搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于冷里德堡原子电磁感应透明的微波电场测量

周飞 贾凤东 刘修彬 张剑 谢锋 钟志萍

引用本文:
Citation:

基于冷里德堡原子电磁感应透明的微波电场测量

周飞, 贾凤东, 刘修彬, 张剑, 谢锋, 钟志萍

Measurement of microwave electric field based on electromagnetically induced transparency by using cold Rydberg atoms

Zhou Fei, Jia Feng-Dong, Liu Xiu-Bin, Zhang Jian, Xie Feng, Zhong Zhi-Ping
PDF
HTML
导出引用
  • 在磁光阱中利用冷原子温度低, 多普勒展宽小的优势获得了窄线宽的里德堡电磁感应透明(EIT)谱峰, 结合Autler-Townes分裂效应(EIT-AT分裂)分别测量了多个频率的微波电场强度. 结果显示, EIT-AT分裂间距与微波电场强度呈很好的线性关系, EIT-AT分裂方法可测量的微波电场强度线性区的下限可达222$ {\text{μ}}{\rm{V}}/{\rm{c}}{\rm{m}} $, 这个下限比传统热原子蒸汽池中EIT-AT分裂线性区的下限5 $ {\rm{m}}{\rm{V}}/{\rm{c}}{\rm{m}} $提高了大约22倍, 这对极弱微波电场的绝对校准非常有帮助. 我们进一步利用EIT共振处探测光透过率的变化测量微波电场强度, 对应的最小测量值可以小于$ 1\;{\text{μ}}{\rm{V}}/{\rm{c}}{\rm{m}} $, 相应的灵敏度可达到1 μV·cm–1·Hz–1/2. 这些结果展示了冷原子样品在微波电场测量及其绝对校准方面的优势.
    Microwave electric fields are measured by using cold Rydberg atoms. We obtain spindle-shaped cold atomic clouds in a magneto-optical trap and then pump the cold atoms to quantum state 5S1/2, F = 2, mF = 2 by using an optical-pump laser. We obtain the Rydberg electromagnetic induction transparency (EIT) spectrum peak with narrow linewidth by the low temperature and small residual Doppler broadening. The results show that the typical EIT linewidth with 16 μK cold atoms is about 460 kHz which is 15 times narrower than that of 7 MHz obtained in the thermal vapor cell. The microwave electric field amplitude is measured by Autler-Townes splitting (EIT-AT splitting) in the cold atoms at frequencies of 9.2, 14.2 and 22.1 GHz, receptively. The results show that there is a good linear relationship between the EIT-AT splitting interval and the microwave electric field amplitude. The lower limit of the microwave electric field amplitude that can be measured in the linear region can reach as low as 222 μV/cm, which is about 22 times larger than the lower limit in the traditional thermal vapor cell about of 5 mV/cm. The improvement of the lower limit by EIT-AT splitting method is roughly proportional to the narrowing EIT line width by cold atom samples. This demonstrates that benefiting from the smaller residual Doppler effect and the narrower EIT linewidth in cold atoms, the cold atom system is more advantageous in the experimental measuring of the weak microwave electric field amplitude by using the EIT-AT splitting method. This is of great benefit to the absolute calibration of very weak microwave electric fields. Furthermore, the lower limit of the microwave electric field amplitude that can be measured is smaller than 1 μV/cm by using the change of transmittance of the prober laser at the EIT resonance, and the corresponding sensitivity can reach 1 μV·cm–1·Hz–1/2. These results demonstrate the advantages of cold atomic sample in microwave electric field measurement and its absolute calibration.
      通信作者: 贾凤东, fdjia@ucas.ac.cn ; 谢锋, fxie@tsinghua.edu.cn
    • 基金项目: 北京市自然科学基金 (批准号: 1212014)、中国科学院重点研究计划(批准号: XDPB08-3)和中央高校基本科研业务费专项资金和国家重点研发计划(批准号: 2017YFA0304900, 2017YFA0402300)资助的课题.
      Corresponding author: Jia Feng-Dong, fdjia@ucas.ac.cn ; Xie Feng, fxie@tsinghua.edu.cn
    • Funds: Project supported by the Natural Science Foundation of Beijing, China (Grant No. 1212014), the Key Research Program of the Chinese Academy of Sciences (Grant No. XDPB08-3), the Fundamental Research Funds for the Central Universities, and the National Key R&D Program of China (Grant Nos. 2017YFA0304900, 2017YFA0402300).
    [1]

