搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

低频压缩态光场的制备

刘增俊 翟泽辉 孙恒信 郜江瑞

引用本文:
Citation:

低频压缩态光场的制备

刘增俊, 翟泽辉, 孙恒信, 郜江瑞

Generation of low-frequency squeezed states

Liu Zeng-Jun, Zhai Ze-Hui, Sun Heng-Xin, Gao Jiang-Rui
PDF
导出引用
  • 低频压缩态光场可用于提高引力波探测器灵敏度, 近年来受到人们的广泛关注. 相对于高频段而言, 低频压缩态的产生更容易受到外界环境噪声的干扰而不易被观察到. 本文采用全固化单频倍频Nd: YVO4/KTP激光器作为光源, 利用双波长共振的光学参量振荡器实现参量过程, 以1064 nm波长的红外作为基频光, 激光器腔内倍频产生的532 nm绿光作为抽运光, 通过调节周期性极化磷酸氧钛钾晶体温度使光学参量振荡器达到双波长同时共振, 采用真空注入的方式, 利用Pound-Drever-Hall锁腔技术锁定抽运场. 输出压缩光通过平衡零拍探测, 最终在实验上获得了频率低至3 kHz的真空压缩, 所直接观察到的压缩度为2 dB.
    Squeezed state of light is an important resource of optical measuerments below the shot noise limit and has been used to improve measurement sensitivity in many areas such as gravitational wave detection, especially in audio frequency region. Compared with the high-frequency squeezed states, the generation of the low-frequency squeezed states is more difficult, because it is limited by several technical noise sources. In this paper we report the observation of more than 2 dB of vacuum squeezing at 1064 nm in the gravitational-wave detection band down to 3 kHz with a double-resonant optical parametric oscillator (OPO). The OPO has a configuration of linear cavity consisting of an input coupling mirror with a transmission of 11% at 532 nm and an output coupling mirror with the transmission of 12% at 1064 nm. The nonlinear materials in the OPO is type-I periodically poled potassium titanyl phosphate (PPKTP) crystal which is chosen for this experiment due to its higher nonlinearity, broader phase matching temperature, and smaller photo-thermal effect. The OPO is pumped by the light of 532 nm from Nd: YVO4/KTP solid-state laser of maximum optical power 3 W. To avoid various noise coupled from the seed beam, the OPO is seeded by vacuum fluctuations instead of coherent field at the fundamental wavelength (1064 nm). A Pound-Drever-Hall (PDH) locking scheme is used to lock the OPO cavity length with the signal derived from the reflected pump beam, so as to lock the pump field and also lock the fundamental field. To make both the pump and seed beams resonant simultaneously, the temperature of the PPKTP is carefully adjusted. The squeezed state can be detected on a homodyne detection by interfering it with the local oscillator (LO) and detected by a balanced detector with two photodiodes (EXT500 T) but having the same quantum efficiency of 86% at 1064 nm. The subsequent electronic noise is analyzed with a low-frequency spectrum analyzer, which shows that the audio noise sources from lab enviroment, locking quality, escape efficiency, propagation loss, homodyne efficiency and detection efficiency have effect on the squeezing pruced by an OPO.
      通信作者: 翟泽辉, zhzehui@sxu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11174189)和国家高技术研究发展计划(批准号: 2013AA8112008)资助的课题.
      Corresponding author: Zhai Ze-Hui, zhzehui@sxu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11174189), and the National High Technology Research and Development Program of China (Grant No. 2013AA8112008).
    [1]

    Kawamura S 2010 Class. Quantum Grav. 27 084001

    [2]

    Harry G M 2010 Class. Quantum Grav. 27 084006

    [3]

    Caves C M 1981 Phys. Rev. D 23 1693

    [4]

    Tobias E, Steinlechner S, Bauchrowitz J, et al. 2010 Phys. Rev. Lett. 104 251102

    [5]

    Sun H X, Liu K, Zhang J X, Gao J R 2015 Acta. Phys. Sin. 64 234210 (in chinese) [孙恒信, 刘奎, 张俊香, 郜江瑞 2015 物理学报 64 234210]

    [6]

    McKenzie K, Grosser N, Bowen W P, Whitcomb S E, Gray M B, McClelland D E, Lam P K 2004 Phys. Rev. Lett. 93 161105

    [7]

