-
金属液滴是真空弧放电的伴随产物, 它对理解阴极斑放电性质具有重要作用, 而且对工程应用也有重要影响. 金属液滴的测量一般采用离线的收集法, 不能获得全部空间和单次放电信息. 本文提出了一种通过Mie散射在线测量真空弧放电液滴的新方法, 并对它的可行性进行了探索研究. 首先通过仿真程序计算了钛金属液滴的散射光性质, 结果表明小直径颗粒散射光在全部角度上均有分布, 随着直径增加, 散射光越来越集中在前向, 这为不同直径液滴信号的反演提供了可能. 接着对探测器进行了分环设计, 当探测器分为35环时, 光能系数矩阵容易求解, 同时保证测量系统具有良好的分辨率. 初步实验结果表明, 钛金属液滴直径主要分布在9.8 μm附近, 验证了Mie散射测量真空弧液滴方法的有效性. 但液滴直径分布和离线测量有较大差异, 缺少小直径液滴信息, 主要原因来源于测量系统信噪比不够, 不能有效地获得小直径液滴散射信号, 还需要进一步优化.Metal droplet is produced accompanied with vacuum arc discharge, which is important to the research of cathode spot and the application of vacuum arc. The droplet comes from the cathode spot crater and can reflect the physical process of the cathode spot. However, it will destroy the uniformity of surface deposition in engineering and should be avoided as much as possible. The measurement of metal droplet usually adopts off-line collector, which cannot obtain the signal of the whole space and singe arc. In order to on-line measure the droplet, a new method by the Mie scattering is developed in this work, and its feasibility is investigated. The characteristic of the scattering light of titanium droplet is computed by the simulation code. The results indicate that the scattering light beams of the small droplet are distributed at all angles. With the increase of the diameter, the scattered light beams are more and more concentrated in the forward direction, which allows the inversion of the signals of the droplets with different diameters. Then the detector is designed with different annuluses. When the detector is divided into 35 annuluses, the light energy coefficient matrix is easy to solve and the measurement system has a good resolution. The experimental setup is built and the preliminary experiment is carried out. The results indicate that the diameters of titanium droplets are mainly around 9.8 μm, which verifies the effectiveness of the Mie scattering method of measuring vacuum arc droplets. However, the small droplet information is not detected, so the droplet diameter distribution is quite different from the off-line measurement. The reason is that the signal-to-noise ratio of the measurement system is poor, thereby leading the scattered signals of the small droplet to fail to be obtained effectively. The experimental setup need to be further optimized.
-
Keywords:
- Mie scattering /
- vacuum arc /
- droplet /
- detector
[1] Brown I G 1994 Rev. Sci. Instrum. 65 3061Google Scholar
[2] Anders A 2008 Cathodic Arcs (New York: Springer Science+ Business Media) p7
[3] Ge G W, Cheng X, Liao M F, Duan X Y, Zou J Y 2018 IEEE Trans. Plasma Sci. 46 1003Google Scholar
[4] Boudot C, Kuhn M, Kauffeldt K M, Schein J 2017 Mater. Sci. Eng., C 74 508Google Scholar
[5] Liu F X, Long J D, Zheng L, Dong P, Li C, Chen W 2018 Plasma Sources Sci. Technol. 27 025001Google Scholar
[6] 李杰, 郑乐, 董攀, 龙继东, 王韬, 刘飞翔 2022 物理学报 71 042901Google Scholar
Li J, Zheng L, Dong P, Long J D, Wang T, Liu F X 2022 Acta Phys. Sin. 71 042901Google Scholar
[7] G. A. 米夏兹著 (李国政译) 2007 真空放电物理和高功率脉冲技术 (北京: 国防工业出版社) 第202—204页