    Song Z F, Liu H P, X C Liu, Zhang W F, Zou H Y, Zhang J, Qu J F 2019 Opt. Express 27 8848Google Scholar

    [2]

    Wu B H, Chuang Y W, Chen Y H, Yu J C, Chang M S, Yu I A 2017 Sci. Rep. 7 9726Google Scholar

    [3]

    Zhang L J, Jia Y, Jing M Y, Guo L P, Zhang H, Xiao L T, Jia S T 2019 Laser Phys. 29 035701Google Scholar

    [4]

    Zhou J, Zhang C, Liu Q, You J, Zheng X, Cheng X, Jiang T 2020 Nanophotonics 9 2797Google Scholar

    [5]

    Wang Q, Yu L, Gao H, Chu S, Peng W 2019 Opt. Express 27 35012Google Scholar

    [6]

    Wei Z, Li X, Zhong N, Tan X, Zhang X, Liu H, Meng H, Liang R 2017 Plasmonics 12 641Google Scholar

    [7]

    Bao S X, Zhang H, Zhou J, Zhang L J, Zhao J M, Xiao L T, Jia S T 2016 Phys. Rev. A 94 043822Google Scholar

    [8]

    Zhang L J, Bao S X, Zhang H, Raithel G, Zhao J M, Xiao L T, Jia S T 2018 Opt. Express 26 29931Google Scholar

    [9]

    Xue Y M, Hao L P, Jiao Y C, Han X X, Bai S Y, Zhao J M, Raithel G 2019 Phys. Rev. A 99 053426Google Scholar

    [10]

    Cheng H, Wang H M, Zhang S S, Xin P P, Luo J, Liu H P 2017 Opt. Express 25 33575Google Scholar

    [11]

    Sedlacek J A, Schwettmann A, Kübler H, Low T R, Shaffer J P 2012 Nat. Phys. 8 819Google Scholar

    [12]

    Pritchard J D, Maxwell D, Gauguet A, Weatherill K J, Jones M P A, Adams C S 2010 Phys. Rev. Lett. 105 193603Google Scholar

    [13]

    Fan H, Kumar S, Sedlacek J, Kübler H, Karimkashi S, Shaffer J P 2015 J. Phys. B 48 202001Google Scholar

    [14]

    Artusio-Glimpse A B, Simons M T, Holloway C L, 2021 Phys. Rev. A 103 023704Google Scholar

    [15]

    Jia F D, Liu X B, Mei J, Yu Y H, Zhang H Y, Lin Z Q, Dong H Y, Zhang J, Xie F, Zhong Z P 2021 Phys. Rev. A 103 063113Google Scholar

    [16]

    Jing M, Hu Y, Ma J, Zhang H, Zhang L, Xiao L, Jia S 2020 Nat. Phys. 16 911Google Scholar

    [17]

    Kominis K, Kornack T W, Allred J C, Romalis M V 2003 Nature (London) 422 596Google Scholar

    [18]

    黄巍, 梁振涛, 杜炎雄, 颜辉, 朱诗亮 2015 物理学报 64 160702Google Scholar

    Huang W, Liang Z T, Du Y X, Yan H, Zhu S L 2015 Acta Phys. Sin. 64 160702Google Scholar

    [19]

    樊佳蓓, 郝丽萍, 白景旭, 焦月春, 赵建明, 贾锁堂 2021 物理学报 70 063201Google Scholar

    Fan J B, Hao L P, Bai J X, Jiao Y C, Zhao J M, Jia S T 2021 Acta Phys. Sin. 70 063201Google Scholar

    [20]

    陈志文, 佘圳跃, 廖开宇, 黄巍, 颜辉, 朱诗亮 2021 物理学报 70 060702Google Scholar

    Chen Z W, She Z Y, Liao K Y, Huang W, Yan H, Zhu S L 2021 Acta Phys. Sin. 70 060702Google Scholar

    [21]

    樊佳蓓, 焦月春, 郝丽萍, 薛咏梅, 赵建明, 贾锁堂 2018 物理学报 67 093201Google Scholar

    Fan J B, Jiao Y C, Hao L P, Xue Y M, Zhao J M, Jia S T 2018 Acta Phys. Sin. 67 093201Google Scholar

