-
红外激光光源在微量气体、高分辨率光谱分析和量子光学研究等领域具有重要的应用. 本文利用锁定单共振光学参量振荡器内腔标准具的方案获得了无跳模连续调谐的红外激光输出, 理论和实验研究了红外激光的强度噪声特性, 分析了影响强度噪声的因素. 通过控制非线性晶体的温度和标准具调制信号实现了对红外激光强度噪声的抑制. 当控制非线性晶体工作温度为60 ℃, 内腔标准具调制信号为8 kHz时, 单共振光学参量振荡器输出信号光和闲置光的强度噪声分别降低了11和8 dB.
-
关键词:
- 单共振光学参量振荡器 /
- 无跳模 /
- 连续调谐红外激光 /
- 强度噪声
The infrared laser sources have important applications in many fields such as real-time detection, gas sensing or tracing, high-resolution spectral analysis and quantum optics. In this paper, we develop an infrared laser source with mode-hop-free broadband tunability by using a singly optical parametric oscillator (SRO) based on the magnesium-oxide doped periodically poled lithium niobite (MgO:PPLN) crystal. A polished lithium niobite crystal with a thickness of 1 mm is used as an etalon that is inserted into the cavity of SRO to realize continuous mode-hop-free tuning. The resonant signal in SRO is frequency stabilized to the transmission peak of intracavity etalon. Owing to the high stability of the resonator, continuous mode-hop-free tuning with a bandwidth of 2063.7 GHz for both signal and idler is realized. The oscillation threshold of SRO is 7.3 W. The signal of 4.3 W over 1551.9-1568.6 nm and idler of 2.1 W over 3307.3-3384.3 nm are generated for 22 W of pump power by tuning the temperature of the crystal from 20 ℃ to 70 ℃. The slope efficiency of 42.6% and optical conversion efficiency of 29% are obtained. Then the intensity noise characteristics of generated infrared laser are further studied theoretically and experimentally. The fluctuation characteristics of the SRO emission can be computed just by using a semiclassical approach. We analyze theoretically the factors that affect the intensity noise of the signal and idler. The temperature of the MgO:PPLN crystal and the modulation frequency of the etalon are important parameters, which can affect the intensity noise characteristics of signal and idler laser. Therefore, we investigate experimentally the variation of the intensity noise characteristics by changing the temperature of the crystal and the modulation frequency of the etalon. The intensity noise of the signal and idler laser are optimized through controlling the temperature in a range of 20-60 ℃ and the modulation frequency ranging from 2 kHz to 8 kHz, respectively. The experimental data basically accord with the theoretical calculations. When the operating temperature of the MgO:PPLN crystal is controlled at 60 ℃ and the modulation frequency of the etalon is 8 kHz, the intensity noise of the signal and the idler laser are reduced by 11 dB and 8 dB, respectively. The optimized infrared laser can provide a high-quality laser source for subsequent quantum optics research.-
Keywords:
- singly resonant optical parametric oscillator /
- mode-hop-free /
- continuously wavelength tuning infrared laser /
- intensity noise
[1] Ricciardi I, Tommasi E D, Maddaloni P, Mosca S, Rocco A, Zondy J J, Rosa M D, Natale P D 2012 Opt. Express 20 9178Google Scholar
[2] Arslanov D D, Spunei M, Ngai A K Y, et al. 2011 Appl. Phys. B 103 223Google Scholar
[3] Arslanov D D, Spunei M, Mandon J, Cristescu S M, Persijn S T, Harren F J M 2013 Laser Photonics Rev. 7 188Google Scholar
[4] Breunig I, Haertle D, Buse K 2011 Appl. Phys. B 105 99Google Scholar
[5] Dayan B, Pe'er A, Friesem A A, Silberberg Y 2004 Phys. Rev. Lett. 93 023005Google Scholar
[6] Radnaev A G, Dudin Y O, Zhao R, Jen H H, Jenkins S D, Kuzmich A, Kennedy T A B 2010 Nature Phys. 6 894Google Scholar
[7] Allgaier M, Ansari V, Sansoni L, et al. 2017 Nat. Commun. 8 14288Google Scholar
[8] Goda K, McKenzie K, Mikhailov E E, Lam P K, McClelland D E, Mavalvala N 2005 Phys. Rev. A 72 043819Google Scholar
[9] Gilchrist A, Nemoto K, Munro W J, Ralph T C, Glancy S, Braunstein S L, Milburn G J 2004 J. Opt. B: Quantum Semiclass. Opt. 6 S828Google Scholar
[10] Samanta G K, Fayaz G R, Sun Z, Ebrahim M Z 2007 Opt. Lett. 32 400Google Scholar
