搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面内形状各向异性能对自旋转矩振荡器零场振荡特性的影响

郭园园 蒿建龙 薛海斌 刘喆颉

引用本文:
Citation:

面内形状各向异性能对自旋转矩振荡器零场振荡特性的影响

郭园园, 蒿建龙, 薛海斌, 刘喆颉

Effect of the intrinsic in-plane shape anisotropy on the oscillation characteristics of zero-field spin torque oscillator

Guo Yuan-Yuan, Hao Jian-Long, Xue Hai-Bin, Liu Zhe-Jie
PDF
导出引用
  • 利用Landau-Lifshitz-Gilbert-Slonczewski方程, 在理论上研究了由磁矩垂直于膜面的自由层和磁矩平行于膜面的极化层组成的自旋转矩振荡器的振荡特性. 数值结果表明面内的形状各向异性能, 可以使自旋转矩振荡器在无磁场情形下产生自激振荡. 此特性可以用能量平衡方程解释, 即面内形状各向异性能可以导致系统中自旋转矩提供的能量与阻尼过程所消耗的能量之间的平衡. 特别是, 面内的形状各向异性能越大, 自旋转矩振荡器的可操控电流范围越大, 并且产生微波信号的频率越大, 但其阈值电流几乎不变.
    The spin-torque oscillator, which can generate an AC voltage oscillation with the same frequency, have attracted considerable attention due to its potential applications in the frequency-tunable transmitters and receivers for wireless communication and the recording heads of high-density hard disk drives. However, from the energy-balance equation's point of view, in the absence of in-plane shape anisotropy of spin torque oscillator, the energy supplied by the spin torque is always larger than the energy dissipation due to the Gilbert damping, thus, a finite magnetic field applied perpendicular to the plane is required for a steady-state precession. This feature has limited its potential applications. In this paper, the influence of the intrinsic in-plane shape anisotropy on the magnetization dynamics of spin torque oscillator consisting of an in-plane polarizer and an out-of-plane free layer is studied numerically in terms of the Landau-Lifshitz-Gilbert-Slonczewski equation. It is demonstrated that the additional in-plane shape anisotropy plays a significant role in the energy balance between the energy accumulation due to the spin torque and the energy dissipation due to Gilbert damping, which can stabilize a steady-state precession. Therefore, a stable self-oscillation in the absence of the applied magnetic field can be excited by introducing additional in-plane shape anisotropy. In particular, a relatively large current region with zero-field self-oscillation, in which the corresponding microwave frequency is increased while the threshold current still maintains an almost constant value, can be obtained by introducing a relatively large intrinsic in-plane shape anisotropy. Our results suggest that a tunable spin transfer oscillator without an applied magnetic field can be realized by adjusting the intrinsic in-plane shape anisotropy, and it may be a promising configuration in the future wireless communications.
      通信作者: 薛海斌, xuehaibin@tyut.edu.cn;pandanlzj@hotmail.com ; 刘喆颉, xuehaibin@tyut.edu.cn;pandanlzj@hotmail.com
    • 基金项目: 国家自然科学基金(批准号: 11204203, 61274089)和山西省国际合作项目(批准号: 201481029-2)资助的课题.
      Corresponding author: Xue Hai-Bin, xuehaibin@tyut.edu.cn;pandanlzj@hotmail.com ; Liu Zhe-Jie, xuehaibin@tyut.edu.cn;pandanlzj@hotmail.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11204203, 61274089), and the International Technology Collaboration Program of Shanxi Province, China (Grant No. 201481029-2).
    [1]

    Slonczewski J C 1996 J. Magn. Magn. Mater. 159 L1

    [2]

    Berger L 1996 Phys. Rev. B 54 9353

    [3]

    Kiselev S I, Sankey J C, Krivorotov I N, Emley N C, Schoelkopf R J, Buhrman R A, Ralph D C 2003 Nature 425 380

    [4]

    Rippard W H, Pufall M R, Kaka S, Sliva T J, Russek S E, Katine J A 2005 Phys. Rev. Lett. 95 067203

    [5]

    Qiu Y C, Zhang Z Z, Jin Q Y, Liu Y W 2009 Appl. Phys. Lett. 95 052507

    [6]

