搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于超导量子比特的电磁感应透明研究进展

赵虎 李铁夫 刘建设 陈炜

引用本文:
Citation:

基于超导量子比特的电磁感应透明研究进展

赵虎, 李铁夫, 刘建设, 陈炜

Progress of electromagnetically induced transparency based on superconducting qubits

Zhao Hu, Li Tie-Fu, Liu Jian-She, Chen Wei
PDF
导出引用
  • 超导量子计算是目前被认为最有希望实现量子计算机的方案之一. 超导量子比特是超导量子计算的核心部件. 如何尽可能的增加超导量子比特的退相干时间, 大规模的集成超导量子比特已成为超导量子计算研究的主要方向. 超导量子比特作为宏观的人工原子, 有许多量子光学现象都能够在其中观测到. 利用超导量子比特实现电磁感应透明为研究超导量子比特的退相干机理提供了新手段, 为研究非线性光学、光存储、光的超慢速传输等量子光学效应开辟了新思路. 本文介绍了电磁感应透明的理论基础, 总结了目前针对超导量子比特的电磁感应透明研究进展, 对比了一般气体原子与超导量子比特的电磁感应透明区别, 并对超导量子比特实现电磁感应透明的潜在应用进行了总结和展望.
    Superconducting quantum computing is currently considered as one of the most promising options to realize a quantum computer. Superconducting qubit is the core component of the superconducting quantum computer. To increase the decoherence time of superconducting qubits as far as possible, the large-scale integration of superconducting qubits have become the main research topic of superconducting quantum computing. As a macroscopic artificial atom, lots of quantum optical phenomena can be observed in the superconducting qubits. Electromagnetically induced transparency based on superconducting qubits can provide a new method to study the superconducting qubit decoherence mechanism, and can also arouse new ideas to study the nonlinear optics, optical storage, ultra-slow optical transmission and quantum optics. In this paper, we introduce a theoretical basis of electromagnetically induced transparency, review the current research of electromagnetically induced transparency based on superconducting qubits, compare the difference between electromagnetically induced transparencies based on gas atoms and superconducting qubits, and evaluat the prospect applications for its development.
    • 基金项目: 国家重点基础研究发展计划(973计划)(批准号: 2006CB00000)和国家自然科学基金重点项目(批准号: 60836001)资助的课题.
    • Funds: Project supported by the National Basic Research Program of China (Grant No.2006CB00000), and the Key Program of the National Natural Science Foundation of China (Grant No. 60836001).
    [1]

    Harris S E, Field J E, Imamoglu A 1990 Phys. Rev. Lett. 64 1107

    [2]

    Boller K J, Imamoglu A, Harris S E 1991 Phys. Rev. Lett. 66 2593

    [3]

    Kasapi A, Maneesh J, Yin G Y, Harris S E 1995 Phys. Rev. Lett. 74 2447

    [4]

    Fleischhauer M, Imamoglu A, Marangos J P 2005 Rev. Mod. Phys. 77 633

    [5]

    Schmidt O, Wynands R, Hussein Z, Meschede D 1996 Phys. Rev. A 53 R27

    [6]

    Scully M O, Zhu S Y, Gavrielides A 1989 Phys. Rev. Lett. 62 2813

    [7]

    Imamoglu A, Field J E, Harris S E 1991 Phys. Rev. Lett. 66 1154

    [8]

    Tamarat P, Lounis B, Bernard J, Orrit M, Kummer S, Kettner R, Mais S, Basche T 1995 Phys. Rev. Lett. 75 1514

    [9]

    Kash M M, Sautenkov V A, Zibrov A S, Hollberg L, Welch G R, Lukin M D, Rostovtsev Y, Fry E S, Scully M O 1999 Phys. Rev. Lett. 82 5229

    [10]

    Budker D, Kimball D F, Rochester S M, Yashchuk V V Phys. Rev. Lett. 83 1767

    [11]

    Yao M, Zhu K D, Yuan X Z, Jiang Y W, Wu Z J 2006 Acta Phys. Sin. 55 1769 (in Cinese) [姚鸣, 朱卡的, 袁晓忠, 蒋逸文, 昊卓杰 2006 物理学报 55 1769]