    [22]

    焦月春, 赵建明, 贾锁堂 2018 物理学报 67 073201Google Scholar

    Jiao Y C, Zhao J M, Jia S T 2018 Acta Phys. Sin. 67 073201Google Scholar

    [23]

    刘强, 何军, 王军民 2021 物理学报 70 163202Google Scholar

    Liu Q, He J, Wang J M 2021 Acta Phys. Sin. 70 163202Google Scholar

    [24]

    裴栋梁, 何军, 王杰英, 王家超, 王军民 2017 物理学报 66 193701Google Scholar

    Pei D L, He J, Wang J Y, Wang J C, Wang J M 2017 Acta Phys. Sin. 66 193701Google Scholar

    [25]

    薛咏梅, 郝丽萍, 焦月春, 韩小萱, 白素英, 赵建明, 贾锁堂 2017 物理学报 66 213201Google Scholar

    Xue Y M, Hao L P, Jiao Y C, Han X X, Bai S Y, Zhao J M, Jia S T 2017 Acta Phys. Sin. 66 213201Google Scholar

    [26]

    薛咏梅, 郝丽萍, 焦月春, 韩小萱, 白素英, 赵建明, 贾锁堂 2017 物理学报 66 243201Google Scholar

    Yan L Y, Liu J S, Zhang H, Zhang L J, Xiao L T, Jia S T 2017 Acta Phys. Sin. 66 243201Google Scholar

    [27]

    Fan J B, He Y H, Jiao Y C, Hao L P, Zhao J M, Jia S T 2021 Chin. Phys. B 30 034207Google Scholar

    [28]

    Hao L P, Xue Y M, Fan J B, Bai J X, Jiao Y C, Zhao J M 2020 Chin. Phys. B 29 033201Google Scholar

    [29]

    Hao L P, Xue Y M, Fan J B, Jiao Y C, Zhao J M, Jia S T 2019 Chin. Phys. B 28 053202Google Scholar

    [30]

    Hu L, Hu X M, Hu Q P 2021 Chin. Phys. B 30 064211Google Scholar

    [31]

    Liu X B, Jia F D, Zhang H Y, Mei J, Liang W C, Zhou F, Yu Y H, Liu Y, Zhang J, Xie F, Zhong Z P 2022 Chin. Phys. B 31 090703Google Scholar

    [32]

    Wu X L, Liang X H, Tian Y Q, Yang F, Chen C, Liu Y C, Tey M K, You L 2021 Chin. Phys. B 30 020305Google Scholar

    [33]

    Zhai S Y, Wu J H 2021 Chin. Phys. B 30 074206Google Scholar

    [34]

    Zhang L J, Liu J S, Jia Y, Zhang H, Song Z F, Jia S T 2018 Chin. Phys. B 27 033201Google Scholar

    [35]

    Ahmed E, Lyyra A M 2007 Phys. Rev. A 76 053407Google Scholar

    [36]

    Holloway C L, Simons M T, Gordon J A, Dienstfrey A, Anderson D A, Raithel G 2017 J. Appl. Phys. 121 233106Google Scholar

    [37]

    Gordon J A, Holloway C L, Andrew S, Anderson D A, Miller S, Thaicharoen N, and Raithel G, 2014 Appl. Phys. Lett. 105 024104Google Scholar

    [38]

    Holloway C L, Gordon J A, Andrew S, David A A, Miller S A, Thaicharoen N, Raithel G 2014 Appl. Phys. Lett. 104 244102Google Scholar

    [39]

    Simons M T, Gordon J A, Holloway C L, Anderson D A, Miller S A, Raithel G 2016 Appl. Phys. Lett. 108 174101Google Scholar

    [40]

    Liu X B, Jia F D, Zhang H Y, Mei J, Yu Y H, Liang W C, Zhang J, Xie F, Zhong Z P 2021 AIP Adv. 11 085127Google Scholar

    [41]

    Simons M T, Artusio-Glimpse A B, Holloway C L, Imhof E, Jefferts S R, Wyllie R, Sawyer B C, Walker T G 2021 Phys. Rev. A 104 032824Google Scholar

    [42]