    Jin W, Wan Z M, Liu Y W 2011 Acta Phys. Sin. 60 017502(in Chinese) [金伟, 万振茂, 刘要稳 2011 物理学报 60 017502]

    [7]

    Jin W, Liu Y W 2010 Chin. Phys. B 19 037001

    [8]

    Li Z D, He P B, Liu W M 2014 Chin. Phys. B 23 117502

    [9]

    Houssameddine D, Florez S H, Katine J A 2008 Appl. Phys. Lett. 93 022505

    [10]

    Bonetti S, Muduli P, Mancoff F, J. Akernan 2009 Appl. Phys. Lett. 94 102507

    [11]

    Zeng Z M, Amiri P K, Krivorotov I N, Zhao H, Finocchio G, Wang J P, Katine J A, Huai Y, Langer J, Galatsis K, Wang K L, Jiang H 2012 ACS Nano. 6 6115

    [12]

    Huang H B, Ma X Q, Zhao C P, Liu Z H, Chen L Q 2015 J. Magn. Magn. Mater. 373 10

    [13]

    Fang B, Zeng Z M 2014 Chin. Sei. Bull 59 1804 (in Chinese) [方彬, 曾中明 2014 科学通报 59 1804]

    [14]

    Choi H S, Kang S Y, Cho S J, Oh I Y, Shin M, Park H, Jang C, Min B C 2014 Sci. Rep. 4 5486

    [15]

    Braganca P M, Gurney B A, Wilson B A, Katine J A, Maat S, Childress J R 2010 Nanotechnology 21 235202

    [16]

    Kudo K, Nagasawa T, Mizushima K, Suto H, Sato R 2010 Appl. Phys. Express 3 043002

    [17]

    Liu H F, Syed S A, Han X F 2014 Chin. Phys. B 23 077501

    [18]

    Kubota H, Ishibashi S, Nozaki T, Nozaki T, Fukushima A, Yakushiji K, Ando K, Suzuki Y, Yuasa S 2012 J. Appl. Phys. 111 07C723

    [19]

    Kubota H, Yakushiji K, Fukushima A, Tamaru S, Konoto M, Nozaki T, Ishibashi S, Saruya T, Yakata S, Taniguchi T, Arai H, Imamura H 2013 Appl. Phys. Express 6 103003

    [20]

    Zeng Z M, Finocchio G, Zhang B, Amiri P K, Katine J A, Krivorotov I N, Huai Y, Langer J, Azzerboni B, Wang K L, Jiang H 2013 Sci. Rep. 3 1426

    [21]

    Tamaru S, Kubota H, Yakushiji K, Nozaki T, Konoto M, Fukushima A, Imamura H, Taniguchi T, Arai H, Yamji T, Yuasa S 2014 Appl. Phys. Express 7 063005

    [22]

    Taniguchi T, Arai H, Tsunegi S, Tamaru S, Kubota H, Imamura H 2013 Appl. Phys. Express 6 123003

    [23]

    Fowley C, Sluka V, Bernert K, Lindner J, Fassbender J, Rippard W H, Pufall M R, Russek S E, Deac A M 2014 Appl. Phys. Express 7 043001

    [24]

    Slonczewski J C 2005 Phys. Rev. B 71 024411

    [25]

    Slonczewski J C, Sun J Z 2007 J. Magn. Magn. Mater. 310 169

    [26]

    Coey J M D 2010 Magnetism and Magnetic Materials (Cambridge: Cambridge University Press) p168

    [27]

    Taniguchi T 2014 Appl. Phys. Express 7 053004

  • [1]

    Slonczewski J C 1996 J. Magn. Magn. Mater. 159 L1

    [2]

    Berger L 1996 Phys. Rev. B 54 9353

    [3]

    Kiselev S I, Sankey J C, Krivorotov I N, Emley N C, Schoelkopf R J, Buhrman R A, Ralph D C 2003 Nature 425 380

    [4]

    Rippard W H, Pufall M R, Kaka S, Sliva T J, Russek S E, Katine J A 2005 Phys. Rev. Lett. 95 067203

    [5]

    Qiu Y C, Zhang Z Z, Jin Q Y, Liu Y W 2009 Appl. Phys. Lett. 95 052507

    [6]

