搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

混沌微扰导致的量子退相干

赵文垒 王建忠 豆福全

引用本文:
Citation:

混沌微扰导致的量子退相干

赵文垒, 王建忠, 豆福全

Decoherence by a classically small influence

Zhao Wen-Lei, Wang Jian-Zhong, Dou Fu-Quan
PDF
导出引用
  • 研究了无限深势阱内两个粒子的耦合导致的量子退相干和量子行为趋近于经典混沌运动的过程. 当一个粒子的质量减小时,它对另外一个粒子经典混沌扩散的影响逐渐减小. 强混沌机理使得轻粒子的作用类似于噪声, 从而有效得抑制另外一个粒子的量子相干性. 轻粒子的退相干效应随着有效普朗克常数的减小逐渐增强. 在这个过程中, 另外一个粒子的量子扩散从动力学局域化行为逐渐过渡到经典极限. 当有效普朗克常数足够小时, 它的量子扩散与经典混沌扩散相符合. 该粒子的线性墒随时间演化迅速趋近于饱和值, 并且饱和值随着有效普朗克常数减小以指数函数形式从零趋近于1.
    Via a system of two kicked particles that are coupled in an infinite square well, we numerically show that the interaction with a particle of very small mass is able to lead to a quantum-to-classical transition on condition that the corresponding classical dynamics is almost unaffected. With the decrease of the mass of one of the particles, its effect on the classical dynamics of the other one decreases. Such an effect is even negligible if the mass of the particle is small enough. The classically chaotic dynamics of this small particle is effective for promoting the decoherence of the heavy particle. Therefore its quantum behavior exhibits the transition from the dynamical localization to the classically chaotic diffusion with the decrease of the effective Planck's constant ħ. Under the perturbation from the small particle, the linear entropy is rapidly saturated as time passes by. With the decrease of ħ, the time-averaged linear entropy exponentially increases from zero to almost unity.
    • 基金项目: 国家高技术研究发展计划(863计划) (批准号: 2011AA120101)和国家重点基础研究发展计划(973计划) (批准号: 2011CB921503)资助的课题.
    • Funds: Project supported by the National High Technology Research and Development Program of China (Grant No. 2011AA120101), and the National Basic Research Program of China (Grant No. 2011CB921503).
    [1]

    Joos 2003 Decoherence and the Appearance of a Classical World in Quantum Theory (Springer, Berlin)

    [2]

    Zurek W H 2003 Rev. Mod. Phys. 75 715

    [3]

    Schlosshauer M 2004 Rev. Mod. Phys. 76 1267Schlosshauer M 2008 Found. Phys. 38 796

    [4]

    Pattanayak A K, Sundaram B, Greenbaum B D 2003 Phys. Rev. Lett. 90 014103

    [5]

    Feynman R P, Vernon F L 1963 Ann. Phys. (Leipzig) 24 118

    [6]

    Caldeira A O, Leggett A J 1983 Physica (Amsterdam) 121A 587

    [7]

    Wisniacki D, Toscano F 2009 Phys. Rev. E 79 025203(R)

    [8]

    Toscano F, De Matos Filho R L, Davidovich L 2005 Phys. Rev. A 71 010101(R)

    [9]

    Toscano F, Wisniacki D A 2006 Phys. Rev. E 74 056208

    [10]

    Rossini D, Benenti G, Casati G 2006 Phys. Rev. E 74 036209

    [11]

    Bandyopadhyay J N 2009 EPL 85 50006

    [12]

    Adachi S, Toda M, Ikeda K 1988 Phys. Rev. Lett. 61 659

    [13]

    Graham R, Kolovsky A R 1996 Phys. Lett. A 222 47

    [14]

    Park H K, Kim S W 2003 Phys. Rev. A 67 060102(R)

    [15]

    Petitjean C, Jacquod Ph 2006 Phys. Rev. Lett. 97 194103

    [16]

    Jie Q L, Hu B, Dong G 2006 arXiv:quantph/ 0601025

    [17]

    Liu J, Cheng W T, Cheng C G 2000 Commun. Theor. Phys. 33 15Liu J, Hu B, Li B 1998 Phys. Rev. Lett. 81 1749

    [18]

    Hu B, Li B, Liu J, Gu Y 1999 Phys. Rev. Lett. 82 4224

    [19]

    Izrailev F M 1990 Phys. Rep. 196 299Fishman S, Grempel D R, Prange R E 1982 Phys. Rev. Lett. 49 509

    [20]

    Shepelyansky D L 1986 Phys. Rev. Lett. 56 677Shepelyansky D L 1987 Physica D 28 103

    [21]

    Casati G, Chirikov B V, Izraelev F M, Ford J 1979 Stochastic Behavior in Classical and Quantum Hamiltonian Systems, edited by Casati G and Ford J, Lecture Notes in Physics (Vol. 93) (Springer, Berlin)

    [22]

