-
基于现有实验, 本文构建一束弱线性偏振光在平行于传播方向的磁场作用下分裂为两正交偏振光, 当其与三角形三量子点相互作用后形成五能级M型三量子点电磁感应透明介质模型. 随后, 利用多重尺度结合傅里叶积分方法研究体系中的光孤子传播及两孤子间的碰撞特性, 结果发现孤子间的碰撞方式是由其初始相位差所决定. 当孤子间初相位差为0时, 孤子间的碰撞为周期性弹性碰撞; 当初相位差为
$\text{π} /4$ ,$ \text{π} /2$ 和$ \text{π} $ 时, 孤子间会产生排斥作用力而使两孤子分离. 有趣的是, 孤子间的碰撞特征受量子点间的隧穿强度的调控. 当点间隧穿强度的增加, 初相位差为0的孤子间的碰撞周期减小; 而初相位差为$ \text{π} /4$ ,$ \text{π} /2$ 和$ \text{π} $ 时孤子间的排斥力增大. 这为实验上如何操控半导体量子点器件中的孤子动力学提供了一定的理论依据.Experimentally, the triple-quantum-dots system can be produced on a GaAs $ \left[ {001} \right]$ substrate by molecular beam epitaxy or in-situ atomic layer precise etching, thus enabling a triangle triple quantum dot (QD) aligned along the$ \left[ {1\bar 10} \right]$ direction. According to this, we first propose a five-level M-type triple QD electromagnetically induced transparency (EIT) model which consists of a triple QD molecule interacting with a weakly linearly polarized probe field with two orthogonal polarization components under the action of a magnetic field parallel to the light propagation direction. Subsequently, by using the multiple-scale method combined with the Fourier integration method, the propagation characteristics of the optical solitons and the collision characteristics of two solitons in the system are studied. It is shown that the optical solitons can form and propagate stably in this system under the action of quantum inter-dot tunneling coupling whose formation mechanism is different from the soliton-forming mechanism in ultra-cold atomic, single QD, and double QD EIT system. This is because the necessary condition for forming a soliton is to use a strong light beam to modulate a weak light beam, whether it is in an ultra-cold atom system, or a single quantum dot EIT medium or a double quantum dot EIT medium. In a word, the formation of soliton in previous EIT systems needs an additional strong controlling field, while the five-level M-type triple QD EIT system is dependent on the inter-dot tunneling.Since the solitons can propagate stably, the collision properties of the solitons may be studied in this system. Finally, by applying Fourier integration method, it is found that the collision behaviors of two solitons are determined by their initial phase difference. When their initial phase difference is 0, the collision behavior between the solitons is periodic elastic collision. While their initial phase difference is separately $ {\rm{\pi }}/4$ ,$ \text{π}/2$ , and$ \text{π}$ , the collision behaviors exhibit separation phenomenon due to repulsive effect. Interestingly, the collision characteristics of two solitons are controlled by the inter-dot tunneling strength. With the increase of inter-dot tunneling strength, the collision period of two solitons with the initial phase difference of 0 decreases, and the repulsive force of two solitons with the initial phase difference being separately π/4, π/2 and π increases. This provides some theoretical basis for experimentally controlling the soliton dynamical properties in semiconductor quantum dot devices.-