    Jin W, Wan Z M, Liu Y W 2011 Acta Phys. Sin. 60 017502(in Chinese) [金伟, 万振茂, 刘要稳 2011 物理学报 60 017502]

    [7]

    Jin W, Liu Y W 2010 Chin. Phys. B 19 037001

    [8]

    Li Z D, He P B, Liu W M 2014 Chin. Phys. B 23 117502

    [9]

    Houssameddine D, Florez S H, Katine J A 2008 Appl. Phys. Lett. 93 022505

    [10]

    Bonetti S, Muduli P, Mancoff F, J. Akernan 2009 Appl. Phys. Lett. 94 102507

    [11]

    Zeng Z M, Amiri P K, Krivorotov I N, Zhao H, Finocchio G, Wang J P, Katine J A, Huai Y, Langer J, Galatsis K, Wang K L, Jiang H 2012 ACS Nano. 6 6115

    [12]

    Huang H B, Ma X Q, Zhao C P, Liu Z H, Chen L Q 2015 J. Magn. Magn. Mater. 373 10

    [13]

    Fang B, Zeng Z M 2014 Chin. Sei. Bull 59 1804 (in Chinese) [方彬, 曾中明 2014 科学通报 59 1804]

    [14]

    Choi H S, Kang S Y, Cho S J, Oh I Y, Shin M, Park H, Jang C, Min B C 2014 Sci. Rep. 4 5486

    [15]

    Braganca P M, Gurney B A, Wilson B A, Katine J A, Maat S, Childress J R 2010 Nanotechnology 21 235202

    [16]

    Kudo K, Nagasawa T, Mizushima K, Suto H, Sato R 2010 Appl. Phys. Express 3 043002

    [17]

    Liu H F, Syed S A, Han X F 2014 Chin. Phys. B 23 077501

    [18]

    Kubota H, Ishibashi S, Nozaki T, Nozaki T, Fukushima A, Yakushiji K, Ando K, Suzuki Y, Yuasa S 2012 J. Appl. Phys. 111 07C723

    [19]

    Kubota H, Yakushiji K, Fukushima A, Tamaru S, Konoto M, Nozaki T, Ishibashi S, Saruya T, Yakata S, Taniguchi T, Arai H, Imamura H 2013 Appl. Phys. Express 6 103003

    [20]

    Zeng Z M, Finocchio G, Zhang B, Amiri P K, Katine J A, Krivorotov I N, Huai Y, Langer J, Azzerboni B, Wang K L, Jiang H 2013 Sci. Rep. 3 1426

    [21]

    Tamaru S, Kubota H, Yakushiji K, Nozaki T, Konoto M, Fukushima A, Imamura H, Taniguchi T, Arai H, Yamji T, Yuasa S 2014 Appl. Phys. Express 7 063005

    [22]

    Taniguchi T, Arai H, Tsunegi S, Tamaru S, Kubota H, Imamura H 2013 Appl. Phys. Express 6 123003

    [23]

    Fowley C, Sluka V, Bernert K, Lindner J, Fassbender J, Rippard W H, Pufall M R, Russek S E, Deac A M 2014 Appl. Phys. Express 7 043001

    [24]

    Slonczewski J C 2005 Phys. Rev. B 71 024411

    [25]

    Slonczewski J C, Sun J Z 2007 J. Magn. Magn. Mater. 310 169

    [26]

    Coey J M D 2010 Magnetism and Magnetic Materials (Cambridge: Cambridge University Press) p168

    [27]