    [12]

    Huang S G, Gu W Y, Ma H Q 2004 Acta Phys. Sin. 53 4211 (in Cinese) [黄善国, 顾畹仪, 马海强 2004 物理学报 53 4211]

    [13]

    Lene V H, Harris S E, Zachary D, Cyrus H B 1999 Nature 397 594

    [14]

    Chien L, Zachary D, Cyrus H B, Lene V H 2001 Nature 409 490

    [15]

    Phillips D F, Fleischhauer A, Mair A, Walsworth R L 2001 Phys. Rev. Lett. 86 783

    [16]

    Ham B S, Hemmer P R, Shahriar M S 1997 Opt. Commun. 144 227

    [17]

    Turukhin A V, Sudarshanam V S, Shahriar M S, Musser J A, Ham B S, Hemmer P R 2002 Phys. Rev. Lett. 88 023602

    [18]

    Serapiglia G B, Paspalakis E, Sirtori C, Vodopyanov K L, Phillips C C 2000 Phys. Rev. Lett. 84 1019

    [19]

    Phillips M, Wang H 2002 Phys. Rev. Lett. 89 186401

    [20]

    Fu K, Santori C, Stanley C, Holland M C, Yamamoto Y 2005 Phys. Rev. Lett. 95 187405

    [21]

    Wei C, Manson N B 1999 J. Opt. B 1 464

    [22]

    Hemmer P R, Turukhin A V, Shahriar M J 2001 Opt. Lett. 26 361

    [23]

    Cao W H, Yu H F, Tian Y, Yu H W, Ren Y F, Chen G H, Zhao S P 2009 Chin. Phys. 18 5044

    [24]

    Nakamura Y, Pashkin Y A, Tsai J S 1999 Nature 398 786

    [25]

    Chiorescu I, Nakamura Y, Harmans C J, Mooij J E 2003 Science 299 1869

    [26]

    Martinis J, Nam S, Aumentado J 2002 Phys. Rev. Lett. 89 117901

    [27]

    William R K, Zachary D, John S, Bhaskar M, Thomas A O, Jeffrey S K, David P P 2010 Phys. Rev. Lett. 104 163601

    [28]

    Abdumalikov A A, Astafiev J O, Zagoskin A M, Paskin Y A, Nakamura Y, Tsai J S 2010 Phys. Rev. Lett. 204 193601

    [29]

    DiVincenzo D P 2000 Prog. Phys. 48 771

    [30]

    Murali K V, Dutton Z, Oliver W D, Crankshaw D S, Orlando T P 2004 Phys. Rev. Lett. 93 087003

    [31]

    Zachary D, Murali K V, Oliver W D, Orlando T P 2006 Phys. Rev. B 73 104516

    [32]

    Scully M O, Zubairy M S 1997 Quantum Optics (1st edition) (UK: Cambridge University Press) p220-247

    [33]

    Gray H R, Whitley R M, Stroud C R 1978 Opt. Lett. 3 218

    [34]

    Autler S H, Townes C H 1955 Phys. Rev. 100 703

    [35]

    Yang Y, Nakada D, Lee J C, Singh B, Crankshaw D S, Orlando T P, Berggren K K 2004 Phys. Rev. Lett. 92 117904

    [36]

    Crankshaw D S, Segall K, Nakada D, Orlando T P, Levitov L S, LIoyd S, Valenzuela S O, Markovic N, Tinkham M, Berggren K K 2004 Phys. Rev. B 69 144518

    [37]

    Orlando T P, Mooij J E, Lin T, Caspar H, Levitov L S, Lloyd S, Mazo J J 1999 Phys. Rev. B 60 15398

    [38]

    Abdumalikov A A, Astafiev O, Zagoskin A M, Pashkin Y A, Nakamura Y, Tsai J S 2010 Phys. Rev. Lett. 104 193601

    [39]

    You J Q, Nori F 2011 Nature 474 589

    [40]

    Zhang B, Jiang Y, Wang G, Zhang L D, Wu J H, Gao J Y 2011 Chin. Phys. B 20 050304

    [41]

