搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

能级构型对InAs/GaAs量子点电磁感应透明介质中光孤子存储的影响

王胤 周驷杰 陈桥 邓永和

引用本文:
Citation:

能级构型对InAs/GaAs量子点电磁感应透明介质中光孤子存储的影响

王胤, 周驷杰, 陈桥, 邓永和

Effect of energy level configuration on storage of optical solitons in InAs/GaAs quantum dot electromagnetically induced transparency medium

Wang Yin, Zhou Si-Jie, Chen Qiao, Deng Yong-He
PDF
HTML
导出引用
  • 基于现有的实验, 利用不同频率的光脉冲耦合到InAs/GaAs量子点的不同能级之间可形成梯形、$ {{\Lambda }} $形和$ {\rm{V}} $形等3类量子点电磁诱导透明介质. 继而研究这三类能级构型InAs/GaAs量子点电磁诱导透明介质中的光孤子形成和存储性质, 结果表明, 梯形和$ {{\Lambda }} $形InAs/GaAs量子点体系不但可形成光孤子还可以实现光孤子的存储与读取, 且其所存储光孤子的保真度比光存储的保真度高; 但$ {\rm{V}} $形InAs/GaAs量子点体系却不能形成光孤子, 这是由于体系的非线性效应非常弱. 有趣的是在相同的实验参数下, $ {{\Lambda }} $形InAs/GaAs量子点体系所存储的光孤子幅度比梯形所存储的光孤子幅度大. 这为半导体量子点器件对所存储光孤子进行调幅操作提供了理论依据.
    Based on the current growth technology of quantum dot in the experiment, considering that the probe fields and control fields at different frequencies are coupled between different energy levels of the InAs/GaAs quantum dot, the ladder-type, Λ-type and V-type energy level configurations can be formed. The linear and nonlinear properties of these energy level configurations of InAs/GaAs quantum dots are studied by using semiclassical theory combined with multiple scale method. It is shown that in the linear case, electromagnetic induction transparency windows can be formed among ladder-type, Λ-type and V-type energy level configurations. And the width of the transparent window increases with the strength of the control pulse increasing. For the nonlinear case, under the current experimental condition, optical solitons can be formed and stored in ladder-type configuration and $ {{\Lambda }} $-type energy level configuration. However, optical solitons cannot be formed in the V-type energy level configurations, which is because the nonlinear effect of the system is very weak. Furthermore, it is demonstrated that the fidelity of the storage and retrieval of the optical solitons is higher than that of linear optical pulse and strongly nonlinear optical pulse. Interestingly, it is also found that the amplitude of stored optical solitons in $ {{\Lambda }} $-type energy level configuration is higher than that in ladder-type energy level configuration. This study provides a theoretical basis for semiconductor quantum dot devices to modulate the amplitude of the stored optical solitons.
      通信作者: 王胤, 21112@hnie.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11832016)、湖南省自然科学基金(批准号: 2020JJ4240, 2022JJ50115)和湖南工程学院博士启动基金(批准号: 22RC018)资助的课题
      Corresponding author: Wang Yin, 21112@hnie.edu.cn
    • Funds: Supported by the National Natural Science Foundation of China (Grant No. 11832016), the Hunan Provincial Natural Science Foundation of China (Grant Nos. 2020JJ4240, 2022JJ50115), and the Doctoral Startup Foundation of Hunan Institute of Engineering, China (Grant No. 22RC018).
    [1]

    Kivshar Y S, Agrawal G 2003 Optical Solitons: From Fibers to Photonic Crystals (New York: Academic Press)

    [2]

    Dauxois T, Peyrard M 2006 Physics of Solitons (Cambridge: Cambridge University Press)

    [3]

    Wang Y, Ding J W, Wang D L, Liu W M 2020 Chaos 30 123133Google Scholar

    [4]

    Song W W, Li Q Y, Li Z D, Fu G S 2010 Chin. Phys. B 19 070503Google Scholar

    [5]

    Zhang X F, Zhang P, He W Q, Lin X X 2011 Chin. Phys. B 20 020307Google Scholar

    [6]

    Li Z D, Guo Q Q, Guo Y, He P B, Liu W M 2021 Chin. Phys. B 30 107506Google Scholar

    [7]

    Guo H, Qiu X, Ma Y, Jiang H F, Zhang X F 2021 Chin. Phys. B 30 060310Google Scholar