Mesyats G A (translated by Li G Z) 2007 Vacuum discharge physics and high power pulse technology (Beijing: National Defense Industry Press) pp202–204 (in Chinese)
[8] Kaufmann H T C, Cunha M D, Benilov M S, Hartmann W, Wenzel N 2017 J. Appl. Phys. 122 163303Google Scholar
[9] 董攀, 李杰, 郑乐, 刘飞翔, 龙继东, 石金水 2018 强激光与粒子束 30 014001
Dong P, Li J, Zheng L, Liu F X, Long J D, Shi J S 2018 High Power Laser Part. Beam 30 014001
[10] 吴先映, 廖斌, 张旭, 李强, 彭建华, 张荟星, 张孝吉 2014 北京师范大学学报(自然科学版) 50 132
Wu X Y, Liao B, Zhang X, Li Q, Peng J H, Zhang H X, Zhang X J 2014 J. Beijing Normal Univ. (Nat. Sci. Ed.) 50 132
[11] Lee W Y, Jang Y J, Tokoroyama T, Murashima M, Umehara N 2020 Diamond Relat. Mater. 105 107789Google Scholar
[12] Anders S, Anders A, Yu K M, Yao X Y, Brown I G 1993 IEEE Trans. Plasma Sci. 21 440Google Scholar
[13] Daalder J E 1976 J. Phys. D:Appl. Phys. 9 2379Google Scholar
[14] Proskurovsky D I, Popov S A, Kozyrev A V, Pryadko E L, Batrakov A V, Shishkov A N 2007 IEEE Trans. Plasma Sci. 35 980Google Scholar
[15] Siemroth P, Laux M, Pursch H, Sachtleben J, Balden M, Rohde V, Neu R 2018 28 th International Symposium on Discharges and Electrical Insulation in Vacuum Greifswald, Germany, September 23–28, 2018 p325
[16] Mesyats G A, Uimanov I V 2015 IEEE Trans. Plasma Sci. 43 2241Google Scholar
[17] Zhang X, Wang L J, Ma J W, Wang Y, Jia S L 2019 J. Phys. D:Appl. Phys. 52 035204Google Scholar
[18] Wang L J, Zhang X, Li J G, Luo M, Jia S L 2021 J. Phys. D:Appl. Phys. 54 215202Google Scholar
[19] Takamune M, Sasaki S, Kondo D, Naoi J, Kumakura M, Ashida M, Moriwaki Y 2022 Appl. Phys. Express 15 012007Google Scholar
[20] Monfared S K, Buttler W T, Frayer D K, Grover M, LaLone B M, Stevens G D, Stone J B, Turley W D, Schauerat M M 2015 J. Appl. Phys. 117 223105Google Scholar
[21] Hudgins D, Gambino N, Rollinger B, Abhari R 2016 J. Phys. D:Appl. Phys. 49 185205Google Scholar
[22] 陈哲敏, 胡朋兵, 孟庆强 2015 光散射学报 27 54
Chen Z M, Hu P B, Meng Q Q 2015 The Journal of Light Scattering 27 54
[23] Zhang H, Liang Y, Chen J G, Peng H T 2021 Opt. Lasers Eng. 144 106642Google Scholar
[24] 蔡小舒, 苏明旭, 沈建琪著 2010 颗粒粒度测量技术及应用 (北京: 化学工业出版社) 第32页
Cai X S, Su M X, Shen J Q 2010 Particle size Measurement Technology and Application (Beijing: Chemical Industry Press) p32
[25] Johnson P, Christy R 1974 Phys. Rev. B 9 5056Google Scholar
[26] Hirofumi T, Koji S, Tateki S 1998 Thin Solid Films 316 73Google Scholar
-
表 1 CCD光环设计尺寸
Table 1. Design size of CCD annulus.
环数 内环/mm 外环/mm 环数 内环/mm 外环/mm 环数 内环/mm 外环/mm 1 0.105 0.117 13 0.373 0.414 25 1.321 1.468 2 0.117 0.13 14 0.414 0.461 26 1.468 1.631 3 0.13 0.144 15 0.461 0.512 27 1.631 1.812 4 0.144 0.161 16 0.512 0.569 28 1.812 2.014 5 0.161 0.178 17 0.569 0.632 29 2.014 2.238 6 0.178 0.198 18 0.632 0.702 30 2.238 2.486 7 0.198 0.22 19 0.702 0.78 31 2.486 2.763 8 0.22 0.245 20 0.78 0.867 32 2.763 3.07 9 0.245 0.272 21 0.867 0.963 33 3.07 3.411 10 0.272 0.302 22 0.963 1.07 34 3.411 3.79 11 0.302 0.336 23 1.07 1.189 35 3.79 4.212 12 0.336 0.373 24 1.189 1.321 表 2 标准颗粒粒径测量结果对比表
Table 2. Comparision results of standard particle between measurement and nominal diameter.
