搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

空间走离对量子光学频率梳压缩特性的影响

李娟 刘鹏 项晓 刘涛 董瑞芳 张首刚

引用本文:
Citation:

空间走离对量子光学频率梳压缩特性的影响

李娟, 刘鹏, 项晓, 刘涛, 董瑞芳, 张首刚

Effect of spatial walk-off on squeezing properties of quantum optical frequency combs

Li Juan, Liu Peng, Xiang Xiao, Liu Tao, Dong Rui-Fang, Zhang Shou-Gang
PDF
HTML
导出引用
  • 量子光学频率梳在量子计算、量子信息以及高精度量子测量等领域都有重要的价值, 同步泵浦光学参量振荡器是制备量子光频梳最主要的手段. 本文采用中心波长为815 nm、脉冲宽度为130 fs的锁模飞秒脉冲激光二次谐波泵浦I类共线BiB3O6晶体以制备真空压缩态量子光频梳, 给出了同步泵浦光学参量振荡器中空间走离效应对获得量子光频梳压缩度的影响. 研究表明, 随着晶体长度的增加, 压缩度的增长会受到空间走离效应限制, 经计算在晶体长度为1.49 mm时压缩达到最大. 在此基础上, 本文实验研究了在四种晶体长度下获得的真空压缩态量子光频梳的压缩特性, 当BiB3O6长度为1.5 mm时获得了(3.6±0.2) dB的最大真空压缩, 考虑损耗后为(7.0±0.2) dB, 实验结果与理论分析相符. 该研究揭示了飞秒脉冲光在非线性晶体中存在的空间走离效应是影响量子光频梳压缩特性的重要因素, 为优化量子光频梳的实验测量提供了指导.
    Quantum optical frequency combs are of great significance in the fields of quantum computing, quantum information, and high precision quantum measurement, which can be produced by using a degenerate type-I synchronously pumped optical parametric oscillator (SPOPO). When anisotropic crystal is used as a nonlinear medium in the SPOPO, the spatial walk-off effect will occur due to the birefringence effect, which cannot be ignored and will adversely affect the generation of squeezed state. In this work, we investigate the influence of spatial walk-off effect on the squeezing level of quantum optical frequency combs both theoretically and experimentally. A Ti∶sapphire mode-locked femtosecond pulsed laser which produces 130 fs pulse trains at 815 nm with a repetition rate of 76 MHz is utilized as a fundamental source. Its second harmonic at 407.5 nm is used to pump the collinear BiB3O6 (BIBO) crystal for generating the squeezed vacuum frequency comb. It is indicated that as the crystal length increases, the area of interaction between pump light and signal light decreases gradually. Thus the enhancement of squeezing is eventually limited by the spatial walk-off effect. According to the simulations, the squeezing level reaches a maximum value when the crystal length is 1.49 mm. The quantum properties of squeezed vacuum optical frequency combs obtained for four crystal lengths (0.5, 1.0, 1.5 and 2.0 mm) are subsequently measured experimentally. When the length of BIBO is 1.5 mm, the maximum vacuum squeezing of (3.6±0.2) dB is obtained, which is (7.0±0.2) dB after being corrected for detection loss. The experimental results are consistent with the numerical simulations. This study demonstrates that the spatial walk-off effect in nonlinear crystal is a significant factor affecting the quantum optical frequency comb, and the theoretical model presented in this paper can be used to provide a guideline for optimizing the experimental implementation.
      通信作者: 董瑞芳, dongruifang@ntsc.ac.cn
    • 基金项目: 国家自然科学基金(批准号: 12033007, 61875205, 61801458, 91836301)、中国科学院前沿科学重点研究项目(批准号: QYZDB-SW-SLH007)、中国科学院战略性先导科技专项C类项目(批准号: XDC07020200)、中国科学院“西部青年学者”项目(批准号: XAB2019B17, XAB2019B15) 和中国科学院重点项目(批准号: ZDRW-KT-2019-1-0103) 资助的课题.
      Corresponding author: Dong Rui-Fang, dongruifang@ntsc.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12033007, 61875205, 61801458, 91836301), the Key Research Program of Frontier Sciences, Chinese Academy of Sciences (Grant No. QYZDB-SW-SLH007), the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDC07020200), the “Western Young Scholars” Project of Chinese Academy of Sciences (Grant Nos. XAB2019B17, XAB2019B15), and the Key Program of Chinese Academy of Sciences (Grant No. ZDRW-KT-2019-1-0103).
    [1]

    Walls D F 1983 Nature 306 141Google Scholar

    [2]