    [8]

    Li Z D, Wang Y Y, He P B 2019 Chin. Phys. B 28 010504Google Scholar

    [9]

    Harris S E 1997 Phys. Today 50 36

    [10]

    Fleischhauer M, Imamoglu A, Marangos J P 2005 Rev. Mod. Phys. 77 633Google Scholar

    [11]

    Hang C, Huang G X 2008 Phys. Rev. A 77 033830Google Scholar

    [12]

    Huang G X, Deng L, Payne M G 2005 Phys. Rev. E 72 016617Google Scholar

    [13]

    Li H J, Huang G X 2008 Phys. Lett. A 372 4127Google Scholar

    [14]

    Wu Y, Deng L 2004 Phys. Rev. Lett. 93 143904Google Scholar

    [15]

    Dong Y Y, Wang D L, Wang Y, Ding J W 2018 Phys. Lett. A 382 2006Google Scholar

    [16]

    Chen Y, Bai Z Y, Huang G X 2014 Phys. Rev. A 89 023835Google Scholar

    [17]

    Chen Y, Chen Z M, Huang G X 2015 Phys. Rev. A 91 023820Google Scholar

    [18]

    Shou C, Huang G X 2019 Phys. Rev. A 99 043821Google Scholar

    [19]

    Chen Z M, Bai Z Y, Li H J, Hang C, Huang G X 2015 Sci. Rep. 5 8211Google Scholar

    [20]

    朱天伟, 徐波, 何军, 赵凤瑷, 张春玲, 谢二庆, 刘峰奇, 王占国 2004 物理学报 53 301Google Scholar

    Zhu T W, Xu B, He J, Zhao F A, Zhang C L, Xie E Q, Liu F Q, Wang Z G 2004 Acta Phys. Sin. 53 301Google Scholar

    [21]

    Lodahl P, Mahmoodian S, Stobbe S 2015 Rev. Mod. Phys. 87 347Google Scholar

    [22]

    谭康伯, 路宏敏, 官乔, 张光硕, 陈冲冲 2018 物理学报 67 064207Google Scholar

    Tan K B, Lu H M, Guan Q, Zhang G S, Chen C C 2018 Acta Phys. Sin. 67 064207Google Scholar

    [23]

    田芃, 黄黎蓉, 费淑萍, 余奕, 潘彬, 徐巍, 黄德修 2010 物理学报 59 5738Google Scholar

    Tian P, Huang L R, Fei S P, Y Yi, Pan B, Xu W, Huang D X 2010 Acta Phys. Sin. 59 5738Google Scholar

    [24]

    Hasnain C C J, Cheng P K, Jungho K, Chuang S L 2003 Proc. IEEE 9 1884Google Scholar

    [25]

    Kraus R M, Lagoudakis P G, Rogach A L, Talapin D V, Weller H, Lupton J M, Feldmann J 2007 Phys. Rev. Lett. 98 017401Google Scholar

    [26]

    Krenner H J, Pryor C E, He J, Petroff P M 2008 Nano Lett. 8 1750Google Scholar

    [27]

    Ramsay A J, Boyle S J, Kolodka R S, Oliveira J B B, Szymanska J S, Liu H Y, Hopkinson M, Fox A M, Skolnick M S 2008 Phys. Rev. Lett. 100 197401Google Scholar

    [28]

    唐宏, 王登龙, 张蔚曦, 丁建文, 肖思国 2017 物理学报 66 034202Google Scholar

    Tang H, Wang D L, Zhang W X, Ding J W, Xiao S G 2017 Acta. Phys. Sin. 66 034202Google Scholar

    [29]

    杨璇, 王胤, 王登龙, 丁建文 2020 物理学报 69 174203Google Scholar

    Yang X, Wang Y, Wang D L, Ding J W 2020 Acta Phys. Sin. 69 174203Google Scholar

    [30]

    Wang Y, Ding J W, Wang D L 2020 Eur. Phys. J. D 74 190Google Scholar

    [31]

    Zhou S J, Wang D L, Dong Y Y, Bai Z Y, Ding J W 2022 Phys. Lett. A 448 128320Google Scholar

    [32]

    Yang W X, Chen A X, Lee R K, Wu Y 2011 Phys. Rev. A 84 013835Google Scholar

    [33]