标称粒径/μm 测量粒径/μm 相对误差/% 0.7 0.65 7 2.6 2.69 3 5.4 5.75 6 9.4 8.88 5 15.0 15.20 2 -
[1] Brown I G 1994 Rev. Sci. Instrum. 65 3061Google Scholar
[2] Anders A 2008 Cathodic Arcs (New York: Springer Science+ Business Media) p7
[3] Ge G W, Cheng X, Liao M F, Duan X Y, Zou J Y 2018 IEEE Trans. Plasma Sci. 46 1003Google Scholar
[4] Boudot C, Kuhn M, Kauffeldt K M, Schein J 2017 Mater. Sci. Eng., C 74 508Google Scholar
[5] Liu F X, Long J D, Zheng L, Dong P, Li C, Chen W 2018 Plasma Sources Sci. Technol. 27 025001Google Scholar
[6] 李杰, 郑乐, 董攀, 龙继东, 王韬, 刘飞翔 2022 物理学报 71 042901Google Scholar
Li J, Zheng L, Dong P, Long J D, Wang T, Liu F X 2022 Acta Phys. Sin. 71 042901Google Scholar
[7] G. A. 米夏兹著 (李国政译) 2007 真空放电物理和高功率脉冲技术 (北京: 国防工业出版社) 第202—204页
Mesyats G A (translated by Li G Z) 2007 Vacuum discharge physics and high power pulse technology (Beijing: National Defense Industry Press) pp202–204 (in Chinese)
[8] Kaufmann H T C, Cunha M D, Benilov M S, Hartmann W, Wenzel N 2017 J. Appl. Phys. 122 163303Google Scholar
[9] 董攀, 李杰, 郑乐, 刘飞翔, 龙继东, 石金水 2018 强激光与粒子束 30 014001
Dong P, Li J, Zheng L, Liu F X, Long J D, Shi J S 2018 High Power Laser Part. Beam 30 014001
[10] 吴先映, 廖斌, 张旭, 李强, 彭建华, 张荟星, 张孝吉 2014 北京师范大学学报(自然科学版) 50 132
Wu X Y, Liao B, Zhang X, Li Q, Peng J H, Zhang H X, Zhang X J 2014 J. Beijing Normal Univ. (Nat. Sci. Ed.) 50 132
[11] Lee W Y, Jang Y J, Tokoroyama T, Murashima M, Umehara N 2020 Diamond Relat. Mater. 105 107789Google Scholar
[12] Anders S, Anders A, Yu K M, Yao X Y, Brown I G 1993 IEEE Trans. Plasma Sci. 21 440Google Scholar
[13] Daalder J E 1976 J. Phys. D:Appl. Phys. 9 2379Google Scholar
[14] Proskurovsky D I, Popov S A, Kozyrev A V, Pryadko E L, Batrakov A V, Shishkov A N 2007 IEEE Trans. Plasma Sci. 35 980Google Scholar
[15] Siemroth P, Laux M, Pursch H, Sachtleben J, Balden M, Rohde V, Neu R 2018 28 th International Symposium on Discharges and Electrical Insulation in Vacuum Greifswald, Germany, September 23–28, 2018 p325
[16] Mesyats G A, Uimanov I V 2015 IEEE Trans. Plasma Sci. 43 2241Google Scholar
[17] Zhang X, Wang L J, Ma J W, Wang Y, Jia S L 2019 J. Phys. D:Appl. Phys. 52 035204Google Scholar
[18] Wang L J, Zhang X, Li J G, Luo M, Jia S L 2021 J. Phys. D:Appl. Phys. 54 215202Google Scholar
[19] Takamune M, Sasaki S, Kondo D, Naoi J, Kumakura M, Ashida M, Moriwaki Y 2022 Appl. Phys. Express 15 012007Google Scholar
[20] Monfared S K, Buttler W T, Frayer D K, Grover M, LaLone B M, Stevens G D, Stone J B, Turley W D, Schauerat M M 2015 J. Appl. Phys. 117 223105Google Scholar
[21] Hudgins D, Gambino N, Rollinger B, Abhari R 2016 J. Phys. D:Appl. Phys. 49 185205Google Scholar
[22] 陈哲敏, 胡朋兵, 孟庆强 2015 光散射学报 27 54
Chen Z M, Hu P B, Meng Q Q 2015 The Journal of Light Scattering 27 54
[23] Zhang H, Liang Y, Chen J G, Peng H T 2021 Opt. Lasers Eng. 144 106642Google Scholar
[24] 蔡小舒, 苏明旭, 沈建琪著 2010 颗粒粒度测量技术及应用 (北京: 化学工业出版社) 第32页
Cai X S, Su M X, Shen J Q 2010 Particle size Measurement Technology and Application (Beijing: Chemical Industry Press) p32
[25] Johnson P, Christy R 1974 Phys. Rev. B 9 5056Google Scholar
[26] Hirofumi T, Koji S, Tateki S 1998 Thin Solid Films 316 73Google Scholar
计量
- 文章访问数: 3516
- PDF下载量: 73
- 被引次数: 0