Keywords:
- inter-dot tunneling coupling /
- solition collision behaviors /
- phase difference /
- electromagnetically induced transparency medium
[1] Scott A C, Chu F Y F, McLaughlin D W 1973 P IEEE 61 1443Google Scholar
[2] Dudley J M, Taylor J R 2009 Nat. Photonics 3 85Google Scholar
[3] Song W W, Li Q Y, Li Z D, Fu G S 2010 Chin. Phys. B 19 070503Google Scholar
[4] Wang Q, Wen L, Li Z D 2012 Chin. Phys. B 21 080501Google Scholar
[5] Li Z D, Wang Y Y, He P B 2019 Chin. Phys. B 28 010504Google Scholar
[6] Mollenauer L F, Stolen R H, Gordon J P 1980 Phys. Rev. Lett. 45 1095Google Scholar
[7] Haus H A, Wong W S 1996 Rev. Mod. Phys. 68 423Google Scholar
[8] Essiambre R J, Agrawal G P 1996 Opt. Lett. 21 116Google Scholar
[9] Xie C, Karlsson M, Andrekson P A, Sunnerud H, Li J 2002 IEEE J. Sel. Top. Quantum Electron. 8 575Google Scholar
[10] Badraoui N, Berceli T, Singh S 2017 19th International Conference on Transparent Optical Networks (ICTON) Girona, Spain, July 2–6, 2017 p1
[11] Li Z D, He P B, Li L, Liang J Q, Liu W M 2005 Phys. Rev. A 71 053611Google Scholar
[12] Li L, Li Z D, Malomed B A, Mihalache D, Liu W M 2005 Phys. Rev. A 72 033611Google Scholar
[13] Zhang X F, Yang Q, Zhang J F, Chen X Z, Liu W M 2008 Phys. Rev. A 77 023613Google Scholar
[14] Zhang X F, Zhang P, He W Q, Lin X X 2011 Chin. Phys. B 20 020307Google Scholar
[15] Yao S F, Li Q Y, Li Z D 2011 Chin. Phys. B 20 110307Google Scholar
[16] Harris S E, Field J E, Imamoğlu A 1990 Phys. Rev. Lett. 64 1107Google Scholar
[17] Harris S E 1997 Phys. Today 50 36Google Scholar
[18] Kang H, Zhu Y 2003 Phys. Rev. Lett. 91 093601Google Scholar
[19] Kasapi A, Jain M, Yin G Y 1995 Phys. Rev. Lett. 74 2447Google Scholar
[20] Hau L V, Harris S E, Zachary D, Cyrus H B 1999 Nature 397 594Google Scholar
[21] 唐宏, 王登龙, 张蔚曦, 丁建文, 肖思国 2017 物理学报 66 034202Google Scholar
Tang H, Wang D L, Zhang W X, Ding J W, Xiao S G 2017 Acta. Phys. Sin. 66 034202Google Scholar
[22] Wu Y, Deng L 2004 Opt. Lett. 29 2064Google Scholar
[23] Wu Y, Deng L 2004 Phys. Rev. Lett. 93 143904Google Scholar
[24] Huang G X, Hang C, Deng L 2008 Phys. Rev. A 77 011803Google Scholar
[25] Kumar V R, Radha R, Wadati M 2008 Phys. Rev. A 78 041803Google Scholar
[26] Chen Y, Bai Z, Huang G X 2014 Phys. Rev. A 89 023835Google Scholar
[27] Gammon D, Snow E S, Shanabrook B V, Katzer D S, Park D, 1996 Science 273 87Google Scholar
[28] Borr P, Langbein W, Schneider S, Woggon U, Sellin R L, Ouyang D, Bimberg D 2001 Phys. Rev. Lett. 87 157401Google Scholar