    McKenzie K, Gray M B, GoBler S, Lam P K, McClelland D E 2006 Class. Quantum Grav. 23 245

    [8]

    McKenzie K, Shaddock D A, McClelland D E 2002 Phys. Rev. Lett. 88 231102

    [9]

    Vahlbruch H, Chelkowski S, Hage B, Franzen A, Danzmann K, Schhnabel R 2005 Phys. Rev. Lett. 95 211102

    [10]

    Goda K, Miyakawa O, Mikhailov E E, Saraf S, Adhikari R, McKenzie K, Ward R, Vass S, Weinstein A J, Mavalvala N 2008 Nat. Phys. 4 472

    [11]

    The LIGO Scientific Collaboration 2011 Nat. Phys. 7 962

    [12]

    Taylor, Michael A, et al 2013 Nature Photon. 7 229

    [13]

    Travis H, Singh R, Dowling J P, Mikhailov E E 2012 Phys. Rev. A 86 023803

    [14]

    McKenzie K, Mikhailov E E, Goda K, Lam P K, Grosse N, Gray M B, Mavalvala N, McClelland D E 2005 J. Opt. Soc. Am. B 16 1705

    [15]

    Vahlbruch H, Chelkowski S, Hage B, Franzen A, Danzmann K, Schnabel R 2006 Phys. Rev. Lett. 97 011101

    [16]

    Walls D F, Milburn G J 1994 Quantum Optics (Berlin: Springer Verlag) pp141-142

  • [1]

    Kawamura S 2010 Class. Quantum Grav. 27 084001

    [2]

    Harry G M 2010 Class. Quantum Grav. 27 084006

    [3]

    Caves C M 1981 Phys. Rev. D 23 1693

    [4]

    Tobias E, Steinlechner S, Bauchrowitz J, et al. 2010 Phys. Rev. Lett. 104 251102

    [5]

    Sun H X, Liu K, Zhang J X, Gao J R 2015 Acta. Phys. Sin. 64 234210 (in chinese) [孙恒信, 刘奎, 张俊香, 郜江瑞 2015 物理学报 64 234210]

    [6]

    McKenzie K, Grosser N, Bowen W P, Whitcomb S E, Gray M B, McClelland D E, Lam P K 2004 Phys. Rev. Lett. 93 161105

    [7]

    McKenzie K, Gray M B, GoBler S, Lam P K, McClelland D E 2006 Class. Quantum Grav. 23 245

    [8]

    McKenzie K, Shaddock D A, McClelland D E 2002 Phys. Rev. Lett. 88 231102

    [9]

    Vahlbruch H, Chelkowski S, Hage B, Franzen A, Danzmann K, Schhnabel R 2005 Phys. Rev. Lett. 95 211102

    [10]

    Goda K, Miyakawa O, Mikhailov E E, Saraf S, Adhikari R, McKenzie K, Ward R, Vass S, Weinstein A J, Mavalvala N 2008 Nat. Phys. 4 472

    [11]

    The LIGO Scientific Collaboration 2011 Nat. Phys. 7 962

    [12]

    Taylor, Michael A, et al 2013 Nature Photon. 7 229

    [13]

    Travis H, Singh R, Dowling J P, Mikhailov E E 2012 Phys. Rev. A 86 023803

    [14]

    McKenzie K, Mikhailov E E, Goda K, Lam P K, Grosse N, Gray M B, Mavalvala N, McClelland D E 2005 J. Opt. Soc. Am. B 16 1705

    [15]

    Vahlbruch H, Chelkowski S, Hage B, Franzen A, Danzmann K, Schnabel R 2006 Phys. Rev. Lett. 97 011101

    [16]