    Xiao M, Wu L, Kimble H J 1987 Phys. Rev. Lett. 59 278Google Scholar

    [3]

    Kong J, Ou Z, Zhang W 2013 Phys. Rev. A 87 023825Google Scholar

    [4]

    Ou Z 2012 Phys. Rev. A 85 023815Google Scholar

    [5]

    Xin J, Liu J, Jing J 2017 Opt. Express 25 1350Google Scholar

    [6]

    Liu S, Lou Y, Xin J, Jing J 2018 Phys. Rev. Appl. 10 064046Google Scholar

    [7]

    Li Y, Guzun D, Xiao M 1999 Phys. Rev. Lett. 82 5225Google Scholar

    [8]

    Degen C L, Reinhard F, Cappellaro P 2017 Rev. Mod. Phys. 89 035002Google Scholar

    [9]

    Shi S, Wang Y, Yang W, Zheng Y, Peng K 2018 Opt. Lett. 43 5411Google Scholar

    [10]

    Zheng S, Lin Q, Cai Y, Zeng X, Li Y, Xu S, Fan D 2018 Photonics Res. 6 177Google Scholar

    [11]

    Menicucci N C 2014 Phys. Rev. Lett. 112 120504Google Scholar

    [12]

    Chen H, Liu J 2009 Chin. Opt. Lett. 7 440Google Scholar

    [13]

    Vahlbruch H, Mehmet M, Chelkowski S, Hage B, Franzen A, Lastzka N, Schnabel R 2008 Phys. Rev. Lett. 100 033602Google Scholar

    [14]

    Mehmet M, Ast S, Eberle T, Steinlechner S, Vahlbruch H, Schnabel R 2011 Opt. Express 19 25763Google Scholar

    [15]

    Eberle T, Steinlechner S, Bauchrowitz J, Handchen V, Vahlbruch H, Mehmet M, Schnabel R 2010 Phys. Rev. Lett. 104 251102Google Scholar

    [16]

    Vahlbruch H, Mehmet M, Danzmann K, Schnabel R 2016 Phys. Rev. Lett. 117 110801Google Scholar

    [17]

    Driel H M V 1995 Appl. Phys. B 60 411

    [18]

    de Valcárcel G J, Patera G, Treps N, Fabre C 2006 Phys. Rev. A 74 061801Google Scholar

    [19]

    Patera G, Treps N, Fabre C, de Valcárcel G J 2010 Eur. Phys. J. D 56 123Google Scholar

    [20]

    Cai Y, Roslund J, Ferrini G, Arzani F, Xu X, Fabre C, Treps N 2017 Nat. Commun. 8 15645Google Scholar

    [21]

    Lamine B, Fabre C, Treps N 2008 Phys. Rev. Lett. 101 123601Google Scholar

    [22]

    Wang S, Xiang X, Treps N, Fabre C, Liu T, Zhang S, Dong R 2018 Phys. Rev. A 98 053821Google Scholar

    [23]

    Cai, Y, Roslund J, Thiel V, Fabre C, Treps N 2021 npj Quantum Inf. 7 82Google Scholar

    [24]

    Wu L, Kimble H J, Hall J L, Wu H 1986 Phys. Rev. Lett. 57 2520Google Scholar

    [25]

    Pinel O, Jian P, de Araujo R M, Feng J, Chalopin B, Fabre C, Treps N 2012 Phys. Rev. Lett. 108 083601Google Scholar

    [26]

    Roslund, J, de Araújo R M, Jiang S, Fabre C, Treps N 2014 Nat. Photonics 8 109Google Scholar

    [27]

    Cai Y, Xiang Y, Liu Y, He Q, Treps N 2020 Phys. Rev. Res. 2 032046Google Scholar

    [28]

    刘洪雨, 陈立, 刘灵, 明莹, 刘奎, 张俊香, 郜江瑞 2013 物理学报 164206 164206Google Scholar

    Liu H Y, Chen L, Liu L, Ming Y, Liu K, Zhang J X, Gao J R 2013 Acta Phys. Sin. 164206 164206Google Scholar

    [29]

    石顺祥, 陈国夫, 赵卫, 刘继芳 2012 非线性光学 (西安: 电子科技大学出版社) 第105页

    Shi S X, Chen G F, Zhao W, Liu J F 2012 Nonlinear Optics (Xidian: University Press) p105 (in Chinese)

    [30]

    Hellwig H, Liebertz J, Bohaty L 2000 J. Appl. Phys. 88 240Google Scholar

    [31]

    Drever R W P, Hall J L, Kowalski F V, Hough J, Ford G M, Munley A J, Ward H 1983 Appl. Phys. B 31 97