    Taniguchi T 2014 Appl. Phys. Express 7 053004

  • [1] 郭晓庆, 王强, 薛海斌. 类场矩诱导的可调零场自旋转移力矩纳米振荡器. 物理学报, 2023, 72(16): 167501. doi: 10.7498/aps.72.20230628
    [2] 刘景良, 陈薪羽, 王睿明, 吴春婷, 金光勇. 基于中红外光参量振荡器光束质量优化的90°像旋转四镜非平面环形谐振腔型设计与分析. 物理学报, 2019, 68(17): 174201. doi: 10.7498/aps.68.20182001
    [3] 许碧荣, 王光义. 忆感器文氏电桥振荡器. 物理学报, 2017, 66(2): 020502. doi: 10.7498/aps.66.020502
    [4] 于永吉, 陈薪羽, 成丽波, 王超, 吴春婷, 董渊, 李述涛, 金光勇. 基于MgO:APLN的1.57m/3.84m连续波内腔多光参量振荡器研究. 物理学报, 2015, 64(22): 224215. doi: 10.7498/aps.64.224215
    [5] 郭靖, 何广源, 焦中兴, 王彪. 高效率内腔式2 μm简并光学参量振荡器. 物理学报, 2015, 64(8): 084207. doi: 10.7498/aps.64.084207
    [6] 张丽梦, 胡明列, 顾澄琳, 范锦涛, 王清月. 高功率, 红光至中红外可调谐腔内和频光学参量振荡器. 物理学报, 2014, 63(5): 054205. doi: 10.7498/aps.63.054205
    [7] 张大鹏, 胡明列, 谢辰, 柴路, 王清月. 基于非线性偏振旋转锁模的高功率光子晶体光纤飞秒激光振荡器. 物理学报, 2012, 61(4): 044206. doi: 10.7498/aps.61.044206
    [8] 于达仁, 卿绍伟, 王晓钢, 丁永杰, 段萍. 电子温度各向异性对霍尔推力器BN绝缘壁面鞘层特性的影响. 物理学报, 2011, 60(2): 025204. doi: 10.7498/aps.60.025204
    [9] 崔前进, 徐一汀, 宗楠, 鲁远甫, 程贤坤, 彭钦军, 薄勇, 崔大复, 许祖彦. 高功率腔内双共振2μm光参量振荡器特性研究. 物理学报, 2009, 58(3): 1715-1718. doi: 10.7498/aps.58.1715
    [10] 禹思敏. 四阶Colpitts混沌振荡器. 物理学报, 2008, 57(6): 3374-3379. doi: 10.7498/aps.57.3374
    [11] 张运俭, 孟凡宝, 范植开, 罗 雄. 高效强流径向分离腔振荡器研究. 物理学报, 2008, 57(2): 975-979. doi: 10.7498/aps.57.975
    [12] 黄 华, 甘延青, 雷禄容, 金 晓, 鞠炳权, 向 飞, 冯弟超, 刘 忠. S波段相对论速调管振荡器研究. 物理学报, 2008, 57(3): 1765-1770. doi: 10.7498/aps.57.1765
    [13] 李正红, 常安碧, 鞠炳全, 张永辉, 向 飞, 赵殿林, 甘延青, 刘 忠, 苏 昶, 黄 华. 准两腔振荡器的理论和实验研究. 物理学报, 2007, 56(5): 2603-2607. doi: 10.7498/aps.56.2603
    [14] 冯秀琴, 沈 柯. 简并光学参量振荡器混沌反控制. 物理学报, 2006, 55(9): 4455-4459. doi: 10.7498/aps.55.4455
    [15] 李正红, 孟凡宝, 常安碧, 黄 华, 马乔生. 两腔高功率微波振荡器研究. 物理学报, 2005, 54(8): 3578-3583. doi: 10.7498/aps.54.3578
    [16] 邓诚先, 李正佳, 朱长虹. 具有腔内光放大的单共振光参量振荡器. 物理学报, 2005, 54(10): 4754-4760. doi: 10.7498/aps.54.4754
    [17] 李永民, 樊巧云, 张宽收, 谢常德, 彭堃墀. 三共振准相位匹配光学参量振荡器反射抽运场的正交位相压缩. 物理学报, 2001, 50(8): 1492-1495. doi: 10.7498/aps.50.1492
    [18] 冯秉铨, 徐秉铮. 预测强力振荡器工作情形的图解方法. 物理学报, 1951, 8(1): 64-72. doi: 10.7498/aps.8.64
    [19] 冯秉铨, 许鹏飞. 强力振荡器之相角补偿. 物理学报, 1950, 7(6): 59-71. doi: 10.7498/aps.7.59-2
    [20] 冯秉铨. 强力振荡器之板极效率. 物理学报, 1949, 7(4): 249-257. doi: 10.7498/aps.7.43
计量
  • 文章访问数:  5995
  • PDF下载量:  168
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-04-13
  • 修回日期:  2015-06-02
  • 刊出日期:  2015-10-05

/

返回文章
返回