    Yuan X Z, Goan H S, Lin C H, Zhu K D, Jiang Y W 2008 New J. Phys. 10 095016

    [42]

    Ian H, Liu Y X, Nori F 2010 Phys. Rev. A 81 063823

    [43]

    Liu Y X, You J Q, Wei L F, Sun C P, Nori F 2005 Phys. Rev. Lett. 95 087001

  • [1]

    Harris S E, Field J E, Imamoglu A 1990 Phys. Rev. Lett. 64 1107

    [2]

    Boller K J, Imamoglu A, Harris S E 1991 Phys. Rev. Lett. 66 2593

    [3]

    Kasapi A, Maneesh J, Yin G Y, Harris S E 1995 Phys. Rev. Lett. 74 2447

    [4]

    Fleischhauer M, Imamoglu A, Marangos J P 2005 Rev. Mod. Phys. 77 633

    [5]

    Schmidt O, Wynands R, Hussein Z, Meschede D 1996 Phys. Rev. A 53 R27

    [6]

    Scully M O, Zhu S Y, Gavrielides A 1989 Phys. Rev. Lett. 62 2813

    [7]

    Imamoglu A, Field J E, Harris S E 1991 Phys. Rev. Lett. 66 1154

    [8]

    Tamarat P, Lounis B, Bernard J, Orrit M, Kummer S, Kettner R, Mais S, Basche T 1995 Phys. Rev. Lett. 75 1514

    [9]

    Kash M M, Sautenkov V A, Zibrov A S, Hollberg L, Welch G R, Lukin M D, Rostovtsev Y, Fry E S, Scully M O 1999 Phys. Rev. Lett. 82 5229

    [10]

    Budker D, Kimball D F, Rochester S M, Yashchuk V V Phys. Rev. Lett. 83 1767

    [11]

    Yao M, Zhu K D, Yuan X Z, Jiang Y W, Wu Z J 2006 Acta Phys. Sin. 55 1769 (in Cinese) [姚鸣, 朱卡的, 袁晓忠, 蒋逸文, 昊卓杰 2006 物理学报 55 1769]

    [12]

    Huang S G, Gu W Y, Ma H Q 2004 Acta Phys. Sin. 53 4211 (in Cinese) [黄善国, 顾畹仪, 马海强 2004 物理学报 53 4211]

    [13]

    Lene V H, Harris S E, Zachary D, Cyrus H B 1999 Nature 397 594

    [14]

    Chien L, Zachary D, Cyrus H B, Lene V H 2001 Nature 409 490

    [15]

    Phillips D F, Fleischhauer A, Mair A, Walsworth R L 2001 Phys. Rev. Lett. 86 783

    [16]

    Ham B S, Hemmer P R, Shahriar M S 1997 Opt. Commun. 144 227

    [17]

    Turukhin A V, Sudarshanam V S, Shahriar M S, Musser J A, Ham B S, Hemmer P R 2002 Phys. Rev. Lett. 88 023602

    [18]

    Serapiglia G B, Paspalakis E, Sirtori C, Vodopyanov K L, Phillips C C 2000 Phys. Rev. Lett. 84 1019

    [19]

    Phillips M, Wang H 2002 Phys. Rev. Lett. 89 186401

    [20]

    Fu K, Santori C, Stanley C, Holland M C, Yamamoto Y 2005 Phys. Rev. Lett. 95 187405

    [21]

    Wei C, Manson N B 1999 J. Opt. B 1 464

    [22]

    Hemmer P R, Turukhin A V, Shahriar M J 2001 Opt. Lett. 26 361

    [23]

    Cao W H, Yu H F, Tian Y, Yu H W, Ren Y F, Chen G H, Zhao S P 2009 Chin. Phys. 18 5044

    [24]

    Nakamura Y, Pashkin Y A, Tsai J S 1999 Nature 398 786

    [25]

    Chiorescu I, Nakamura Y, Harmans C J, Mooij J E 2003 Science 299 1869

    [26]

    Martinis J, Nam S, Aumentado J 2002 Phys. Rev. Lett. 89 117901

    [27]

    William R K, Zachary D, John S, Bhaskar M, Thomas A O, Jeffrey S K, David P P 2010 Phys. Rev. Lett. 104 163601