    曾宽宏, 王登龙, 佘彦超, 张蔚曦 2013 物理学报 62 147801Google Scholar

    Zeng K H, Wang D L, She Y C, Zhang W X 2013 Acta. Phys. Sin. 62 147801Google Scholar

    [34]

    Antón M A, Carreño F, Calderón O G, Melle S 2008 Opt. Commun. 281 3301Google Scholar

    [35]

    Gerardot B D, Brunner D, Dalgarno P A, Karrai K, Badolato A, Petroff P M, Warburton R J 2009 New J. Phys. 11 013028Google Scholar

    [36]

    Khaledi N A, Sabaeian M, Sahrai M, Fallahi V 2014 J. Opt. 16 055004Google Scholar

    [37]

    Ku P C, Hasnain C C J, Chuang S L 2007 J. Phys. D 40 R93Google Scholar

    [38]

    Khursan A A H, Khakani A M K, Mossawi A K H 2009 Photon. Nanostruct. Fundam. Appl. 7 153Google Scholar

    [39]

    Abdullah M, Noori F T M, Khursan A A H 2015 Superlattices Microstruct. 82 219Google Scholar

    [40]

    Houmark J, Nielsen T R, Mørk J, Jauho A P 2009 Phys. Rev. B 79 115420Google Scholar

  • 图 1  半导体量子点的三能级构型机理示意图 (a)梯形; (b)$ {{\Lambda }} $形; (c) V形

    Fig. 1.  Schematic diagram of three energy level in the semiconductor quantum dot: (a) Ladder-type; (b) $ {{\Lambda }} $-type energy; (c) V-type.

    图 2  梯形三能级量子点EIT构型示意图

    Fig. 2.  Schematic diagram of ladder-type three energy level in the quantum dot EIT configuration.

    图 3  在不同控制光强$ {\varOmega }_{{\rm{c}}1} $下体系对探测光的吸收谱线图. 图中所用其他参数为${\gamma }_{21}=3.3\;{\rm{μ}}{\rm{e}}{\rm{V}}$, ${\gamma }_{31}=3.3\times $$ {10}^{-4}\;{\rm{μ }}{\rm{e}}{\rm{V}}$, ${\kappa }_{12}=1317{{\rm{c}}{\rm{m}}}^{-1}\;{\rm{μ}}{\rm{e}}{\rm{V}}$

    Fig. 3.  The linear absorption coefficient $ {K}_{0{\rm{i}}} $as a function of the detuning ${\varDelta }_{{\rm{p}}1}$ with different control fields ${\varOmega }_{{\rm{c}}1}$. Other parameters used are ${\gamma }_{21}=3.3\;{\rm{μ}}{\rm{e}}{\rm{V}}$, ${\gamma }_{31}=3.3\times {10}^{-4}\;{\rm{μ }}{\rm{e}}{\rm{V}}$, and ${\kappa }_{12}=1317\;{{\rm{c}}{\rm{m}}}^{-1}\;{\rm{μ }}{\rm{e}}{\rm{V}}$, respectively.

    图 4  透明窗口区域内光孤子的传播. 光孤子波形${|{\varOmega }_{{\rm{p}}1}/{U}_{0}|}^{2}$${z}/{L}_{{\rm{D}}}$$ t/{\tau }_{0} $的变化情况

    Fig. 4.  The propagation of the optical soliton in the rang of the transparency window. Wave shape ${|{\varOmega }_{{\rm{p}}1}/{U}_{0}|}^{2}$ as a function of ${z}/{L}_{{\rm{D}}}$ and $ t/{\tau }_{0} $.

    图 5  不同强度的光强下, 探测光$ \left|{\varOmega }_{{\rm{p}}1}{\tau }_{0}\right| $和控制光$ \left|{\varOmega }_{{\rm{c}}1}{\tau }_{0}\right| $随时间$ t $和传播距离$ {z} $的变化情况 (a)弱探测光的存储与读取, $ {\varOmega }_{{\rm{p}}1}(0, t)=2{\rm{s}}{\rm{e}}{\rm{c}}{\rm{h}}\left(t/{\tau }_{0}\right) $; (b)光孤子的存储与读取, $ {\varOmega }_{{\rm{p}}1}(0, t)=8{\rm{s}}{\rm{e}}{\rm{c}}{\rm{h}}\left(t/{\tau }_{0}\right) $; (c)强探测光的存储与读取, $ {\varOmega }_{{\rm{p}}1}(0, t)=14{\rm{s}}{\rm{e}}{\rm{c}}{\rm{h}}\left(t/{\tau }_{0}\right) $. $\left|{\varOmega }_{{\rm{c}}1}{\tau }_{0}\right|$代表控制光的开、关. 线条1—5分别对应于 $z=0, {\rm{ }}5, {\rm{ }}10, {\rm{ }}15, {\rm{ }}20\;{\rm{c}}{\rm{m}}$

