搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

ZnO-Bi2O3系压敏陶瓷缺陷弛豫特性的研究进展

赵小强 赵学童 许超 李巍巍 任路路 廖瑞金 李建英

引用本文:
Citation:

ZnO-Bi2O3系压敏陶瓷缺陷弛豫特性的研究进展

赵小强, 赵学童, 许超, 李巍巍, 任路路, 廖瑞金, 李建英

Recent research progress of relaxation performances of defects in ZnO-Bi2O3 varistor ceamics

Zhao Xiao-Qiang, Zhao Xue-Tong, Xu Chao, Li Wei-Wei, Ren Lu-Lu, Liao Rui-Jin, Li Jian-Ying
PDF
导出引用
  • 由于具有良好的非欧姆特性,ZnO压敏陶瓷被广泛用于电子线路和电力系统的浪涌吸收和瞬态过电压抑制,因此,ZnO压敏陶瓷材料的发展一直备受国内外学者和业界的关注.然而,ZnO压敏陶瓷内部的缺陷结构及其引起的弛豫过程与ZnO压敏陶瓷电性能之间的关联还不清楚,一直是研发新型ZnO压敏陶瓷所要面临的挑战.本文综述了ZnO压敏陶瓷的缺陷类型、理论计算,着重分析了不同缺陷的相应弛豫表征方法,并对ZnO压敏陶瓷的缺陷弛豫机理及其与电老化特性的关联等方面进行了评述.
    ZnO varistor ceramics have been widely applied to surge absorption and over-voltage protection in electronic circuit and power system because of their excellent non-ohmic characteristics.Therefore,the reaserch on ZnO varistor ceramic has long been a subject of interest for scholars and industrial circles.At present,the conductance theory of ZnO varistor ceramic has been widely studied and reviewed,and several models such as space charge limited current model,NordheimFowler tunneling current model,and Schottky barrier model have been proposed to describe the electronic transmission process and explain the non-ohmic behavior of ZnO ceramic varistor.However,the relationships of the defect structure and defect relaxation with the electrical property of ZnO varistor ceramic remain unclear,which becomes a challenge to developing new ZnO varistor ceramics.In this paper,comments on defect structures and defect types of ZnO ceramics are given,and the theortical calculation of the intrinsic point defects is discussed.Besides,the characterization technologies of the defect relaxations are introduced.The results show that the dielectric loss spectra are widely used to describe the relaxation of ZnO ceramic varistor,especially the spectra in the low frequency can provide more information about defect relaxation of ZnO ceramic varistor.It is also found that the frequency spectra of admittance in a wide temperature range and the temperature spectra of admittance in a wide frequency range play an equivalent role in characterizing the defect relaxation of ZnO ceramic varistor.The thermally stimulated current is considered to be an effective method to verify the relaxation polarization mechanism of the defects.The deep level transient spectroscopy can characterize the intrinsic and extrinsic defect relaxation processes.Moreover,several theories of relaxation mechanisms such as the Cole-Cole theory,Havriliak-Negami theory and Cole-Davidson theory are proposed to analyze the relaxation phenomena of ZnO ceramic varistors.It is suggested that the electric modulus spectrum combined with Cole-Davidson theory is more effective to characterize the defect relaxations in a wide temperature range.From the electrical degradation results, it is found that the extrinsic defect relaxation at grain boundary interface is closely related to the electrical property of ZnO ceramic varistor.A circuit model is also obtained to establish the correlation between defect relaxation and electrical performance of ZnO ceramic varistor.Therefore,the review on defect relaxations may offer some new ideas to optimize the electrical properties of ZnO ceramic varistors by modifying the defect structures.
      通信作者: 赵学童, zxt201314@cqu.edu.cn
    • 基金项目: 国家自然科学基金青年科学基金(批准号:51407019)、中央高校基本科研业务费(批准号:106112015CDJZR155509)和输变电装备及系统安全与新技术国家重点实验室培育基金(批准号:2007DA10512716302)资助的课题.
      Corresponding author: Zhao Xue-Tong, zxt201314@cqu.edu.cn
    • Funds: Project supported the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 51407019), the Fundamental Research Fund for the Central Universities, China (Grant No. 106112015CDJZR155509), and the Research Fund from the State Key Laboratory of Power Transmission Equipment & System Security and New Technology, China (Grant No. 2007DA10512716302).
    [1]

    Moulson A J, Herbert J M 2003 Electroceramics (Vol. 2) (Chichester:Wiley) pp150-156

    [2]

    Clarke D R 1999 J. Am. Ceram. Soc. 82 485

    [3]

    Wang Z L, Li S T 2009 Manufacture and Application of ZnO Varistor Ceramics (Beijing:Science Press) pp1-3(in Chinese)[王振林, 李盛涛2009氧化锌压敏陶瓷制造及应用(北京:科学出版社)第1–3页]

    [4]

    Levinson L M, Philipp H R 1975 J. Appl. Phys. 46 1332

    [5]

    Matsuoka M 1971 Jpn. J. Appl. Phys 10 736

    [6]

    Mahan G D, Levinson L M, Philipp H R 1979 J. Appl. Phys. 50 2799

    [7]

    Pike G E 1981 Mater. Res. Soc. Symp. Proc. 5 369

    [8]

    Blatter G, Greuter F 1986 Phys. Rev. B 34 8555

    [9]

