搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

忆感器文氏电桥振荡器

许碧荣 王光义

引用本文:
Citation:

忆感器文氏电桥振荡器

许碧荣, 王光义

Meminductive Wein-bridge chaotic oscillator

Xu Bi-Rong, Wang Guang-Yi
PDF
导出引用
  • 为了探索新型忆感器的特性,提出了一种新的忆感器模型,该模型考虑了内部变量的影响,更符合未来实际忆感器的性能.建立了其等效电路,分析了其特性.利用该忆感器模型,设计了一种忆感器文氏电桥混沌振荡器,分析了系统的稳定性和动力学行为.研究发现,此系统不仅存在周期、拟周期和混沌等多种状态,还发现了一些重要的动力学现象,如恒Lyapunov指数谱、非线性调幅、共存分岔模式和吸引子共存等复杂非线性现象,说明了这些特殊现象的基本机理和潜在应用.最后进行电路实验验证,验证了该振荡器的混沌特性.
    A meminductor is a new type of memory device. It is of importance to study meminductor model and its application in nonlinear circuit prospectively. For this purpose, we present a novel mathematical model of meminductor, which considers the effects of internal state variable and therefore will be more consistent with future actual meminductor device. By using several operational amplifiers, multipliers, capacitors and resistors, the equivalent circuit of the model is designed for exploring its characteristics. This equivalent circuit can be employed to design meminductor-based application circuits as a meminductor emulator. By employing simulation experiment, we investigate the characteristics of this meminductor driven by sinusoidal excitation. The characteristic curves of current-flux (i-φ), voltage-flux (v-φ), v-ρ (internal variable of meminductor) and φ-ρ for the meminductor model are given by theoretical analyses and simulations. The curve of current-flux (i-φ) is a pinched hysteretic loop passing through the origin. The area bounding each sub-loop deforms as the frequency varies, and with the increase of frequency, the shape of the pinched hysteretic loop tends to be a straight line, indicating a dependence on frequency for the meminductor. Based on the meminductor model, a meminductive Wien-bridge chaotic oscillator is designed and analyzed. Some dynamical properties, including equilibrium points and the stability, bifurcation and Lyapunov exponent of the oscillator, are investigated in detail by theoretical analyses and simulations. By utilizing Lyapunov spectrum, bifurcation diagram and dynamical map, it is found that the system has periodic, quasi-periodic and chaotic states. Furthermore, there exist some complicated nonlinear phenomena for the system, such as constant Lyapunov exponent spectrum and nonlinear amplitude modulation of chaotic signals. Moreover, we also find the nonlinear phenomena of coexisting bifurcation and coexisting attractors, including coexistence of two different chaotic attractors and coexistence of two different periodic attractors. The phenomenon shows that the state of this oscilator is highly sensitive to its initial valuse, not only for chaotic state but also for periodic state, which is called coexistent oscillation in this paper. The basic mechanism and potential applications of the existing attractors are illustrated, which can be used to generate robust pseudo random sequence, or multiplexed pseudo random sequence. Finally, by using the equivalent circuit of the proposed meminducive model, we realize an analog electronic circuit of the meminductive Wien-bridge chaotic system. The results of circuit experiment are displayed by the oscilloscope, which can verify the chaotic characteristics of the oscillator. The oscillator, as a pseudo random signal source, can be used to generate chaotic signals for the applications in chaotic cryptography and secret communications.
      通信作者: 王光义, wanggyi@163.com
    • 基金项目: 国家自然科学基金(批准号:61271064,60971046,61401134)、浙江省自然科学基金(批准号:LZ12F01001,LQ14F010008)、福建省自然科学基金(批准号:2016J01761)和浙江省重点科技创新团队(批准号:2010R50010)资助的课题.
      Corresponding author: Wang Guang-Yi, wanggyi@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61271064, 60971046, 61401134), the Natural Science Foundations of Zhejiang Province, China (Grant Nos. LZ12F01001, LQ14F010008), the Natural Science Foundations of Fujian Province, China (Grant No. 2016J01761), and the Program for Zhejiang Leading Team of S&T Innovation, China (Grant No. 2010R50010).
    [1]

    Chua L O 1971 IEEE Trans. Circuit Theory 18 507

    [2]