    Zhou F, Jia F D, Mei J, Liu X B, Zhang H Y, Yu Y H, Liang W C, Qin J W, Zhang J, Xie F, Zhong Z P 2022 J. Phys. B:At. Mol. Opt. Phys. 55 075501Google Scholar

    [43]

    Liao K Y, Tu H T, Yang S Z, Chen C J, Liu X H, Liang J, Zhang X D, Yan H, Zhu S L 2020 Phys. Rev. A 101 053432Google Scholar

    [44]

    Tanasittikosol M, Pritchard J D, Maxwell D, Gauguet A, Weatherill K J, Potvliege R M, Adams C S 2011 J. Phys. B 44 184020Google Scholar

    [45]

    Ji Z, Jiao Y, Xue Y, Hao L, Zhao J, Jia S 2021 Opt. Express 29 11406

    [46]

    Jia F D, Yu Y H, Liu X B, Zhang Xi, Zhang L, Wang F, Mei J, Zhang J, Xie F, Zhong Z P 2020 Appl. Opt. 59 2108Google Scholar

  • 图 1  冷原子里德堡EIT的实验装置示意图. 一对方形梯度磁场线圈和三对MOT冷却光/再泵浦光将原子囚禁成一个长条形的冷原子云. 一对亥姆霍兹线圈(Bias 线圈)提供一个与冷原子云长轴方向平行的均匀弱磁场, 作为量子化轴. 探测光和耦合光相对传输, 并调整到与冷原子云长轴重合, 实验中利用1/4玻片将探测光和耦合光的偏振分别调节为σ+σ .

    Fig. 1.  Scheme of the cold Atom Rydberg EIT-AT experiments. A pair of square gradient magnetic field coils and three pairs of MOT light are used to cool and trap a cigar-shaped atom cloud. The Bias coil is used to provide a uniform weak magnetic field parallel to the long axis of the elongated cold atom cloud as the quantization axis. In the experiment, a 1/4 wave plate is used to change the polarization of the probe laser and coupling laser into σ+ and σ.

    图 2  冷原子样品制备的时序图及EIT-AT的实验过程

    Fig. 2.  Time schedule of preparation of cold atomic sample and procedure of EIT-AT experiments.

    图 3  本文进行微波测量所用到的能级图 (a) 微波频率为14.2 GHz时的能级图 (b) 微波频率为9.2 GHz时的能级图 (c) 微波频率为22. 1 GHz时的能级图

    Fig. 3.  Atomic energy level schemes of microwave measurements: (a) Atomic energy level scheme for microwave frequency at 14.2 GHz; (b) atomic energy level scheme of for microwave frequency at 9.2 GHz; (c) atomic energy level scheme of for microwave frequency at 22.1 GHz.

    图 4  冷原子中典型的EIT-AT分裂光谱. 图中的黄色、紫色、绿色、蓝色、红色和黑色曲线自上而下分别代表微波电场强度为0.007, 0.558, 1.114, 2.222, 3.523和5.583 mV/cm 时的测量结果. 冷原子实验中探测光的强度和光斑直径为500 nW和100 μm, 耦合光强度和光斑直径为60 mW和300 μm.

    Fig. 4.  Examples EIT-AT splitting spectra obtained in cold atoms with different microwave intensities. The yellow, purple, green, blue, red and black curves in the figure represent the measurement results when the microwave electric field intensity is 0.007, 0.558, 1.114, 2.222, 3.523 and 5.583 mV /cm, respectively. In the cold atom experiment, the power and diameter of the probe laser are 500 nW and 100 μm, respectively, the power and diameter of the coupling laser are 60 mW and 300 μm, respectively.

    图 5  微波频率为14.2 GHz时, 冷原子和热原子EIT-AT分裂测量结果的比较. 图中蓝色方框代表冷原子测量结果, 红色圆圈代表热原子测量结果. 具体实验参数如下: 冷原子实验中探测光的强度和光斑直径分别为500 nW和100 μm, 耦合光强度和光斑直径分别为60 mW和300 μm. 热原子实验中探测光的强度和光斑直径分别为60 μW和800 μm, 耦合光强度和光斑直径分别为40 mW 和900 μm. 热原子实验数据来自[15]

    Fig. 5.  Comparison of EIT-AT splitting measurements results in cold and thermal atoms samples at microwave frequency of 14.2 GHz. The blue boxes represent the results in cold atomic sample and the red circles represent the results in hot atomic sample. The experimental parameters are as follows: In the cold atom experiment, the power and diameter of the probe laser are 500 nW and 100 μm, the power and diameter of the coupling laser are 60 mW and 300 μm; In the thermal atom experiment, the power and diameter of the probe laser are 60 μW and 800 μm, the power and diameter of the coupling laser are 40 mW and 900 μm. The data of the thermal atom experiment are taken from[15].