[11] Das R, Kumar S C, Samanta G K, Ebrahim M Z 2009 Opt. Lett. 34 3836Google Scholar
[12] Aadhi A, Chaitanya N A, Jabir M V, Singh R P, Samanta G K 2015 Opt. Lett. 40 33Google Scholar
[13] Bosenberg W R, Drobshoff A, Alexander J I 1996 Opt. Lett. 21 1336Google Scholar
[14] Vainio M, Siltanen M, Hieta T, Halonen L 2010 Opt. Lett. 35 1527Google Scholar
[15] Andrieux A, Zanon T, Cadoret M, Rihan A, Zondy J J 2011 Opt. Lett. 36 1212Google Scholar
[16] Hong X P, Shen X L, Gong M L, Wang F 2012 Opt. Lett. 37 4982Google Scholar
[17] Turnbull G A, Dunn M H, Ebrahimzadeh M 1998 Appl. Phys. B 66 701Google Scholar
[18] Sabouri S G, Khorsandi A, Ebrahimzadeh M 2012 Opt. Exp. 20 27442Google Scholar
[19] Mieth S, Henderson A, Halfmann T 2014 Opt. Exp. 22 11182Google Scholar
[20] Fabre C, Giacobino E, Heidmann A, Reynaud S 1989 J. Phys. France 50 1209Google Scholar
[21] Fabre C, Cohadon P F, Schwob C 1997 Quantum Semiclass Opt. 9 165Google Scholar
[22] Paul O, Quosig A, Bauer T, Nittmann M, Bartschke J, Anstett G, L’Huillier J A 2007 Appl. Phys. B 86 111Google Scholar
[23] Cabaret L, Camus P, Leroux R, Philip J 2001 Opt. Lett. 26 983Google Scholar
-
图 5 SRO输出光的归一化强度噪声谱随着标准具调制频率的变化 (a), (b)信号光的归一化强度噪声功率谱的理论和实验值; (c), (d)闲置光的归一化强度噪声功率谱的理论和实验值
Fig. 5. Normalized intensity noise power spectra of output light of SRO vs. modulation frequency of the etalon: (a) and (b) Theoretical and experimental data of normalized intensity noise power spectra of the signal, respectively; (c) and (d) theoretical and experimental data of normalized intensity noise power spectra of the idler, respectively.
-
[1] Ricciardi I, Tommasi E D, Maddaloni P, Mosca S, Rocco A, Zondy J J, Rosa M D, Natale P D 2012 Opt. Express 20 9178Google Scholar
[2] Arslanov D D, Spunei M, Ngai A K Y, et al. 2011 Appl. Phys. B 103 223Google Scholar
[3] Arslanov D D, Spunei M, Mandon J, Cristescu S M, Persijn S T, Harren F J M 2013 Laser Photonics Rev. 7 188Google Scholar
[4] Breunig I, Haertle D, Buse K 2011 Appl. Phys. B 105 99Google Scholar
[5] Dayan B, Pe'er A, Friesem A A, Silberberg Y 2004 Phys. Rev. Lett. 93 023005Google Scholar
[6] Radnaev A G, Dudin Y O, Zhao R, Jen H H, Jenkins S D, Kuzmich A, Kennedy T A B 2010 Nature Phys. 6 894Google Scholar
[7] Allgaier M, Ansari V, Sansoni L, et al. 2017 Nat. Commun. 8 14288Google Scholar
[8] Goda K, McKenzie K, Mikhailov E E, Lam P K, McClelland D E, Mavalvala N 2005 Phys. Rev. A 72 043819Google Scholar
[9] Gilchrist A, Nemoto K, Munro W J, Ralph T C, Glancy S, Braunstein S L, Milburn G J 2004 J. Opt. B: Quantum Semiclass. Opt. 6 S828Google Scholar
[10] Samanta G K, Fayaz G R, Sun Z, Ebrahim M Z 2007 Opt. Lett. 32 400Google Scholar
[11] Das R, Kumar S C, Samanta G K, Ebrahim M Z 2009 Opt. Lett. 34 3836Google Scholar
[12] Aadhi A, Chaitanya N A, Jabir M V, Singh R P, Samanta G K 2015 Opt. Lett. 40 33Google Scholar
[13] Bosenberg W R, Drobshoff A, Alexander J I 1996 Opt. Lett. 21 1336Google Scholar
[14] Vainio M, Siltanen M, Hieta T, Halonen L 2010 Opt. Lett. 35 1527Google Scholar
[15] Andrieux A, Zanon T, Cadoret M, Rihan A, Zondy J J 2011 Opt. Lett. 36 1212Google Scholar
[16] Hong X P, Shen X L, Gong M L, Wang F 2012 Opt. Lett. 37 4982Google Scholar
[17] Turnbull G A, Dunn M H, Ebrahimzadeh M 1998 Appl. Phys. B 66 701Google Scholar
[18] Sabouri S G, Khorsandi A, Ebrahimzadeh M 2012 Opt. Exp. 20 27442Google Scholar
[19] Mieth S, Henderson A, Halfmann T 2014 Opt. Exp. 22 11182Google Scholar
[20] Fabre C, Giacobino E, Heidmann A, Reynaud S 1989 J. Phys. France 50 1209Google Scholar
[21] Fabre C, Cohadon P F, Schwob C 1997 Quantum Semiclass Opt. 9 165Google Scholar
[22] Paul O, Quosig A, Bauer T, Nittmann M, Bartschke J, Anstett G, L’Huillier J A 2007 Appl. Phys. B 86 111Google Scholar
[23] Cabaret L, Camus P, Leroux R, Philip J 2001 Opt. Lett. 26 983Google Scholar
计量
- 文章访问数: 7501
- PDF下载量: 84
- 被引次数: 0