    Tour J M, He T 2008 Nature 453 42

    [3]

    Strukov D B, Snider G S, Stewart D R, Williams R S 2008 Nature 453 80

    [4]

    Mostafa H, Ismail Y 2016 IEEE Trans. Semicond. Manuf. 29 145

    [5]

    Bass O, Fish A, Naveh D 2015 Radioengineering 24 425

    [6]

    Duan S K, Hu X F, Dong Z K, Wang L D, Mazumder P 2015 IEEE Trans. Neural Networks Learn. Syst. 26 1202

    [7]

    Wang L D, Duan M T, Duan S K, Hu X F 2014 Sci. China:Inform. Sci. 44 920(in Chinese)[王丽丹, 段美涛, 段书凯, 胡小方2014中国科学:信息科学44920]

    [8]

    Semary M S, Malek H L A, Hassan H N, Radwan A G 2016 Microelectron. J. 51 58

    [9]

    Yang X, Adeyemo A A, Jabir A, Mathew J 2016 Electron. Lett. 52 906

    [10]

    Di Ventra M, Pershin Y V, Chua L O 2009 Proc. IEEE 97 1717

    [11]

    Chua L O 1978 Guest Lectures of the 1978 European Conference on Circuit Theory and Design p81

    [12]

    Chua L O 2003 Proc. IEEE 91 1830

    [13]

    Chua L O 20092014 ACS Nano 8 10043

    [14]

    Pershin Y V, Di Ventra M 2010 Electron. Lett. 46 517

    [15]

    Pershin Y V, Di Ventra M 2011 Electron. Lett. 47 243

    [16]

    Liang Y, Yu D S, Chen H 2013 Acta Phys. Sin. 62 158501 (in Chinese)[梁燕, 于东升, 陈昊2013物理学报62 158501]

    [17]

    Sah M P, Budhathoki R K, Yang C, Kim H 2014 Circ. Syst. Signal Pr. 33 2363

    [18]

    Liang Y, Chen H, Yu D S 2014 IEEE Trans. Circuits Syst. Ⅱ 61 299

    [19]

    Biolek D, Biolek Z, Biolková V 2011 Analog Integr. Circ. S. 66 129

    [20]

    Wang H, Wang X, Li C D, Chen L 2013 Abstr. Appl. Anal. 2013 281675

    [21]

    Zheng C Y, Yu D S, Liang Y, Chen M K 2015 Chin. Phys. B 24 110701

    [22]

    Yuan F, Wang G Y, Jin P P 2015 Acta Phys. Sin. 64 210504 (in Chinese)[袁方, 王光义, 靳培培2015物理学报64 210504]

    [23]

    Wang G Y, Jin P P, Wang X W, Shen Y R, Yuan F, Wang X Y 2016 Chin. Phys. B 25 090502

    [24]

    Yu Q, Bao B C, Xu Q, Chen M, Hu W 2015 Acta Phys. Sin. 64 170503 (in Chinese)[俞清, 包伯成, 徐权, 陈墨, 胡文2015物理学报64 170503]

    [25]

    Li Z J, Zeng Y C 2014 J. Electron. Inform. Technol. 36 88 (in Chinese)[李志军, 曾以成2014电子与信息学报3688]

    [26]

    Yu J T, Li Y, Mu X M, Zhang J J, Miao X S, Wang S N 2015 Radioengineering 24 808

    [27]

    Xu Z T, Jin K J, Gu L, Jin Y L, Ge C, Wang C, Guo H Z, Lu H B, Zhao R Q, Yang G Z 2012 Small 8 1279

    [28]

    Shevchenko S N, van der Ploeg S H W, Grajcar M, Il'ichev E, Omelyanchouk A N, Meyer H G 2008 Phys. Rev. B 78 174527

    [29]

    Chen M, Yu J J, Yu Q, Li C D, Bao B C 2014 Entropy 16 6464

    [30]

    Deng W, Fang J, Wu Z J 2015 Optik 126 5468

    [31]

    Li C B, Wang J, Hu W 2012 Nonlinear Dyn. 68 575

  • [1]

    Chua L O 1971 IEEE Trans. Circuit Theory 18 507

    [2]