    图 6  9.2 GHz的微波测量结果 (a) 通过EIT-AT分裂测量的结果, 蓝色方框代表实验结果, 测量线性区的下限可以到 (300±30) μV/cm. 红色实线代表线性公式(1)式的计算结果; (b) 通过EIT透明峰的探测光透过率测量的结果, 蓝色方框代表实验结果, 红色实线代表四能级模型结合多普勒效应的数值计算结果[42]. 测量下限可以到(656±60 n) V/cm

    Fig. 6.  Microwave measurement results at 9.2 GHz by cold atoms: (a) Results measured by the EIT-AT splitting, the blue boxes represent the experimental results, the lower limit of the measurement linear region can achieve (300±30) μV/cm. The solid red line represents the calculation results of Eq. (1). (b) The measured results of the transmittance of the probe laser of the EIT peak. The blue boxes represent the experimental results and the red solid line represents the numerical calculation results of the four-level model combined with the Doppler effect [42]. The lower measurement limit can be achieved as (656±60) nV/cm.

    图 7  22.1 GHz的微波测量结果 (a) 通过EIT-AT分裂测量的结果, 蓝色方框代表实验结果, 线性区的下限可以测到 (312±20) μV/cm. 红色实线代表线性公式(1)的计算结果; (b) 通过探测光的透过率测量的结果, 蓝色方框代表实验结果, 红色实线代表四能级模型结合多普勒效应的数值计算结果, 测量的下限可以到 (297±21) nV/cm, 相应的灵敏度可达到1 μV·cm–1·Hz–1/2

    Fig. 7.  Microwave measurement results at 22.1 GHz by cold atoms: (a) Results measured by the EIT-AT splitting, the blue boxes represent the experimental results, the lower limit of the measurement linear region can achieve (312±20) μV/cm. The solid red line represents the calculation results of Eq. (1). (b) The measured results of the transmittance of the probe laser of the EIT transparency peak. The blue boxes represent the experimental results and the red solid line represents the numerical calculation results of the four-level model combined with the Doppler effect [42]. The lower measurement limit can be achieved (297±21) nV/cm. The corresponding sensitivity can reach 1 μV·cm–1·Hz–1/2.

  • [1]

    Song Z F, Liu H P, X C Liu, Zhang W F, Zou H Y, Zhang J, Qu J F 2019 Opt. Express 27 8848Google Scholar

    [2]

    Wu B H, Chuang Y W, Chen Y H, Yu J C, Chang M S, Yu I A 2017 Sci. Rep. 7 9726Google Scholar

    [3]

    Zhang L J, Jia Y, Jing M Y, Guo L P, Zhang H, Xiao L T, Jia S T 2019 Laser Phys. 29 035701Google Scholar

    [4]

    Zhou J, Zhang C, Liu Q, You J, Zheng X, Cheng X, Jiang T 2020 Nanophotonics 9 2797Google Scholar

    [5]

    Wang Q, Yu L, Gao H, Chu S, Peng W 2019 Opt. Express 27 35012Google Scholar

    [6]

    Wei Z, Li X, Zhong N, Tan X, Zhang X, Liu H, Meng H, Liang R 2017 Plasmonics 12 641Google Scholar

    [7]

    Bao S X, Zhang H, Zhou J, Zhang L J, Zhao J M, Xiao L T, Jia S T 2016 Phys. Rev. A 94 043822Google Scholar

    [8]

    Zhang L J, Bao S X, Zhang H, Raithel G, Zhao J M, Xiao L T, Jia S T 2018 Opt. Express 26 29931Google Scholar

    [9]

    Xue Y M, Hao L P, Jiao Y C, Han X X, Bai S Y, Zhao J M, Raithel G 2019 Phys. Rev. A 99 053426Google Scholar

    [10]