[29] Guo R H, Shi H Y, Sun X D 2005 Photonics Asia 2004; Optoelectronics, Microelectronics, and Nanotech Beijing, China, November 8–11, 2004 p313
[30] Borges H S, Sanz L, Villas-Bôas J M, Alcalde A M 2010 Phys. Rev. B 81 075322Google Scholar
[31] Högele A, Seidl S, Kroner M, Karrai K, Warburton R J, Gerardot B D, Petroff P M 2004 Phys. Rev. Lett. 93 217401Google Scholar
[32] Yang W X, Chen A X, Lee R K, Wu Y 2011 Phys. Rev. A 84 013835Google Scholar
[33] Kuo D M T, Guo G Y, Chang Y C 2001 Appl. Phys. Lett. 79 3851Google Scholar
[34] Kouklin N, Menon L, Bandyopadhyay S 2002 Appl. Phys. Lett. 80 1649Google Scholar
[35] Borges H S, Sanz L, Villas-Bôas J M, Diniz Neto O O, Alcalde A M 2012 Phys. Rev. B 85 115425Google Scholar
[36] Yuan C H, Zhu K D 2006 Appl. Phys. Lett. 89 052115Google Scholar
[37] She Y C, Zheng X J, Wang D L, Zhang W X 2013 Opt. Express 21 17392Google Scholar
[38] Tian S C, Wan R G, Tong C Z, Fu X H, Cao J S, Ning Y Q 2015 Laser Phys. Lett. 12 125203Google Scholar
[39] Wang J Y, Huang S, Huang G Y, Pan D, Zhao J, Xu H Q 2017 Nano Lett. 17 4158Google Scholar
[40] Grove-Rasmussen K, Jørgensen H I, Hayashi T, Lindelof P E, Fujisawa T 2008 Nano Lett. 8 1055Google Scholar
[41] Saraga D S, Loss D 2003 Phys. Rev. Lett. 90 166803Google Scholar
[42] Fafard S, Spanner M, McCaffrey J P, Wasilewski Z R 2000 Appl. Phys. Lett. 76 2268Google Scholar
[43] Beirne G J, Hermannstädter C, Wang L, Rastelli A, Schmidt O G, Michler P 2006 Phys. Rev. Lett. 96 137401Google Scholar
[44] Krause B, Metzger T H, Rastelli A, Songmuang R, Kiravittaya S, Schmidt O G 2005 Phys. Rev. B 72 085339Google Scholar
[45] Hang C, Huang G X 2008 Phys. Rev. A 77 033830Google Scholar
[46] 佘艳超, 张蔚曦, 王登龙 2011 物理学报 60 064205Google Scholar
She Y C, Zhang W X, Wang D L 2011 Acta. Phys. Sin. 60 064205Google Scholar
[47] Si L G, Yang W X, Lü X Y, Li J H, Yang X X 2009 Eur. Phys. J. D 55 161Google Scholar
-
图 1 五能级M型三量子点电磁感应透明介质能级结构图.
$ \left| 0 \right\rangle $ 表示基态,$ \left| 1 \right\rangle $ 和$ \left| 2 \right\rangle $ 表示直接激子态,$ \left| 3 \right\rangle $ 和$ \left| 4 \right\rangle $ 是间接激子态,$ T{e_1}$ 和$ T{e_2}$ 分别表示中间量子点与左、右量子点间的点间隧穿耦合强度Fig. 1. Energy level structure diagram of a five-level M-type three-quantum-dot electromagnetically induced transparent medium. Here
$ \left| 0 \right\rangle $ is the ground state,$ \left| 1 \right\rangle $ and$ \left| 2 \right\rangle $ are the direct exciton state,$ \left| 3 \right\rangle $ and$ \left| 4 \right\rangle $ represent the indirect exciton state, and$ T{e_1}$ and$ T{e_2}$ represent the strength of tunneling coupling between the intermediate quantum dot and the left and right quantum dot, respectively.图 3 不同时刻线性探测光的两偏振分量(a)
$ {\left| {{\varOmega _{{\rm{p}}1}}/{U_0}} \right|^2}$ 和(b)$ {\left| {{\varOmega _{{\rm{p}}2}}/{U_0}} \right|^2}$ 的传播情况, 图中所用参数为$ {C_1} = 1$ ,$ T{e_1} = T{e_2} = 2.16\;{\rm{meV}}$ , 其他的参数已在文中给出Fig. 3. The propagation behaviors of two polarized components (a)