    Lakshminarayan A 2001 Phys. Rev. E 64 036207Bandyopadhyay J N, Lakshminarayan A 2002 Phys. Rev. Lett. 89 060402

    [23]

    Cohen D, Heller E J 2000 Phys. Rev. Lett. 84 2841

    [24]

    Wisniacki D A, Cohen D 2002 Phys. Rev. E 66 046209

    [25]

    Wisniacki D A, Ares N, Vergini E G 2010 Phys. Rev. Lett. 104 254101

  • [1]

    Joos 2003 Decoherence and the Appearance of a Classical World in Quantum Theory (Springer, Berlin)

    [2]

    Zurek W H 2003 Rev. Mod. Phys. 75 715

    [3]

    Schlosshauer M 2004 Rev. Mod. Phys. 76 1267Schlosshauer M 2008 Found. Phys. 38 796

    [4]

    Pattanayak A K, Sundaram B, Greenbaum B D 2003 Phys. Rev. Lett. 90 014103

    [5]

    Feynman R P, Vernon F L 1963 Ann. Phys. (Leipzig) 24 118

    [6]

    Caldeira A O, Leggett A J 1983 Physica (Amsterdam) 121A 587

    [7]

    Wisniacki D, Toscano F 2009 Phys. Rev. E 79 025203(R)

    [8]

    Toscano F, De Matos Filho R L, Davidovich L 2005 Phys. Rev. A 71 010101(R)

    [9]

    Toscano F, Wisniacki D A 2006 Phys. Rev. E 74 056208

    [10]

    Rossini D, Benenti G, Casati G 2006 Phys. Rev. E 74 036209

    [11]

    Bandyopadhyay J N 2009 EPL 85 50006

    [12]

    Adachi S, Toda M, Ikeda K 1988 Phys. Rev. Lett. 61 659

    [13]

    Graham R, Kolovsky A R 1996 Phys. Lett. A 222 47

    [14]

    Park H K, Kim S W 2003 Phys. Rev. A 67 060102(R)

    [15]

    Petitjean C, Jacquod Ph 2006 Phys. Rev. Lett. 97 194103

    [16]

    Jie Q L, Hu B, Dong G 2006 arXiv:quantph/ 0601025

    [17]

    Liu J, Cheng W T, Cheng C G 2000 Commun. Theor. Phys. 33 15Liu J, Hu B, Li B 1998 Phys. Rev. Lett. 81 1749

    [18]

    Hu B, Li B, Liu J, Gu Y 1999 Phys. Rev. Lett. 82 4224

    [19]

    Izrailev F M 1990 Phys. Rep. 196 299Fishman S, Grempel D R, Prange R E 1982 Phys. Rev. Lett. 49 509

    [20]

    Shepelyansky D L 1986 Phys. Rev. Lett. 56 677Shepelyansky D L 1987 Physica D 28 103

    [21]

    Casati G, Chirikov B V, Izraelev F M, Ford J 1979 Stochastic Behavior in Classical and Quantum Hamiltonian Systems, edited by Casati G and Ford J, Lecture Notes in Physics (Vol. 93) (Springer, Berlin)

    [22]

    Lakshminarayan A 2001 Phys. Rev. E 64 036207Bandyopadhyay J N, Lakshminarayan A 2002 Phys. Rev. Lett. 89 060402

    [23]

    Cohen D, Heller E J 2000 Phys. Rev. Lett. 84 2841

    [24]

    Wisniacki D A, Cohen D 2002 Phys. Rev. E 66 046209

    [25]