    Cheng H, Wang H M, Zhang S S, Xin P P, Luo J, Liu H P 2017 Opt. Express 25 33575Google Scholar

    [11]

    Sedlacek J A, Schwettmann A, Kübler H, Low T R, Shaffer J P 2012 Nat. Phys. 8 819Google Scholar

    [12]

    Pritchard J D, Maxwell D, Gauguet A, Weatherill K J, Jones M P A, Adams C S 2010 Phys. Rev. Lett. 105 193603Google Scholar

    [13]

    Fan H, Kumar S, Sedlacek J, Kübler H, Karimkashi S, Shaffer J P 2015 J. Phys. B 48 202001Google Scholar

    [14]

    Artusio-Glimpse A B, Simons M T, Holloway C L, 2021 Phys. Rev. A 103 023704Google Scholar

    [15]

    Jia F D, Liu X B, Mei J, Yu Y H, Zhang H Y, Lin Z Q, Dong H Y, Zhang J, Xie F, Zhong Z P 2021 Phys. Rev. A 103 063113Google Scholar

    [16]

    Jing M, Hu Y, Ma J, Zhang H, Zhang L, Xiao L, Jia S 2020 Nat. Phys. 16 911Google Scholar

    [17]

    Kominis K, Kornack T W, Allred J C, Romalis M V 2003 Nature (London) 422 596Google Scholar

    [18]

    黄巍, 梁振涛, 杜炎雄, 颜辉, 朱诗亮 2015 物理学报 64 160702Google Scholar

    Huang W, Liang Z T, Du Y X, Yan H, Zhu S L 2015 Acta Phys. Sin. 64 160702Google Scholar

    [19]

    樊佳蓓, 郝丽萍, 白景旭, 焦月春, 赵建明, 贾锁堂 2021 物理学报 70 063201Google Scholar

    Fan J B, Hao L P, Bai J X, Jiao Y C, Zhao J M, Jia S T 2021 Acta Phys. Sin. 70 063201Google Scholar

    [20]

    陈志文, 佘圳跃, 廖开宇, 黄巍, 颜辉, 朱诗亮 2021 物理学报 70 060702Google Scholar

    Chen Z W, She Z Y, Liao K Y, Huang W, Yan H, Zhu S L 2021 Acta Phys. Sin. 70 060702Google Scholar

    [21]

    樊佳蓓, 焦月春, 郝丽萍, 薛咏梅, 赵建明, 贾锁堂 2018 物理学报 67 093201Google Scholar

    Fan J B, Jiao Y C, Hao L P, Xue Y M, Zhao J M, Jia S T 2018 Acta Phys. Sin. 67 093201Google Scholar

    [22]

    焦月春, 赵建明, 贾锁堂 2018 物理学报 67 073201Google Scholar

    Jiao Y C, Zhao J M, Jia S T 2018 Acta Phys. Sin. 67 073201Google Scholar

    [23]

    刘强, 何军, 王军民 2021 物理学报 70 163202Google Scholar

    Liu Q, He J, Wang J M 2021 Acta Phys. Sin. 70 163202Google Scholar

    [24]

    裴栋梁, 何军, 王杰英, 王家超, 王军民 2017 物理学报 66 193701Google Scholar

    Pei D L, He J, Wang J Y, Wang J C, Wang J M 2017 Acta Phys. Sin. 66 193701Google Scholar

    [25]

    薛咏梅, 郝丽萍, 焦月春, 韩小萱, 白素英, 赵建明, 贾锁堂 2017 物理学报 66 213201Google Scholar

    Xue Y M, Hao L P, Jiao Y C, Han X X, Bai S Y, Zhao J M, Jia S T 2017 Acta Phys. Sin. 66 213201Google Scholar

    [26]

    薛咏梅, 郝丽萍, 焦月春, 韩小萱, 白素英, 赵建明, 贾锁堂 2017 物理学报 66 243201Google Scholar

    Yan L Y, Liu J S, Zhang H, Zhang L J, Xiao L T, Jia S T 2017 Acta Phys. Sin. 66 243201Google Scholar

    [27]

    Fan J B, He Y H, Jiao Y C, Hao L P, Zhao J M, Jia S T 2021 Chin. Phys. B 30 034207Google Scholar

    [28]

