调制激光场中Rydberg原子的电磁感应透明. 物理学报, 2016, 65(10): 103201. doi: 10.7498/aps.65.103201
    [5] 白金海, 芦小刚, 缪兴绪, 裴丽娅, 王梦, 高艳磊, 王如泉, 吴令安, 傅盘铭, 左战春. Rb87冷原子电磁感应透明吸收曲线不对称性的分析. 物理学报, 2015, 64(3): 034206. doi: 10.7498/aps.64.034206
    [6] 王梦, 白金海, 裴丽娅, 芦小刚, 高艳磊, 王如泉, 吴令安, 杨世平, 庞兆广, 傅盘铭, 左战春. 铷原子耦合光频率近共振时的电磁感应透明. 物理学报, 2015, 64(15): 154208. doi: 10.7498/aps.64.154208
    [7] 巴诺, 王磊, 张岩. 一维冷原子晶格中相干诱导三光子带隙. 物理学报, 2014, 63(3): 034209. doi: 10.7498/aps.63.034209
    [8] 赵虎, 李铁夫, 刘建设, 陈炜. 基于超导量子比特的电磁感应透明研究进展. 物理学报, 2012, 61(15): 154214. doi: 10.7498/aps.61.154214
    [9] 邱田会, 杨国建. 微波射频场调制下Λ型三能级原子系统的电磁感应光栅. 物理学报, 2012, 61(1): 014205. doi: 10.7498/aps.61.014205
    [10] 于淼, 张 岩, 房博, 高俊艳, 高金伟, 吴金辉. 电磁感应双光子带隙的产生和控制. 物理学报, 2012, 61(13): 134204. doi: 10.7498/aps.61.134204
    [11] 佘彦超, 张蔚曦, 王登龙. 电磁感应透明介质中非线性法拉第偏转. 物理学报, 2011, 60(6): 064205. doi: 10.7498/aps.60.064205
    [12] 佘彦超, 王登龙, 丁建文. 电磁感应透明介质中的弱光空间暗孤子环. 物理学报, 2009, 58(5): 3198-3202. doi: 10.7498/aps.58.3198
    [13] 刘春旭, 张继森, 刘俊业, 金光. Er3+:YAlO3晶体中Λ型四能级系统的量子相干左手性. 物理学报, 2009, 58(8): 5778-5783. doi: 10.7498/aps.58.5778
    [14] 庄 飞, 沈建其, 叶 军. 调控电磁感应透明气体折射率实现可控光子带隙结构. 物理学报, 2007, 56(1): 541-545. doi: 10.7498/aps.56.541
    [15] 姚 鸣, 朱卡的, 袁晓忠, 蒋逸文, 吴卓杰. 声子辅助的电磁感应透明和超慢光效应的研究. 物理学报, 2006, 55(4): 1769-1773. doi: 10.7498/aps.55.1769
    [16] 房元锋, 杜春光, 李师群. 光子晶体中四能级系统的量子相干效应. 物理学报, 2006, 55(9): 4652-4658. doi: 10.7498/aps.55.4652
    [17] 赵建明, 赵延霆, 黄涛, 肖连团, 贾锁堂. 双抽运光作用电磁感应透明的实验研究. 物理学报, 2004, 53(4): 1023-1026. doi: 10.7498/aps.53.1023
    [18] 王利强, 李永放, 曹冬梅, 毕冬艳, 张崇俊, 成延春. V型原子系统中相干布居俘获的相干相位调制研究 . 物理学报, 2004, 53(9): 2937-2942. doi: 10.7498/aps.53.2937
    [19] 刘正东, 武 强. 被三个耦合场驱动的四能级原子的电磁感应透明. 物理学报, 2004, 53(9): 2970-2973. doi: 10.7498/aps.53.2970
    [20] 李永放, 孙建锋. 梯型四能级系统中超窄电磁感应透明与无反转增益. 物理学报, 2003, 52(3): 547-555. doi: 10.7498/aps.52.547
计量
  • 文章访问数:  3190
  • PDF下载量:  490
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-04-22
  • 修回日期:  2014-06-15
  • 刊出日期:  2014-11-05

二维电磁感应光子带隙的动态生成与调控

  • 1. 东北师范大学物理学院, 长春 130024;
  • 2. 吉林大学物理学院, 长春 130012
    基金项目: 国家自然科学基金(批准号:11175044,11104112,11247005)、中央高校基本科研业务费专项资金(批准号:12QNJJ006)、中国博士后科学基金(批准号:2013T60316)和吉林省博士后科研项目启动经费(批准号:RB201330)资助的课题.

摘要: 研究了由两个垂直传播的强驻波激光场共同耦合的一个四能级Tripod型冷87Rb原子介质的稳态光学响应特性. 结果发现, 当两驻波场满足双光失谐条件时, 可在这两驻波场的传播方向上同时获得反射率高达95%以上的电磁感应光子带隙结构; 通过适当调节强激光场, 还可实现一个方向为光子带隙而另一个方向为透明窗口或者两个方向均为透明窗口的结构. 并且光子带隙和透明窗口的频宽和位置是可调谐的. 这种全光控制的二维的信号光禁闭和导通机制可用于实现全光开关和全光路由, 有利于复杂的全光通讯网络的开发.

English Abstract

参考文献 (23)

目录

    /

    返回文章
    返回