    Fig. 5.  Time evolution of $ \left|{\varOmega }_{{\rm{p}}1}{\tau }_{0}\right| $ and $ \left|{\varOmega }_{c1}{\tau }_{0}\right| $ as functions of z and t for different input light intensities: (a) Storage and retrieval of a weak probe pulse, with ${\varOmega }_{{\rm{p}}1}(0, t)= $$ 2{\rm{s}}{\rm{e}}{\rm{c}}{\rm{h}}\left(t/{\tau }_{0}\right)$; (b) storage and retrieval of an optical soliton, with $ {\varOmega }_{{\rm{p}}1}(0, t)=8{\rm{s}}{\rm{e}}{\rm{c}}{\rm{h}}\left(t/{\tau }_{0}\right) $; (c) storage and retrieval of a strong probe pulse, with $ {\varOmega }_{{\rm{p}}1}(0, t)=14{\rm{s}}{\rm{e}}{\rm{c}}{\rm{h}}\left(t/{\tau }_{0}\right) $; $ \left|{\varOmega }_{{\rm{c}}1}{\tau }_{0}\right| $ represents the switching off and on of the control pulse. Lines 1 to 5 in each panel correspond to $z=0, {\rm{ }}5, $$ {\rm{ }}10, {\rm{ }}15, {\rm{ }}20\;{\rm{ }}{\rm{c}}{\rm{m}}$, respectively.

    图 6  $ {{\Lambda }} $形三能级量子点EIT构型示意图

    Fig. 6.  Schematic diagram of $ {{\Lambda }} $-type three energy level in the quantum dot EIT configuration.

    图 7  在不同强度${\varOmega }_{{\rm{c}}2}$下体系对探测脉冲的吸收谱线图, 其中 ${\gamma }_{32}=3.3\;{\rm{μ}}{\rm{e}}{\rm{V}}$, ${\gamma }_{21}=3.3\times {10}^{-4}\;{\rm{μ }}{\rm{e}}{\rm{V}}$, ${\gamma }_{13}= $$ 1976\;{{\rm{c}}{\rm{m}}}^{-1}\;{\rm{μ}}{\rm{e}}{\rm{V}}$.

    Fig. 7.  Linear absorption coefficient $ {K}_{0{\rm{i}}} $as a function of the detuning $ {\Delta }_{{\rm{p}}2} $ with different control fields ${\varOmega }_{{\rm{c}}2},$ other parameters used are ${\gamma }_{32}=3.3\;{\rm{μ}}{\rm{e}}{\rm{V}}$, ${\gamma }_{21}=3.3\times {10}^{-4}\;{\rm{μ}}{\rm{e}}{\rm{V}}$, and ${\gamma }_{13}=1976\;{{\rm{c}}{\rm{m}}}^{-1}{\rm{μ }}{\rm{e}}{\rm{V}}$, respectively.

    图 8  光孤子的存储与读取, ${\varOmega }_{{\rm{p}}2}\left(0, t\right)=16{\rm{sech}}\left(t/{\tau }_{0}\right)$, $\left|{\varOmega }_{{\rm{c}}2}{\tau }_{0}\right|$代表控制光的开、关, 线条1—5分别对应于 $z=0, {\rm{ }}5, $$ {\rm{ }}10, {\rm{ }}15, {\rm{ }}20\;{\rm{c}}{\rm{m}}$

    Fig. 8.  Storage and retrieval of optical solitons, ${\varOmega }_{{\rm{p}}2}(0, t)=16{\rm{s}}{\rm{e}}{\rm{c}}{\rm{h}}\left(t/{\tau }_{0}\right)$. $\left|{\varOmega }_{{\rm{c}}2}{\tau }_{0}\right|$ represents the switching off and on of the control pulse. Lines 1 to 5 represent $z=0, {\rm{ }}5, {\rm{ }}10, {\rm{ }}15, {\rm{ }}20\;{\rm{c}}{\rm{m}}$, respectively.