    [32]

    Gehr R J, Kimmel M W, Smith A V 1998 Opt. Lett. 23 1298Google Scholar

    [33]

    周绪桂, 王燕玲, 吴洪, 丁良恩 2009 光学学报 29 2630Google Scholar

    Zhou X G, Wang Y L, Wu H, Ding L E 2009 Acta Opt. Sin. 29 2630Google Scholar

    [34]

    孟祥昊, 刘华刚, 黄见洪, 戴殊韬, 邓晶, 阮开明, 陈金明, 林文雄 2015 物理学报 64 164205Google Scholar

    Meng X H, Liu H G, Huang J H, Dai S T, Deng J, Ruan K M, Chen J M, Lin W X 2015 Acta Phys. Sin. 64 164205Google Scholar

    [35]

    Perez A M, Just F, Cavanna A, Chekhova M V, Leuchs G 2013 Laser Phys. Lett. 10 125201Google Scholar

  • 图 1  系统阈值(a)和压缩(b)随晶体长度的理论变化曲线. 黑色虚线和红色实线分别是无空间走离和有空间走离的结果. $ {n_0} = 1.82 $, $\chi = 3.54~ \rm pm/V$, $ \delta = 0.0468 $, $ T = 0.1 $

    Fig. 1.  System threshold (a) and squeezing noise levels (b) as a function of crystal length, respectively. The black dotted line and red line are the results without/with spatial walk-off respectively. $ {n_0} = 1.82 $, $\chi = 3.54~\rm pm/V$, $ \delta = 0.0468 $, $ T = 0.1 $.

    图 2  量子光频梳产生和测量的实验装置图. HWP, 半波片; PBS, 偏振分束器; DBS, 双色镜; SPOPO, 同步泵浦光学参量振荡器; PZT, 压电陶瓷; SA, 频谱分析仪器

    Fig. 2.  Experimental setup for the generation and measurement of squeezed frequency comb states. HWP, half-wave plate; PBS, polarizing beam splitter; DBS, dichroic beamsplitter; SPOPO, synchronously pumped optical parametric oscillator; PZT, piezoelectric transducer; SA, spectrum analyzer.

    图 3  倍频光功率及倍频效率随基频光变化的实验结果

    Fig. 3.  Experimentally dependence of second harmonic power and efficiency on fundamental power.

    图 4  种子光与泵浦光的光谱

    Fig. 4.  The spectral profiles of the seed and pump.

    图 5  在三种不同透过率下, 系统阈值随晶体长度的变化. 方块为实验测量结果, 曲线为理论计算结果

    Fig. 5.  Dependence of the pump threshold on the crystal length under three different transmissions. The square is the experimental measurement result, and the curve is the theoretical calculation result.

    图 6  在三种不同透过率下, 真空压缩随晶体长度变化的结果. 方块为实验测量结果, 曲线为理论计算结果. RBW = 100 kHz, VBW = 100 Hz

    Fig. 6.  Dependence of squeezing noise levels on the crystal length under three different transmission. The square is the experimental measurement result, and the curve is the theoretical calculation result. RBW = 100 kHz, VBW = 100 Hz

    图 7  晶体长度1.5 mm、输出耦合镜透过率30%时的真空压缩噪声谱

    Fig. 7.  Squeezed vacuum states versus the sweeping time with 1.5 mm crystal length and 30% transmission.

  • [1]

    Walls D F 1983 Nature 306 141Google Scholar

    [2]

    Xiao M, Wu L, Kimble H J 1987 Phys. Rev. Lett. 59 278Google Scholar

    [3]

    Kong J, Ou Z, Zhang W 2013 Phys. Rev. A 87 023825Google Scholar

    [4]

    Ou Z 2012 Phys. Rev. A 85 023815Google Scholar

    [5]

    Xin J, Liu J, Jing J 2017 Opt. Express 25 1350Google Scholar

    [6]

    Liu S, Lou Y, Xin J, Jing J 2018 Phys. Rev. Appl. 10 064046Google Scholar

    [7]

    Li Y, Guzun D, Xiao M 1999 Phys. Rev. Lett. 82 5225Google Scholar

    [8]

    Degen C L, Reinhard F, Cappellaro P 2017 Rev. Mod. Phys. 89 035002Google Scholar

    [9]

    Shi S, Wang Y, Yang W, Zheng Y, Peng K 2018 Opt. Lett. 43 5411Google Scholar

    [10]

    Zheng S, Lin Q, Cai Y, Zeng X, Li Y, Xu S, Fan D 2018 Photonics Res. 6 177Google Scholar