$ {\left| {{\varOmega _{{\rm{p}}1}}/{U_0}} \right|^2}$ and (b)$ {\left| {{\varOmega _{{\rm{p}}2}}/{U_0}} \right|^2}$ of the linear probe field under the different time. The parameters used are$ {C_1} = 1$ ,$ T{e_1} = T{e_2} = 2.16\;{\rm{meV}}$ . Other parameters used are given in the text.图 4 当两点间隧穿强度均为2.16 meV时, 孤子对在不同初相位差时的碰撞行为 (a)
$ {\theta _1} = 0$ ; (b)$ {\theta _1} = {{\text{π}} / 4}$ ; (c)$ {\theta _1} = {{\text{π}} / 2}$ ; (d)$ {\theta _1} = {{\text{π}} }$ Fig. 4. The collision behaviors of two solitons with the different initial phase differences under the condition that both tunneling strengths are 2.16 meV: (a)
$ {\theta _1} = 0$ ; (b)$ {\theta _1} = {{\text{π}} / 4}$ ; (c)$ {\theta _1} = {{\text{π}} / 2}$ ; (d)$ {\theta _1} = {{\text{π}} }$ .图 6 当隧穿强度为4.32 meV时, 孤子对在不同初相位差时的碰撞行为 (a)
$ {\theta _1} = 0$ ; (b)$ {\theta _1} = {{\text{π}} / 4}$ ; (c)$ {\theta _1} = {{\text{π}} / 2}$ ; (d)$ {\theta _1} = {{\text{π}} }$ Fig. 6. When the tunneling strength is 4.32 meV, the collision behaviors of two solitons with the different initial phase: (a)
$ {\theta _1} = 0$ ; (b)$ {\theta _1} = {{\text{π}} / 4}$ ; (c)$ {\theta _1} = {{\text{π}} / 2}$ ; (d)$ {\theta _1} = {{\text{π}} }$ . -
[1] Scott A C, Chu F Y F, McLaughlin D W 1973 P IEEE 61 1443Google Scholar
[2] Dudley J M, Taylor J R 2009 Nat. Photonics 3 85Google Scholar
[3] Song W W, Li Q Y, Li Z D, Fu G S 2010 Chin. Phys. B 19 070503Google Scholar
[4] Wang Q, Wen L, Li Z D 2012 Chin. Phys. B 21 080501Google Scholar
[5] Li Z D, Wang Y Y, He P B 2019 Chin. Phys. B 28 010504Google Scholar
[6] Mollenauer L F, Stolen R H, Gordon J P 1980 Phys. Rev. Lett. 45 1095Google Scholar
[7] Haus H A, Wong W S 1996 Rev. Mod. Phys. 68 423Google Scholar
[8] Essiambre R J, Agrawal G P 1996 Opt. Lett. 21 116Google Scholar
[9] Xie C, Karlsson M, Andrekson P A, Sunnerud H, Li J 2002 IEEE J. Sel. Top. Quantum Electron. 8 575Google Scholar
[10] Badraoui N, Berceli T, Singh S 2017 19th International Conference on Transparent Optical Networks (ICTON) Girona, Spain, July 2–6, 2017 p1
[11] Li Z D, He P B, Li L, Liang J Q, Liu W M 2005 Phys. Rev. A 71 053611Google Scholar
[12] Li L, Li Z D, Malomed B A, Mihalache D, Liu W M 2005 Phys. Rev. A 72 033611Google Scholar
[13] Zhang X F, Yang Q, Zhang J F, Chen X Z, Liu W M 2008 Phys. Rev. A 77 023613Google Scholar
[14] Zhang X F, Zhang P, He W Q, Lin X X 2011 Chin. Phys. B 20 020307Google Scholar
[15] Yao S F, Li Q Y, Li Z D 2011 Chin. Phys. B 20 110307Google Scholar
[16] Harris S E, Field J E, Imamoğlu A 1990 Phys. Rev. Lett. 64 1107Google Scholar
[17] Harris S E 1997 Phys. Today 50 36Google Scholar
[18] Kang H, Zhu Y 2003 Phys. Rev. Lett. 91 093601Google Scholar