    图 9  $ {\rm{V}} $形三能级量子点EIT构型示意图

    Fig. 9.  Schematic diagram of $ {\rm{V}} $-type three energy level in the quantum dot EIT configuration.

    图 10  在不同强度${\varOmega }_{{\rm{c}}3}$下体系对探测光的吸收谱线图, 其中 ${\gamma }_{21}=3.3\;{\rm{μ }}{\rm{e}}{\rm{V}}$, ${\gamma }_{32}=3.3\times {10}^{-4}\;{\rm{μ }}{\rm{e}}{\rm{V}}$, ${\gamma }_{13}= $$ 1976\;{{\rm{c}}{\rm{m}}}^{-1}\cdot{\rm{μ}}{\rm{e}}{\rm{V}}$

    Fig. 10.  The linear absorption coefficient $ {K}_{0 i} $as a function of the detuning ${\varDelta }_{{\rm{p}}3}$ with different control fields ${\varOmega }_{{\rm{c}}3},$ where ${\gamma }_{21}=3.3\;{\rm{μ}}{\rm{e}}{\rm{V}}$, ${\gamma }_{32}=3.3\times {10}^{-4}\;{\rm{μ}}{\rm{e}}{\rm{V}}$, and ${\gamma }_{13}= $$ 1976\;{{\rm{c}}{\rm{m}}}^{-1}\cdot{\rm{μ}}{\rm{e}}{\rm{V}}$, respectively.

  • [1]

    Kivshar Y S, Agrawal G 2003 Optical Solitons: From Fibers to Photonic Crystals (New York: Academic Press)

    [2]

    Dauxois T, Peyrard M 2006 Physics of Solitons (Cambridge: Cambridge University Press)

    [3]

    Wang Y, Ding J W, Wang D L, Liu W M 2020 Chaos 30 123133Google Scholar

    [4]

    Song W W, Li Q Y, Li Z D, Fu G S 2010 Chin. Phys. B 19 070503Google Scholar

    [5]

    Zhang X F, Zhang P, He W Q, Lin X X 2011 Chin. Phys. B 20 020307Google Scholar

    [6]

    Li Z D, Guo Q Q, Guo Y, He P B, Liu W M 2021 Chin. Phys. B 30 107506Google Scholar

    [7]

    Guo H, Qiu X, Ma Y, Jiang H F, Zhang X F 2021 Chin. Phys. B 30 060310Google Scholar

    [8]

    Li Z D, Wang Y Y, He P B 2019 Chin. Phys. B 28 010504Google Scholar

    [9]

    Harris S E 1997 Phys. Today 50 36

    [10]

    Fleischhauer M, Imamoglu A, Marangos J P 2005 Rev. Mod. Phys. 77 633Google Scholar

    [11]

    Hang C, Huang G X 2008 Phys. Rev. A 77 033830Google Scholar

    [12]

    Huang G X, Deng L, Payne M G 2005 Phys. Rev. E 72 016617Google Scholar

    [13]

    Li H J, Huang G X 2008 Phys. Lett. A 372 4127Google Scholar

    [14]

    Wu Y, Deng L 2004 Phys. Rev. Lett. 93 143904Google Scholar

    [15]

    Dong Y Y, Wang D L, Wang Y, Ding J W 2018 Phys. Lett. A 382 2006Google Scholar

    [16]

    Chen Y, Bai Z Y, Huang G X 2014 Phys. Rev. A 89 023835Google Scholar

    [17]

    Chen Y, Chen Z M, Huang G X 2015 Phys. Rev. A 91 023820Google Scholar

    [18]

    Shou C, Huang G X 2019 Phys. Rev. A 99 043821Google Scholar

    [19]

    Chen Z M, Bai Z Y, Li H J, Hang C, Huang G X 2015 Sci. Rep. 5 8211Google Scholar

    [20]

    朱天伟, 徐波, 何军, 赵凤瑷, 张春玲, 谢二庆, 刘峰奇, 王占国 2004 物理学报 53 301Google Scholar

    Zhu T W, Xu B, He J, Zhao F A, Zhang C L, Xie E Q, Liu F Q, Wang Z G 2004 Acta Phys. Sin. 53 301Google Scholar

    [21]

    Lodahl P, Mahmoodian S, Stobbe S 2015 Rev. Mod. Phys. 87 347Google Scholar

    [22]