    [11]

    Menicucci N C 2014 Phys. Rev. Lett. 112 120504Google Scholar

    [12]

    Chen H, Liu J 2009 Chin. Opt. Lett. 7 440Google Scholar

    [13]

    Vahlbruch H, Mehmet M, Chelkowski S, Hage B, Franzen A, Lastzka N, Schnabel R 2008 Phys. Rev. Lett. 100 033602Google Scholar

    [14]

    Mehmet M, Ast S, Eberle T, Steinlechner S, Vahlbruch H, Schnabel R 2011 Opt. Express 19 25763Google Scholar

    [15]

    Eberle T, Steinlechner S, Bauchrowitz J, Handchen V, Vahlbruch H, Mehmet M, Schnabel R 2010 Phys. Rev. Lett. 104 251102Google Scholar

    [16]

    Vahlbruch H, Mehmet M, Danzmann K, Schnabel R 2016 Phys. Rev. Lett. 117 110801Google Scholar

    [17]

    Driel H M V 1995 Appl. Phys. B 60 411

    [18]

    de Valcárcel G J, Patera G, Treps N, Fabre C 2006 Phys. Rev. A 74 061801Google Scholar

    [19]

    Patera G, Treps N, Fabre C, de Valcárcel G J 2010 Eur. Phys. J. D 56 123Google Scholar

    [20]

    Cai Y, Roslund J, Ferrini G, Arzani F, Xu X, Fabre C, Treps N 2017 Nat. Commun. 8 15645Google Scholar

    [21]

    Lamine B, Fabre C, Treps N 2008 Phys. Rev. Lett. 101 123601Google Scholar

    [22]

    Wang S, Xiang X, Treps N, Fabre C, Liu T, Zhang S, Dong R 2018 Phys. Rev. A 98 053821Google Scholar

    [23]

    Cai, Y, Roslund J, Thiel V, Fabre C, Treps N 2021 npj Quantum Inf. 7 82Google Scholar

    [24]

    Wu L, Kimble H J, Hall J L, Wu H 1986 Phys. Rev. Lett. 57 2520Google Scholar

    [25]

    Pinel O, Jian P, de Araujo R M, Feng J, Chalopin B, Fabre C, Treps N 2012 Phys. Rev. Lett. 108 083601Google Scholar

    [26]

    Roslund, J, de Araújo R M, Jiang S, Fabre C, Treps N 2014 Nat. Photonics 8 109Google Scholar

    [27]

    Cai Y, Xiang Y, Liu Y, He Q, Treps N 2020 Phys. Rev. Res. 2 032046Google Scholar

    [28]

    刘洪雨, 陈立, 刘灵, 明莹, 刘奎, 张俊香, 郜江瑞 2013 物理学报 164206 164206Google Scholar

    Liu H Y, Chen L, Liu L, Ming Y, Liu K, Zhang J X, Gao J R 2013 Acta Phys. Sin. 164206 164206Google Scholar

    [29]

    石顺祥, 陈国夫, 赵卫, 刘继芳 2012 非线性光学 (西安: 电子科技大学出版社) 第105页

    Shi S X, Chen G F, Zhao W, Liu J F 2012 Nonlinear Optics (Xidian: University Press) p105 (in Chinese)

    [30]

    Hellwig H, Liebertz J, Bohaty L 2000 J. Appl. Phys. 88 240Google Scholar

    [31]

    Drever R W P, Hall J L, Kowalski F V, Hough J, Ford G M, Munley A J, Ward H 1983 Appl. Phys. B 31 97

    [32]

    Gehr R J, Kimmel M W, Smith A V 1998 Opt. Lett. 23 1298Google Scholar

    [33]

    周绪桂, 王燕玲, 吴洪, 丁良恩 2009 光学学报 29 2630Google Scholar

    Zhou X G, Wang Y L, Wu H, Ding L E 2009 Acta Opt. Sin. 29 2630Google Scholar

    [34]

    孟祥昊, 刘华刚, 黄见洪, 戴殊韬, 邓晶, 阮开明, 陈金明, 林文雄 2015 物理学报 64 164205Google Scholar

    Meng X H, Liu H G, Huang J H, Dai S T, Deng J, Ruan K M, Chen J M, Lin W X 2015 Acta Phys. Sin. 64 164205Google Scholar

    [35]

    Perez A M, Just F, Cavanna A, Chekhova M V, Leuchs G 2013 Laser Phys. Lett. 10 125201Google Scholar