    Tour J M, He T 2008 Nature 453 42

    [3]

    Strukov D B, Snider G S, Stewart D R, Williams R S 2008 Nature 453 80

    [4]

    Mostafa H, Ismail Y 2016 IEEE Trans. Semicond. Manuf. 29 145

    [5]

    Bass O, Fish A, Naveh D 2015 Radioengineering 24 425

    [6]

    Duan S K, Hu X F, Dong Z K, Wang L D, Mazumder P 2015 IEEE Trans. Neural Networks Learn. Syst. 26 1202

    [7]

    Wang L D, Duan M T, Duan S K, Hu X F 2014 Sci. China:Inform. Sci. 44 920(in Chinese)[王丽丹, 段美涛, 段书凯, 胡小方2014中国科学:信息科学44920]

    [8]

    Semary M S, Malek H L A, Hassan H N, Radwan A G 2016 Microelectron. J. 51 58

    [9]

    Yang X, Adeyemo A A, Jabir A, Mathew J 2016 Electron. Lett. 52 906

    [10]

    Di Ventra M, Pershin Y V, Chua L O 2009 Proc. IEEE 97 1717

    [11]

    Chua L O 1978 Guest Lectures of the 1978 European Conference on Circuit Theory and Design p81

    [12]

    Chua L O 2003 Proc. IEEE 91 1830

    [13]

    Chua L O 20092014 ACS Nano 8 10043

    [14]

    Pershin Y V, Di Ventra M 2010 Electron. Lett. 46 517

    [15]

    Pershin Y V, Di Ventra M 2011 Electron. Lett. 47 243

    [16]

    Liang Y, Yu D S, Chen H 2013 Acta Phys. Sin. 62 158501 (in Chinese)[梁燕, 于东升, 陈昊2013物理学报62 158501]

    [17]

    Sah M P, Budhathoki R K, Yang C, Kim H 2014 Circ. Syst. Signal Pr. 33 2363

    [18]

    Liang Y, Chen H, Yu D S 2014 IEEE Trans. Circuits Syst. Ⅱ 61 299

    [19]

    Biolek D, Biolek Z, Biolková V 2011 Analog Integr. Circ. S. 66 129

    [20]

    Wang H, Wang X, Li C D, Chen L 2013 Abstr. Appl. Anal. 2013 281675

    [21]

    Zheng C Y, Yu D S, Liang Y, Chen M K 2015 Chin. Phys. B 24 110701

    [22]

    Yuan F, Wang G Y, Jin P P 2015 Acta Phys. Sin. 64 210504 (in Chinese)[袁方, 王光义, 靳培培2015物理学报64 210504]

    [23]

    Wang G Y, Jin P P, Wang X W, Shen Y R, Yuan F, Wang X Y 2016 Chin. Phys. B 25 090502

    [24]

    Yu Q, Bao B C, Xu Q, Chen M, Hu W 2015 Acta Phys. Sin. 64 170503 (in Chinese)[俞清, 包伯成, 徐权, 陈墨, 胡文2015物理学报64 170503]

    [25]

    Li Z J, Zeng Y C 2014 J. Electron. Inform. Technol. 36 88 (in Chinese)[李志军, 曾以成2014电子与信息学报3688]

    [26]

    Yu J T, Li Y, Mu X M, Zhang J J, Miao X S, Wang S N 2015 Radioengineering 24 808

    [27]

    Xu Z T, Jin K J, Gu L, Jin Y L, Ge C, Wang C, Guo H Z, Lu H B, Zhao R Q, Yang G Z 2012 Small 8 1279

    [28]

    Shevchenko S N, van der Ploeg S H W, Grajcar M, Il'ichev E, Omelyanchouk A N, Meyer H G 2008 Phys. Rev. B 78 174527

    [29]

    Chen M, Yu J J, Yu Q, Li C D, Bao B C 2014 Entropy 16 6464

    [30]

    Deng W, Fang J, Wu Z J 2015 Optik 126 5468

    [31]