    谭康伯, 路宏敏, 官乔, 张光硕, 陈冲冲 2018 物理学报 67 064207Google Scholar

    Tan K B, Lu H M, Guan Q, Zhang G S, Chen C C 2018 Acta Phys. Sin. 67 064207Google Scholar

    [23]

    田芃, 黄黎蓉, 费淑萍, 余奕, 潘彬, 徐巍, 黄德修 2010 物理学报 59 5738Google Scholar

    Tian P, Huang L R, Fei S P, Y Yi, Pan B, Xu W, Huang D X 2010 Acta Phys. Sin. 59 5738Google Scholar

    [24]

    Hasnain C C J, Cheng P K, Jungho K, Chuang S L 2003 Proc. IEEE 9 1884Google Scholar

    [25]

    Kraus R M, Lagoudakis P G, Rogach A L, Talapin D V, Weller H, Lupton J M, Feldmann J 2007 Phys. Rev. Lett. 98 017401Google Scholar

    [26]

    Krenner H J, Pryor C E, He J, Petroff P M 2008 Nano Lett. 8 1750Google Scholar

    [27]

    Ramsay A J, Boyle S J, Kolodka R S, Oliveira J B B, Szymanska J S, Liu H Y, Hopkinson M, Fox A M, Skolnick M S 2008 Phys. Rev. Lett. 100 197401Google Scholar

    [28]

    唐宏, 王登龙, 张蔚曦, 丁建文, 肖思国 2017 物理学报 66 034202Google Scholar

    Tang H, Wang D L, Zhang W X, Ding J W, Xiao S G 2017 Acta. Phys. Sin. 66 034202Google Scholar

    [29]

    杨璇, 王胤, 王登龙, 丁建文 2020 物理学报 69 174203Google Scholar

    Yang X, Wang Y, Wang D L, Ding J W 2020 Acta Phys. Sin. 69 174203Google Scholar

    [30]

    Wang Y, Ding J W, Wang D L 2020 Eur. Phys. J. D 74 190Google Scholar

    [31]

    Zhou S J, Wang D L, Dong Y Y, Bai Z Y, Ding J W 2022 Phys. Lett. A 448 128320Google Scholar

    [32]

    Yang W X, Chen A X, Lee R K, Wu Y 2011 Phys. Rev. A 84 013835Google Scholar

    [33]

    曾宽宏, 王登龙, 佘彦超, 张蔚曦 2013 物理学报 62 147801Google Scholar

    Zeng K H, Wang D L, She Y C, Zhang W X 2013 Acta. Phys. Sin. 62 147801Google Scholar

    [34]

    Antón M A, Carreño F, Calderón O G, Melle S 2008 Opt. Commun. 281 3301Google Scholar

    [35]

    Gerardot B D, Brunner D, Dalgarno P A, Karrai K, Badolato A, Petroff P M, Warburton R J 2009 New J. Phys. 11 013028Google Scholar

    [36]

    Khaledi N A, Sabaeian M, Sahrai M, Fallahi V 2014 J. Opt. 16 055004Google Scholar

    [37]

    Ku P C, Hasnain C C J, Chuang S L 2007 J. Phys. D 40 R93Google Scholar

    [38]

    Khursan A A H, Khakani A M K, Mossawi A K H 2009 Photon. Nanostruct. Fundam. Appl. 7 153Google Scholar

    [39]

    Abdullah M, Noori F T M, Khursan A A H 2015 Superlattices Microstruct. 82 219Google Scholar

    [40]

    Houmark J, Nielsen T R, Mørk J, Jauho A P 2009 Phys. Rev. B 79 115420Google Scholar