    Walls D F, Milburn G J 1994 Quantum Optics (Berlin: Springer Verlag) pp141-142

  • [1] 郭晓庆, 王强, 薛海斌. 类场矩诱导的可调零场自旋转移力矩纳米振荡器. 物理学报, 2023, 72(16): 167501. doi: 10.7498/aps.72.20230628
    [2] 聂丹丹, 冯晋霞, 戚蒙, 李渊骥, 张宽收. 基于光学参量振荡器的可调谐红外激光的强度噪声特性. 物理学报, 2020, 69(9): 094205. doi: 10.7498/aps.69.20191952
    [3] 王俊萍, 张文慧, 李瑞鑫, 田龙, 王雅君, 郑耀辉. 宽频带压缩态光场光学参量腔的设计. 物理学报, 2020, 69(23): 234204. doi: 10.7498/aps.69.20200890
    [4] 刘建强, 王旭阳, 白增亮, 李永民. 时域脉冲平衡零拍探测器的高精度自动平衡. 物理学报, 2016, 65(10): 100303. doi: 10.7498/aps.65.100303
    [5] 薛佳, 秦际良, 张玉驰, 李刚, 张鹏飞, 张天才, 彭堃墀. 低频标准真空涨落的测量. 物理学报, 2016, 65(4): 044211. doi: 10.7498/aps.65.044211
    [6] 郭园园, 蒿建龙, 薛海斌, 刘喆颉. 面内形状各向异性能对自旋转矩振荡器零场振荡特性的影响. 物理学报, 2015, 64(19): 198502. doi: 10.7498/aps.64.198502
    [7] 葛烨, 胡以华, 舒嵘, 洪光烈. 一种新型的用于差分吸收激光雷达中脉冲式光学参量振荡器的种子激光器的频率稳定方法. 物理学报, 2015, 64(2): 020702. doi: 10.7498/aps.64.020702
    [8] 郭靖, 何广源, 焦中兴, 王彪. 高效率内腔式2 μm简并光学参量振荡器. 物理学报, 2015, 64(8): 084207. doi: 10.7498/aps.64.084207
    [9] 张丽梦, 胡明列, 顾澄琳, 范锦涛, 王清月. 高功率, 红光至中红外可调谐腔内和频光学参量振荡器. 物理学报, 2014, 63(5): 054205. doi: 10.7498/aps.63.054205
    [10] 张岩, 于旭东, 邸克, 李卫, 张靖. 压缩态光场平衡零拍探测的位相锁定. 物理学报, 2013, 62(8): 084204. doi: 10.7498/aps.62.084204
    [11] 李睿, 翟泽辉, 赵姝瑾, 郜江瑞. 平衡零拍平移测量实验研究. 物理学报, 2010, 59(11): 7724-7728. doi: 10.7498/aps.59.7724
    [12] 冯秀琴, 姚治海, 田作林, 韩秀宇. 简并光学参量振荡器的超混沌控制与周期态同步. 物理学报, 2010, 59(12): 8414-8419. doi: 10.7498/aps.59.8414
    [13] 王利, 毕思文, 王果果. 利用三平面腔镜共焦腔产生多模压缩光束. 物理学报, 2010, 59(1): 87-91. doi: 10.7498/aps.59.87
    [14] 叶晨光, 张 靖. 利用PPKTP晶体产生真空压缩态及其Wigner准概率分布函数的量子重构. 物理学报, 2008, 57(11): 6962-6967. doi: 10.7498/aps.57.6962
    [15] 张百钢, 姚建铨, 路 洋, 纪 峰, 张铁犁, 徐德刚, 王 鹏, 徐可欣. 抽运光角度调谐准相位匹配光学参量振荡器的研究. 物理学报, 2006, 55(3): 1231-1236. doi: 10.7498/aps.55.1231
    [16] 冯秀琴, 沈 柯. 简并光学参量振荡器混沌反控制. 物理学报, 2006, 55(9): 4455-4459. doi: 10.7498/aps.55.4455
    [17] 李永民, 吴迎瑞, 张宽收, 彭墀. 利用准相位匹配光学参量振荡器获得可调谐强度差压缩光. 物理学报, 2003, 52(4): 849-852. doi: 10.7498/aps.52.849
    [18] 李永民, 樊巧云, 张宽收, 谢常德, 彭堃墀. 三共振准相位匹配光学参量振荡器反射抽运场的正交位相压缩. 物理学报, 2001, 50(8): 1492-1495. doi: 10.7498/aps.50.1492
    [19] 冯克安. 非平衡态相变的两例——光学参量振荡和激光. 物理学报, 1978, 27(3): 322-330. doi: 10.7498/aps.27.322
    [20] 虞厥邦. 一种二拍振荡器模型的分析. 物理学报, 1963, 19(9): 567-582. doi: 10.7498/aps.19.567
计量
  • 文章访问数:  7069
  • PDF下载量:  253
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-11-04
  • 修回日期:  2015-12-28
  • 刊出日期:  2016-03-05

/

返回文章
返回