    Hao L P, Xue Y M, Fan J B, Bai J X, Jiao Y C, Zhao J M 2020 Chin. Phys. B 29 033201Google Scholar

    [29]

    Hao L P, Xue Y M, Fan J B, Jiao Y C, Zhao J M, Jia S T 2019 Chin. Phys. B 28 053202Google Scholar

    [30]

    Hu L, Hu X M, Hu Q P 2021 Chin. Phys. B 30 064211Google Scholar

    [31]

    Liu X B, Jia F D, Zhang H Y, Mei J, Liang W C, Zhou F, Yu Y H, Liu Y, Zhang J, Xie F, Zhong Z P 2022 Chin. Phys. B 31 090703Google Scholar

    [32]

    Wu X L, Liang X H, Tian Y Q, Yang F, Chen C, Liu Y C, Tey M K, You L 2021 Chin. Phys. B 30 020305Google Scholar

    [33]

    Zhai S Y, Wu J H 2021 Chin. Phys. B 30 074206Google Scholar

    [34]

    Zhang L J, Liu J S, Jia Y, Zhang H, Song Z F, Jia S T 2018 Chin. Phys. B 27 033201Google Scholar

    [35]

    Ahmed E, Lyyra A M 2007 Phys. Rev. A 76 053407Google Scholar

    [36]

    Holloway C L, Simons M T, Gordon J A, Dienstfrey A, Anderson D A, Raithel G 2017 J. Appl. Phys. 121 233106Google Scholar

    [37]

    Gordon J A, Holloway C L, Andrew S, Anderson D A, Miller S, Thaicharoen N, and Raithel G, 2014 Appl. Phys. Lett. 105 024104Google Scholar

    [38]

    Holloway C L, Gordon J A, Andrew S, David A A, Miller S A, Thaicharoen N, Raithel G 2014 Appl. Phys. Lett. 104 244102Google Scholar

    [39]

    Simons M T, Gordon J A, Holloway C L, Anderson D A, Miller S A, Raithel G 2016 Appl. Phys. Lett. 108 174101Google Scholar

    [40]

    Liu X B, Jia F D, Zhang H Y, Mei J, Yu Y H, Liang W C, Zhang J, Xie F, Zhong Z P 2021 AIP Adv. 11 085127Google Scholar

    [41]

    Simons M T, Artusio-Glimpse A B, Holloway C L, Imhof E, Jefferts S R, Wyllie R, Sawyer B C, Walker T G 2021 Phys. Rev. A 104 032824Google Scholar

    [42]

    Zhou F, Jia F D, Mei J, Liu X B, Zhang H Y, Yu Y H, Liang W C, Qin J W, Zhang J, Xie F, Zhong Z P 2022 J. Phys. B:At. Mol. Opt. Phys. 55 075501Google Scholar

    [43]

    Liao K Y, Tu H T, Yang S Z, Chen C J, Liu X H, Liang J, Zhang X D, Yan H, Zhu S L 2020 Phys. Rev. A 101 053432Google Scholar

    [44]

    Tanasittikosol M, Pritchard J D, Maxwell D, Gauguet A, Weatherill K J, Potvliege R M, Adams C S 2011 J. Phys. B 44 184020Google Scholar

    [45]

    Ji Z, Jiao Y, Xue Y, Hao L, Zhao J, Jia S 2021 Opt. Express 29 11406

    [46]

    Jia F D, Yu Y H, Liu X B, Zhang Xi, Zhang L, Wang F, Mei J, Zhang J, Xie F, Zhong Z P 2020 Appl. Opt. 59 2108Google Scholar