    Li C B, Wang J, Hu W 2012 Nonlinear Dyn. 68 575

  • [1] 郭慧朦, 梁燕, 董玉姣, 王光义. 蔡氏结型忆阻器的简化及其神经元电路的硬件实现. 物理学报, 2023, 72(7): 070501. doi: 10.7498/aps.72.20222013
    [2] 丁大为, 卢小齐, 胡永兵, 杨宗立, 王威, 张红伟. 分数阶忆阻耦合异质神经元的多稳态及硬件实现. 物理学报, 2022, 71(23): 230501. doi: 10.7498/aps.71.20221525
    [3] 朱雷杰, 王发强. 基于Knowm忆阻器的新型忆感器模型的设计与分析. 物理学报, 2019, 68(19): 198501. doi: 10.7498/aps.68.20190793
    [4] 郑广超, 刘崇新, 王琰. 一种具有隐藏吸引子的分数阶混沌系统的动力学分析及有限时间同步. 物理学报, 2018, 67(5): 050502. doi: 10.7498/aps.67.20172354
    [5] 苏斌斌, 陈建军, 吴正茂, 夏光琼. 混沌光注入垂直腔面发射激光器混沌输出的时延和带宽特性. 物理学报, 2017, 66(24): 244206. doi: 10.7498/aps.66.244206
    [6] 杨科利. 耦合不连续系统同步转换过程中的多吸引子共存. 物理学报, 2016, 65(10): 100501. doi: 10.7498/aps.65.100501
    [7] 阮静雅, 孙克辉, 牟俊. 基于忆阻器反馈的Lorenz超混沌系统及其电路实现. 物理学报, 2016, 65(19): 190502. doi: 10.7498/aps.65.190502
    [8] 袁方, 王光义, 靳培培. 一种忆感器模型及其振荡器的动力学特性研究. 物理学报, 2015, 64(21): 210504. doi: 10.7498/aps.64.210504
    [9] 杨芳艳, 冷家丽, 李清都. 基于Chua电路的四维超混沌忆阻电路. 物理学报, 2014, 63(8): 080502. doi: 10.7498/aps.63.080502
    [10] 李志军, 曾以成, 李志斌. 改进型细胞神经网络实现的忆阻器混沌电路. 物理学报, 2014, 63(1): 010502. doi: 10.7498/aps.63.010502
    [11] 艾星星, 孙克辉, 贺少波, 王会海. 简化Lorenz多涡卷混沌吸引子的设计与应用. 物理学报, 2014, 63(12): 120511. doi: 10.7498/aps.63.120511
    [12] 黄沄. 一类多翼蝴蝶混沌吸引子及其电路实现. 物理学报, 2014, 63(8): 080505. doi: 10.7498/aps.63.080505
    [13] 梁燕, 于东升, 陈昊. 基于模拟电路的新型忆感器等效模型. 物理学报, 2013, 62(15): 158501. doi: 10.7498/aps.62.158501
    [14] 史正平. 简易混沌振荡器的混沌特性及其反馈控制电路的设计. 物理学报, 2010, 59(9): 5940-5948. doi: 10.7498/aps.59.5940
    [15] 张莹, 雷佑铭, 方同. 混沌吸引子的对称破缺激变. 物理学报, 2009, 58(6): 3799-3805. doi: 10.7498/aps.58.3799
    [16] 卢伟国, 周雒维, 罗全明, 杜 雄. BOOST变换器延迟反馈混沌控制及其优化. 物理学报, 2007, 56(11): 6275-6281. doi: 10.7498/aps.56.6275
    [17] 颜森林, 汪胜前. 激光混沌串联同步以及混沌中继器系统理论研究. 物理学报, 2006, 55(4): 1687-1695. doi: 10.7498/aps.55.1687
    [18] 颜森林. 量子阱激光器混沌相位控制同步以及编码研究. 物理学报, 2005, 54(3): 1098-1104. doi: 10.7498/aps.54.1098
    [19] 李国辉. 基于观测器的混沌广义同步解析设计. 物理学报, 2004, 53(4): 999-1002. doi: 10.7498/aps.53.999
    [20] 刘崇新. 蔡氏对偶混沌电路分析. 物理学报, 2002, 51(6): 1198-1202. doi: 10.7498/aps.51.1198
计量
  • 文章访问数:  6620
  • PDF下载量:  394
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-07-29
  • 修回日期:  2016-11-05
  • 刊出日期:  2017-01-20

/

返回文章
返回