    Wisniacki D A, Ares N, Vergini E G 2010 Phys. Rev. Lett. 104 254101

  • [1] 巩龙延, 杨慧, 赵生妹. 中间测量对受驱单量子比特统计复杂度的影响. 物理学报, 2020, 69(23): 230301. doi: 10.7498/aps.69.20200802
    [2] 白旭芳, 陈磊, 额尔敦朝鲁. 电磁场中施主中心量子点内磁极化子态寿命与qubit退相干. 物理学报, 2020, 69(14): 147802. doi: 10.7498/aps.69.20200242
    [3] 闫婕, 魏苗苗, 邢燕霞. HgTe/CdTe量子阱中自旋拓扑态的退相干效应. 物理学报, 2019, 68(22): 227301. doi: 10.7498/aps.68.20191072
    [4] 李路思, 李红蕙, 周黎黎, 杨炙盛, 艾清. 利用金刚石氮-空位色心精确测量弱磁场的探索. 物理学报, 2017, 66(23): 230601. doi: 10.7498/aps.66.230601
    [5] 刘妮, 梁九卿. 含时驱动的Dicke模型的混沌特性. 物理学报, 2017, 66(11): 110502. doi: 10.7498/aps.66.110502
    [6] 任益充, 范洪义. Ket-Bra纠缠态方法研究含时外场中与热库耦合Qubit的演化. 物理学报, 2016, 65(11): 110301. doi: 10.7498/aps.65.110301
    [7] 常锋, 王晓茜, 盖永杰, 严冬, 宋立军. 光与物质相互作用系统中的量子Fisher信息和自旋压缩. 物理学报, 2014, 63(17): 170302. doi: 10.7498/aps.63.170302
    [8] 党文佳, 曾晓东, 冯喆珺. 目标粗糙对合成孔径激光雷达回波的退相干效应. 物理学报, 2013, 62(2): 024204. doi: 10.7498/aps.62.024204
    [9] 张浩亮, 贾芳, 徐学翔, 郭琴, 陶向阳, 胡利云. 光子增减叠加相干态在热环境中的退相干. 物理学报, 2013, 62(1): 014208. doi: 10.7498/aps.62.014208
    [10] 赵虎, 李铁夫, 刘建设, 陈炜. 基于超导量子比特的电磁感应透明研究进展. 物理学报, 2012, 61(15): 154214. doi: 10.7498/aps.61.154214
    [11] 宋立军, 严冬, 盖永杰, 王玉波. Dicke模型的量子经典对应关系. 物理学报, 2011, 60(2): 020302. doi: 10.7498/aps.60.020302
    [12] 宋立军, 严冬, 刘烨. 玻色-爱因斯坦凝聚系统的量子Fisher信息与混沌. 物理学报, 2011, 60(12): 120302. doi: 10.7498/aps.60.120302
    [13] 宋立军, 严冬, 盖永杰, 王玉波. Dicke模型的量子混沌和单粒子相干动力学特性. 物理学报, 2010, 59(6): 3695-3699. doi: 10.7498/aps.59.3695
    [14] 曲春雷, 赵清. 周期驱动玻色-爱因斯坦凝聚系统的棘齿效应. 物理学报, 2009, 58(7): 4390-4395. doi: 10.7498/aps.58.4390
    [15] 谭长玲, 谭振兵, 马丽, 陈军, 杨帆, 屈凡明, 刘广同, 杨海方, 杨昌黎, 吕力. 石墨烯纳米带量子点中的量子混沌现象. 物理学报, 2009, 58(8): 5726-5729. doi: 10.7498/aps.58.5726
    [16] 叶 宾, 须文波, 顾斌杰. 量子Harper模型的量子计算鲁棒性与耗散退相干. 物理学报, 2008, 57(2): 689-695. doi: 10.7498/aps.57.689
    [17] 叶 宾, 谷瑞军, 须文波. 周期驱动的Harper模型的量子计算鲁棒性与量子混沌. 物理学报, 2007, 56(7): 3709-3718. doi: 10.7498/aps.56.3709
    [18] 谭 霞, 张成强, 夏云杰. 双模场与原子相互作用中的量子纠缠和内禀退相干. 物理学报, 2006, 55(5): 2263-2268. doi: 10.7498/aps.55.2263
    [19] 刘绍鼎, 程木田, 周慧君, 李耀义, 王取泉, 薛其坤. 双激子和浸润层泄漏以及俄歇俘获对量子点Rabi振荡衰减的影响. 物理学报, 2006, 55(5): 2122-2127. doi: 10.7498/aps.55.2122
    [20] 王 丽, 胡响明. 耦合场线宽:抑制电磁诱导吸收. 物理学报, 2004, 53(8): 2551-2555. doi: 10.7498/aps.53.2551
计量
  • 文章访问数:  6660
  • PDF下载量:  669
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-05-22
  • 修回日期:  2012-07-01
  • 刊出日期:  2012-12-05

混沌微扰导致的量子退相干

  • 1. 北京理工大学物理学院, 北京 100081;
  • 2. 北京应用物理与计算数学研究所, 计算物理国家重点实验室, 北京 100088;
  • 3. 北京大学应用物理与技术研究中心, 高能量密度物理数值模拟教育部重点实 验室, 北京 100084
    基金项目: 国家高技术研究发展计划(863计划) (批准号: 2011AA120101)和国家重点基础研究发展计划(973计划) (批准号: 2011CB921503)资助的课题.

摘要: 研究了无限深势阱内两个粒子的耦合导致的量子退相干和量子行为趋近于经典混沌运动的过程. 当一个粒子的质量减小时,它对另外一个粒子经典混沌扩散的影响逐渐减小. 强混沌机理使得轻粒子的作用类似于噪声, 从而有效得抑制另外一个粒子的量子相干性. 轻粒子的退相干效应随着有效普朗克常数的减小逐渐增强. 在这个过程中, 另外一个粒子的量子扩散从动力学局域化行为逐渐过渡到经典极限. 当有效普朗克常数足够小时, 它的量子扩散与经典混沌扩散相符合. 该粒子的线性墒随时间演化迅速趋近于饱和值, 并且饱和值随着有效普朗克常数减小以指数函数形式从零趋近于1.

English Abstract

参考文献 (25)

目录

    /

    返回文章
    返回