    [28]

    Abdumalikov A A, Astafiev J O, Zagoskin A M, Paskin Y A, Nakamura Y, Tsai J S 2010 Phys. Rev. Lett. 204 193601

    [29]

    DiVincenzo D P 2000 Prog. Phys. 48 771

    [30]

    Murali K V, Dutton Z, Oliver W D, Crankshaw D S, Orlando T P 2004 Phys. Rev. Lett. 93 087003

    [31]

    Zachary D, Murali K V, Oliver W D, Orlando T P 2006 Phys. Rev. B 73 104516

    [32]

    Scully M O, Zubairy M S 1997 Quantum Optics (1st edition) (UK: Cambridge University Press) p220-247

    [33]

    Gray H R, Whitley R M, Stroud C R 1978 Opt. Lett. 3 218

    [34]

    Autler S H, Townes C H 1955 Phys. Rev. 100 703

    [35]

    Yang Y, Nakada D, Lee J C, Singh B, Crankshaw D S, Orlando T P, Berggren K K 2004 Phys. Rev. Lett. 92 117904

    [36]

    Crankshaw D S, Segall K, Nakada D, Orlando T P, Levitov L S, LIoyd S, Valenzuela S O, Markovic N, Tinkham M, Berggren K K 2004 Phys. Rev. B 69 144518

    [37]

    Orlando T P, Mooij J E, Lin T, Caspar H, Levitov L S, Lloyd S, Mazo J J 1999 Phys. Rev. B 60 15398

    [38]

    Abdumalikov A A, Astafiev O, Zagoskin A M, Pashkin Y A, Nakamura Y, Tsai J S 2010 Phys. Rev. Lett. 104 193601

    [39]

    You J Q, Nori F 2011 Nature 474 589

    [40]

    Zhang B, Jiang Y, Wang G, Zhang L D, Wu J H, Gao J Y 2011 Chin. Phys. B 20 050304

    [41]

    Yuan X Z, Goan H S, Lin C H, Zhu K D, Jiang Y W 2008 New J. Phys. 10 095016

    [42]

    Ian H, Liu Y X, Nori F 2010 Phys. Rev. A 81 063823

    [43]