  • [1] 李庆回, 姚文秀, 李番, 田龙, 王雅君, 郑耀辉. 明亮压缩态光场的操控及量子层析. 物理学报, 2021, 70(15): 154203. doi: 10.7498/aps.70.20210318
    [2] 温馨, 韩亚帅, 刘金玉, 白乐乐, 何军, 王军民. 低分析频率压缩光的实验制备. 物理学报, 2018, 67(2): 024207. doi: 10.7498/aps.67.20171767
    [3] 邓瑞婕, 闫智辉, 贾晓军. 基于电磁诱导透明机制的压缩光场量子存储. 物理学报, 2017, 66(7): 074201. doi: 10.7498/aps.66.074201
    [4] 李百宏, 王豆豆, 庞华锋, 张涛, 解忧, 高峰, 董瑞芳, 李永放, 张首刚. 用二元相位调制实现啁啾纠缠光子对关联时间的压缩. 物理学报, 2017, 66(4): 044206. doi: 10.7498/aps.66.044206
    [5] 刘增俊, 翟泽辉, 孙恒信, 郜江瑞. 低频压缩态光场的制备. 物理学报, 2016, 65(6): 060401. doi: 10.7498/aps.65.060401
    [6] 孙恒信, 刘奎, 张俊香, 郜江瑞. 基于压缩光的量子精密测量. 物理学报, 2015, 64(23): 234210. doi: 10.7498/aps.64.234210
    [7] 梁修东, 台运娇, 程建民, 翟龙华, 许业军. 量子相空间分布函数与压缩相干态表示间的变换关系. 物理学报, 2015, 64(2): 024207. doi: 10.7498/aps.64.024207
    [8] 邢书剑, 张福民, 曹士英, 王高文, 曲兴华. 飞秒光频梳的任意长绝对测距. 物理学报, 2013, 62(17): 170603. doi: 10.7498/aps.62.170603
    [9] 俞立先, 梁奇锋, 汪丽蓉, 朱士群. Rabi模型的光场压缩. 物理学报, 2013, 62(16): 160301. doi: 10.7498/aps.62.160301
    [10] 杨华千, 廖晓峰, Kwok-Wo Wong, 张伟, 韦鹏程. 基于SPIHT的图像加密与压缩关联算法. 物理学报, 2012, 61(4): 040505. doi: 10.7498/aps.61.040505
    [11] 王东. 正交振幅正关联正交位相反关联光束的贝尔态直接测量. 物理学报, 2010, 59(11): 7596-7601. doi: 10.7498/aps.59.7596
    [12] 敬晓丹, 吕 翎. 相空间压缩实现时空混沌系统的广义同步. 物理学报, 2008, 57(8): 4766-4770. doi: 10.7498/aps.57.4766
    [13] 王忠纯. Tavis-Cummings模型中原子运动时光场的非经典特性. 物理学报, 2006, 55(1): 192-196. doi: 10.7498/aps.55.192
    [14] 王继锁, 冯健, 刘堂昆, 詹明生. 一种新的奇偶非线性相干态及其量子统计性质. 物理学报, 2002, 51(11): 2509-2513. doi: 10.7498/aps.51.2509
    [15] 罗晓曙. 利用相空间压缩实现混沌与超混沌控制. 物理学报, 1999, 48(3): 402-407. doi: 10.7498/aps.48.402
    [16] 张俊香, 贺凌翔, 张天才, 谢常德, 彭昆墀. 压缩态光场的四阶量子干涉. 物理学报, 1999, 48(7): 1230-1235. doi: 10.7498/aps.48.1230
    [17] 谢瑞华. 二能级系统中光场压缩与原子偶极压缩间的对称特性. 物理学报, 1996, 45(9): 1463-1478. doi: 10.7498/aps.45.1463
    [18] 李高翔, 彭金生. 论Jsynes-Cummings模型中原子偶极压缩和光场压缩间的关联. 物理学报, 1995, 44(10): 1670-1678. doi: 10.7498/aps.44.1670
    [19] 彭堃墀, 黄茂全, 刘晶, 廉毅敏, 张天才, 于辰, 谢常德, 郭光灿. 双模光场压缩态的实验研究. 物理学报, 1993, 42(7): 1079-1085. doi: 10.7498/aps.42.1079
    [20] 张卫平, 谭维翰. 激光腔内压缩态光的产生. 物理学报, 1988, 37(11): 1767-1774. doi: 10.7498/aps.37.1767
计量
  • 文章访问数:  3799
  • PDF下载量:  109
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-09
  • 修回日期:  2023-02-04
  • 上网日期:  2023-02-28
  • 刊出日期:  2023-04-20

/

返回文章
返回