  • [1] 夏刚, 张亚鹏, 汤婧雯, 李春燕, 吴春旺, 张杰, 周艳丽. 电磁感应透明条件下里德伯原子系统的亚稳动力学. 物理学报, 2024, 73(10): 104203. doi: 10.7498/aps.73.20240233
    [2] 吴逢川, 安强, 姚佳伟, 付云起. 里德堡原子超外差接收链路中的内禀增益系数研究. 物理学报, 2023, 72(4): 047401. doi: 10.7498/aps.72.20222091
    [3] 白文杰, 严冬, 韩海燕, 华硕, 谷开慧. 三体里德堡超级原子的关联动力学研究. 物理学报, 2022, 71(1): 014202. doi: 10.7498/aps.71.20211284
    [4] 裴丽娅, 郑世阳, 牛金艳. 基于调控原子相干的Λ-型电磁感应透明与吸收. 物理学报, 2022, 71(22): 224201. doi: 10.7498/aps.71.20220950
    [5] 严冬, 王彬彬, 白文杰, 刘兵, 杜秀国, 任春年. 里德伯电磁感应透明中的相位. 物理学报, 2019, 68(8): 084203. doi: 10.7498/aps.68.20181938
    [6] 杨智伟, 焦月春, 韩小萱, 赵建明, 贾锁堂. 弱射频场中Rydberg原子的电磁感应透明. 物理学报, 2017, 66(9): 093202. doi: 10.7498/aps.66.093202
    [7] 陈秋成. 半导体三量子点电磁感应透明介质中的非线性法拉第偏转. 物理学报, 2016, 65(24): 247801. doi: 10.7498/aps.65.247801
    [8] 杨智伟, 焦月春, 韩小萱, 赵建明, 贾锁堂. 调制激光场中Rydberg原子的电磁感应透明. 物理学报, 2016, 65(10): 103201. doi: 10.7498/aps.65.103201
    [9] 白金海, 芦小刚, 缪兴绪, 裴丽娅, 王梦, 高艳磊, 王如泉, 吴令安, 傅盘铭, 左战春. Rb87冷原子电磁感应透明吸收曲线不对称性的分析. 物理学报, 2015, 64(3): 034206. doi: 10.7498/aps.64.034206
    [10] 王梦, 白金海, 裴丽娅, 芦小刚, 高艳磊, 王如泉, 吴令安, 杨世平, 庞兆广, 傅盘铭, 左战春. 铷原子耦合光频率近共振时的电磁感应透明. 物理学报, 2015, 64(15): 154208. doi: 10.7498/aps.64.154208
    [11] 黄巍, 梁振涛, 杜炎雄, 颜辉, 朱诗亮. 基于里德堡原子的电场测量. 物理学报, 2015, 64(16): 160702. doi: 10.7498/aps.64.160702
    [12] 赵虎, 李铁夫, 刘建设, 陈炜. 基于超导量子比特的电磁感应透明研究进展. 物理学报, 2012, 61(15): 154214. doi: 10.7498/aps.61.154214
    [13] 邱田会, 杨国建. 微波射频场调制下Λ型三能级原子系统的电磁感应光栅. 物理学报, 2012, 61(1): 014205. doi: 10.7498/aps.61.014205
    [14] 佘彦超, 张蔚曦, 王登龙. 电磁感应透明介质中非线性法拉第偏转. 物理学报, 2011, 60(6): 064205. doi: 10.7498/aps.60.064205
    [15] 佘彦超, 王登龙, 丁建文. 电磁感应透明介质中的弱光空间暗孤子环. 物理学报, 2009, 58(5): 3198-3202. doi: 10.7498/aps.58.3198
    [16] 庄 飞, 沈建其, 叶 军. 调控电磁感应透明气体折射率实现可控光子带隙结构. 物理学报, 2007, 56(1): 541-545. doi: 10.7498/aps.56.541
    [17] 姚 鸣, 朱卡的, 袁晓忠, 蒋逸文, 吴卓杰. 声子辅助的电磁感应透明和超慢光效应的研究. 物理学报, 2006, 55(4): 1769-1773. doi: 10.7498/aps.55.1769
    [18] 赵建明, 赵延霆, 黄涛, 肖连团, 贾锁堂. 双抽运光作用电磁感应透明的实验研究. 物理学报, 2004, 53(4): 1023-1026. doi: 10.7498/aps.53.1023
    [19] 刘正东, 武 强. 被三个耦合场驱动的四能级原子的电磁感应透明. 物理学报, 2004, 53(9): 2970-2973. doi: 10.7498/aps.53.2970
    [20] 李永放, 孙建锋. 梯型四能级系统中超窄电磁感应透明与无反转增益. 物理学报, 2003, 52(3): 547-555. doi: 10.7498/aps.52.547
计量
  • 文章访问数:  5159
  • PDF下载量:  211
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-28
  • 修回日期:  2022-11-18
  • 上网日期:  2022-12-09
  • 刊出日期:  2023-02-20

/

返回文章
返回