    Liu Y X, You J Q, Wei L F, Sun C P, Nori F 2005 Phys. Rev. Lett. 95 087001

  • [1] 徐达, 王逸璞, 李铁夫, 游建强. 微波驱动下超导量子比特与磁振子的相干耦合. 物理学报, 2022, 71(15): 150302. doi: 10.7498/aps.71.20220260
    [2] 裴丽娅, 郑世阳, 牛金艳. 基于调控原子相干的Λ-型电磁感应透明与吸收. 物理学报, 2022, 0(0): 0-0. doi: 10.7498/aps.71.20220950
    [3] 白旭芳, 陈磊, 额尔敦朝鲁. 电磁场中施主中心量子点内磁极化子态寿命与qubit退相干. 物理学报, 2020, 69(14): 147802. doi: 10.7498/aps.69.20200242
    [4] 严冬, 王彬彬, 白文杰, 刘兵, 杜秀国, 任春年. 里德伯电磁感应透明中的相位. 物理学报, 2019, 68(8): 084203. doi: 10.7498/aps.68.20181938
    [5] 闫婕, 魏苗苗, 邢燕霞. HgTe/CdTe量子阱中自旋拓扑态的退相干效应. 物理学报, 2019, 68(22): 227301. doi: 10.7498/aps.68.20191072
    [6] 赵士平, 刘玉玺, 郑东宁. 新型超导量子比特及量子物理问题的研究. 物理学报, 2018, 67(22): 228501. doi: 10.7498/aps.67.20180845
    [7] 杨智伟, 焦月春, 韩小萱, 赵建明, 贾锁堂. 弱射频场中Rydberg原子的电磁感应透明. 物理学报, 2017, 66(9): 093202. doi: 10.7498/aps.66.093202
    [8] 杨智伟, 焦月春, 韩小萱, 赵建明, 贾锁堂. 调制激光场中Rydberg原子的电磁感应透明. 物理学报, 2016, 65(10): 103201. doi: 10.7498/aps.65.103201
    [9] 陈秋成. 半导体三量子点电磁感应透明介质中的非线性法拉第偏转. 物理学报, 2016, 65(24): 247801. doi: 10.7498/aps.65.247801
    [10] 王梦, 白金海, 裴丽娅, 芦小刚, 高艳磊, 王如泉, 吴令安, 杨世平, 庞兆广, 傅盘铭, 左战春. 铷原子耦合光频率近共振时的电磁感应透明. 物理学报, 2015, 64(15): 154208. doi: 10.7498/aps.64.154208
    [11] 赵娜, 刘建设, 李铁夫, 陈炜. 超导量子比特的耦合研究进展. 物理学报, 2013, 62(1): 010301. doi: 10.7498/aps.62.010301
    [12] 赵文垒, 王建忠, 豆福全. 混沌微扰导致的量子退相干. 物理学报, 2012, 61(24): 240302. doi: 10.7498/aps.61.240302
    [13] 佘彦超, 张蔚曦, 王登龙. 电磁感应透明介质中非线性法拉第偏转. 物理学报, 2011, 60(6): 064205. doi: 10.7498/aps.60.064205
    [14] 佘彦超, 王登龙, 丁建文. 电磁感应透明介质中的弱光空间暗孤子环. 物理学报, 2009, 58(5): 3198-3202. doi: 10.7498/aps.58.3198
    [15] 刘春旭, 张继森, 刘俊业, 金光. Er3+:YAlO3晶体中Λ型四能级系统的量子相干左手性. 物理学报, 2009, 58(8): 5778-5783. doi: 10.7498/aps.58.5778
    [16] 庄 飞, 沈建其, 叶 军. 调控电磁感应透明气体折射率实现可控光子带隙结构. 物理学报, 2007, 56(1): 541-545. doi: 10.7498/aps.56.541
    [17] 姚 鸣, 朱卡的, 袁晓忠, 蒋逸文, 吴卓杰. 声子辅助的电磁感应透明和超慢光效应的研究. 物理学报, 2006, 55(4): 1769-1773. doi: 10.7498/aps.55.1769
    [18] 房元锋, 杜春光, 李师群. 光子晶体中四能级系统的量子相干效应. 物理学报, 2006, 55(9): 4652-4658. doi: 10.7498/aps.55.4652
    [19] 刘正东, 武 强. 被三个耦合场驱动的四能级原子的电磁感应透明. 物理学报, 2004, 53(9): 2970-2973. doi: 10.7498/aps.53.2970
    [20] 赵建明, 赵延霆, 黄涛, 肖连团, 贾锁堂. 双抽运光作用电磁感应透明的实验研究. 物理学报, 2004, 53(4): 1023-1026. doi: 10.7498/aps.53.1023
计量
  • 文章访问数:  5228
  • PDF下载量:  912
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-11-22
  • 修回日期:  2012-01-22
  • 刊出日期:  2012-08-05

基于超导量子比特的电磁感应透明研究进展

  • 1. 清华大学微电子学研究所, 清华信息科学与技术国家实验室, 北京 100084
    基金项目: 国家重点基础研究发展计划(973计划)(批准号: 2006CB00000)和国家自然科学基金重点项目(批准号: 60836001)资助的课题.

摘要: 超导量子计算是目前被认为最有希望实现量子计算机的方案之一. 超导量子比特是超导量子计算的核心部件. 如何尽可能的增加超导量子比特的退相干时间, 大规模的集成超导量子比特已成为超导量子计算研究的主要方向. 超导量子比特作为宏观的人工原子, 有许多量子光学现象都能够在其中观测到. 利用超导量子比特实现电磁感应透明为研究超导量子比特的退相干机理提供了新手段, 为研究非线性光学、光存储、光的超慢速传输等量子光学效应开辟了新思路. 本文介绍了电磁感应透明的理论基础, 总结了目前针对超导量子比特的电磁感应透明研究进展, 对比了一般气体原子与超导量子比特的电磁感应透明区别, 并对超导量子比特实现电磁感应透明的潜在应用进行了总结和展望.

English Abstract

参考文献 (43)

目录

    /

    返回文章
    返回