[19] Kasapi A, Jain M, Yin G Y 1995 Phys. Rev. Lett. 74 2447Google Scholar
[20] Hau L V, Harris S E, Zachary D, Cyrus H B 1999 Nature 397 594Google Scholar
[21] 唐宏, 王登龙, 张蔚曦, 丁建文, 肖思国 2017 物理学报 66 034202Google Scholar
Tang H, Wang D L, Zhang W X, Ding J W, Xiao S G 2017 Acta. Phys. Sin. 66 034202Google Scholar
[22] Wu Y, Deng L 2004 Opt. Lett. 29 2064Google Scholar
[23] Wu Y, Deng L 2004 Phys. Rev. Lett. 93 143904Google Scholar
[24] Huang G X, Hang C, Deng L 2008 Phys. Rev. A 77 011803Google Scholar
[25] Kumar V R, Radha R, Wadati M 2008 Phys. Rev. A 78 041803Google Scholar
[26] Chen Y, Bai Z, Huang G X 2014 Phys. Rev. A 89 023835Google Scholar
[27] Gammon D, Snow E S, Shanabrook B V, Katzer D S, Park D, 1996 Science 273 87Google Scholar
[28] Borr P, Langbein W, Schneider S, Woggon U, Sellin R L, Ouyang D, Bimberg D 2001 Phys. Rev. Lett. 87 157401Google Scholar
[29] Guo R H, Shi H Y, Sun X D 2005 Photonics Asia 2004; Optoelectronics, Microelectronics, and Nanotech Beijing, China, November 8–11, 2004 p313
[30] Borges H S, Sanz L, Villas-Bôas J M, Alcalde A M 2010 Phys. Rev. B 81 075322Google Scholar
[31] Högele A, Seidl S, Kroner M, Karrai K, Warburton R J, Gerardot B D, Petroff P M 2004 Phys. Rev. Lett. 93 217401Google Scholar
[32] Yang W X, Chen A X, Lee R K, Wu Y 2011 Phys. Rev. A 84 013835Google Scholar
[33] Kuo D M T, Guo G Y, Chang Y C 2001 Appl. Phys. Lett. 79 3851Google Scholar
[34] Kouklin N, Menon L, Bandyopadhyay S 2002 Appl. Phys. Lett. 80 1649Google Scholar
[35] Borges H S, Sanz L, Villas-Bôas J M, Diniz Neto O O, Alcalde A M 2012 Phys. Rev. B 85 115425Google Scholar
[36] Yuan C H, Zhu K D 2006 Appl. Phys. Lett. 89 052115Google Scholar
[37] She Y C, Zheng X J, Wang D L, Zhang W X 2013 Opt. Express 21 17392Google Scholar
[38] Tian S C, Wan R G, Tong C Z, Fu X H, Cao J S, Ning Y Q 2015 Laser Phys. Lett. 12 125203Google Scholar
[39] Wang J Y, Huang S, Huang G Y, Pan D, Zhao J, Xu H Q 2017 Nano Lett. 17 4158Google Scholar
[40] Grove-Rasmussen K, Jørgensen H I, Hayashi T, Lindelof P E, Fujisawa T 2008 Nano Lett. 8 1055Google Scholar
[41] Saraga D S, Loss D 2003 Phys. Rev. Lett. 90 166803Google Scholar
[42] Fafard S, Spanner M, McCaffrey J P, Wasilewski Z R 2000 Appl. Phys. Lett. 76 2268Google Scholar
[43] Beirne G J, Hermannstädter C, Wang L, Rastelli A, Schmidt O G, Michler P 2006 Phys. Rev. Lett. 96 137401Google Scholar
[44] Krause B, Metzger T H, Rastelli A, Songmuang R, Kiravittaya S, Schmidt O G 2005 Phys. Rev. B 72 085339Google Scholar
[45] Hang C, Huang G X 2008 Phys. Rev. A 77 033830Google Scholar
[46] 佘艳超, 张蔚曦, 王登龙 2011 物理学报 60 064205Google Scholar
She Y C, Zhang W X, Wang D L 2011 Acta. Phys. Sin. 60 064205Google Scholar
[47] Si L G, Yang W X, Lü X Y, Li J H, Yang X X 2009 Eur. Phys. J. D 55 161Google Scholar
计量
- 文章访问数: 6236
- PDF下载量: 61
- 被引次数: 0