  • [1] 王胤, 胡明君, 陈桥, 邓永和. 纵波光学声子耦合驰豫对GaAs/AlGaAs量子阱EIT介质中光孤子存取的调幅效应. 物理学报, 2025, 74(4): . doi: 10.7498/aps.74.20241143
    [2] 谭聪, 王登龙, 董耀勇, 丁建文. V型三能级金刚石氮空位色心电磁诱导透明体系中孤子的存取. 物理学报, 2024, 73(10): 107601. doi: 10.7498/aps.73.20232006
    [3] 赵嘉栋, 张好, 杨文广, 赵婧华, 景明勇, 张临杰. 基于里德伯原子电磁诱导透明效应的光脉冲减速. 物理学报, 2021, 70(10): 103201. doi: 10.7498/aps.70.20210102
    [4] 王越, 冷雁冰, 王丽, 董连和, 刘顺瑞, 王君, 孙艳军. 基于石墨烯振幅可调的宽带类电磁诱导透明超材料设计. 物理学报, 2018, 67(9): 097801. doi: 10.7498/aps.67.20180114
    [5] 贾玥, 陈肖含, 张好, 张临杰, 肖连团, 贾锁堂. Rydberg原子的电磁诱导透明光谱的噪声转移特性. 物理学报, 2018, 67(21): 213201. doi: 10.7498/aps.67.20181168
    [6] 宁仁霞, 鲍婕, 焦铮. 基于石墨烯超表面的宽带电磁诱导透明研究. 物理学报, 2017, 66(10): 100202. doi: 10.7498/aps.66.100202
    [7] 唐宏, 王登龙, 张蔚曦, 丁建文, 肖思国. 纵波光学声子耦合对级联型电磁感应透明半导体量子阱中暗-亮光孤子类型的调控. 物理学报, 2017, 66(3): 034202. doi: 10.7498/aps.66.034202
    [8] 陆赫林, 杜春光. 回音壁微腔光力系统的相干控制与完全相干透射. 物理学报, 2016, 65(21): 214204. doi: 10.7498/aps.65.214204
    [9] 陈秋成. 半导体三量子点电磁感应透明介质中的非线性法拉第偏转. 物理学报, 2016, 65(24): 247801. doi: 10.7498/aps.65.247801
    [10] 杜英杰, 谢小涛, 杨战营, 白晋涛. 电磁诱导透明系统中的暗孤子. 物理学报, 2015, 64(6): 064202. doi: 10.7498/aps.64.064202
    [11] 李晓莉, 尚雅轩, 孙江. 射频驱动下电磁诱导透明窗口的分裂和增益的出现. 物理学报, 2013, 62(6): 064202. doi: 10.7498/aps.62.064202
    [12] 曾宽宏, 王登龙, 佘彦超, 张蔚曦. 计及激子-双激子相干下半导体单量子点中的空间光孤子对. 物理学报, 2013, 62(14): 147801. doi: 10.7498/aps.62.147801
    [13] 李琴, 郭红. 宽频脉冲光的传播特性. 物理学报, 2011, 60(5): 054204. doi: 10.7498/aps.60.054204
    [14] 吕纯海, 谭磊, 谭文婷. 压缩真空中的电磁诱导透明. 物理学报, 2011, 60(2): 024204. doi: 10.7498/aps.60.024204
    [15] 李晓莉, 张连水, 杨宝柱, 杨丽君. 闭合Λ型4能级系统中的电磁诱导透明和电磁诱导吸收. 物理学报, 2010, 59(10): 7008-7014. doi: 10.7498/aps.59.7008
    [16] 刘玉敏, 俞重远, 任晓敏. 隔离层厚度和盖层厚度对InAs/GaAs量子点应变分布和发射波长的影响. 物理学报, 2009, 58(1): 66-72. doi: 10.7498/aps.58.66
    [17] 张连水, 李晓莉, 王 健, 杨丽君, 冯晓敏, 李晓苇, 傅广生. 光学-射频双光子耦合作用下的电磁诱导透明和电磁诱导吸收. 物理学报, 2008, 57(8): 4921-4926. doi: 10.7498/aps.57.4921
    [18] 刘绍鼎, 程木田, 周慧君, 李耀义, 王取泉, 薛其坤. 双激子和浸润层泄漏以及俄歇俘获对量子点Rabi振荡衰减的影响. 物理学报, 2006, 55(5): 2122-2127. doi: 10.7498/aps.55.2122
    [19] 杨丽君, 张连水, 李晓莉, 李晓苇, 郭庆林, 韩 理, 傅广生. 多窗口可调谐电磁诱导透明研究. 物理学报, 2006, 55(10): 5206-5210. doi: 10.7498/aps.55.5206
    [20] 李耀义, 程木田, 周慧君, 刘绍鼎, 王取泉, 薛其坤. 脉冲激发三能级体系半导体量子点的单光子发射效率. 物理学报, 2006, 55(4): 1781-1786. doi: 10.7498/aps.55.1781
计量
  • 文章访问数:  3521
  • PDF下载量:  84
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-14
  • 修回日期:  2023-02-19
  • 上网日期:  2023-02-28
  • 刊出日期:  2023-04-20

/

返回文章
返回