    Choi J S, Yo C H 1976 J. Phys. Chem. Solids 37 1149

    [10]

    Allsopp H J, Roberts J P 1959 Trans. Faraday Soc. 55 1386

    [11]

    DupontPavlovsky N, Caralp F, Delhaes P, Amiell J 1976 Phys. Status Solidi A 35 615

    [12]

    Li S T, Cheng P F, Wang Y P, Zhu B 2007 Insulators and Surge Arresters 5 19 (in Chinese)[李盛涛, 成鹏飞, 王玉平, 朱斌2007电瓷避雷器5 19]

    [13]

    Levin J D 1975 CRC Crit. Rev. Sol. Stat. Sci. 5 597

    [14]

    Blatter G, Greuter F 1986 Phys. Rev. B 33 3952

    [15]

    Castro M S, Aldao C M 1993 Appl. Phys. Lett. 63 1077

    [16]

    Gupta T K 1990 J. Am. Ceram. Soc. 73 1817

    [17]

    He J L, Cheng C L, Hu J 2016 AIP Adv. 6 030701

    [18]

    Li J Y, Li S T, Cheng P F, Alim M A 2015 J. Mater. Sci. Mater. Electron. 26 4782

    [19]

    Levinson L M, Philipp H R 1976 J. Appl. Phys. 47 1117

    [20]

    Chiou B S, Chung M C 1991 J. Electron. Mater. 20 885

    [21]

    Zhang M R, Liu F Y, Liu Z Y 1991 Proceedings of the 3rd International Conference on Properties and Applications of Dielectric Materials Tokyo, Japan July 8-12, 1991 p513

    [22]

    Tsuda K, Mukae K 1989 J. Ceram. Soc. Jpn. 97 1211

    [23]

    Oba F, Nishitani S R, Isotani S, Adachi H, Tanaka I 2001 J. Appl. Phys. 90 824

    [24]

    Look D C, Claflin B 2001 Phys. Status Soldi 41 624

    [25]

    Lin J J, Li S T, He J Q, Liu W F 2016 Int. J. Inorg. Mater. 31 981 (in Chinese)[蔺家骏, 李盛涛, 何锦强, 刘文凤2016无机材料学报31 981]

    [26]

    Li J Y, Li S T, Liu F Y, Alim M A 2006 J. Mater. Sci.:Mater. Electron. 17 211

    [27]

    Zhao X T, Li J Y, Jia R, Li S T 2013 Acta Phys. Sin. 62 077701 (in Chinese)[赵学童, 李建英, 贾然, 李盛涛2013物理学报62 077701]

    [28]

    Zhao X T, Li J Y, Li H, Li S T 2012 Acta Phys. Sin. 61 153103 (in Chinese)[赵学童, 李建英, 李欢, 李盛涛2012物理学报61 153103]

    [29]

    Addison W E 1953 Structural Principles in Inorganic Compounds (New York:Wiley) p57

    [30]

    Erhart P, Albe K, Klein A 2006 Phys. Rev. B 73 205203

    [31]

    Janotti A, van de WAlle C G 2007 Phys. Rev. B 76 165202

    [32]

    Janotti A, van de Walle G G 2005 Appl. Phys. Lett. 87 122

    [33]

    Eda K, Iga A, Matsuoka M 1979 Jpn. J. Appl. Phys. 18 997

    [34]

    Eda K, Iga A, Matsuoka M 1980 J. Appl. Phys. 51 2678

    [35]

    Kohan A F, Ceder G, Morgan D, van de Walle C G 2000 Phys. Rev. B 61 15019

    [36]

    Gupta T K, Carlson W G 1985 J. Mater. Sci. 20 3487

    [37]

    Levinson L M, Phillipp H R 1974 Appl. Phys. Lett. 24 75

    [38]

    Zhao X T, Liao R J, Liang N C, Yang L J, Li J, Li J Y 2014 J. Appl. Phys. 116 014103

    [39]

    Eda K 1989 IEEE Electr. Insul. Mag. 5 28

    [40]

    Selim A F, Gupta T K, Hower P L, Carlson W G 1980 J. Appl. Phys. 51 765

    [41]

    Levine J D 1971 J. Appl. Phys. 42 3991

    [42]

    Levinson L M, Philipp H R 1978 J. Appl. Phys. 49 6142

    [43]

    Cordaro J F, Shim Y, May J E 1986 J. Appl. Phys. 60 4186

    [44]

    Cheng P F, Li S T, Zhang L, Li J 2008 Appl. Phys. Lett. 93 012902

    [45]

    Greuter F, Blatter G 1990 Semicond. Sci. Technol. 5 111

    [46]

    Shim Y, Cordaro J F 1988 J. Appl. Phys. 64 3994

    [47]

    Shim Y, Cordaro J F 1988 J. Am. Ceram. Soc. 71 184

    [48]

    Wang Y P, Lee W I, Tseng T Y 1996 Appl. Phys. Lett. 69 1807

    [49]

    Lee W I, Young R L 1996 Appl. Phys. Lett. 69 526

    [50]

    Shohata N, Matsumura T, Ohno T 1980 Jpn. J. Appl. Phys. 19 1793

    [51]

    Simpson J C, Cordaro J F 1988 J. Appl. Phys. 63 1781

    [52]

    Leach C, Vernon-Parry K D, Ali N K 2010 J. Electroceram. 25 188

    [53]

    Rohatgi A, Pang S K, Gupta T K, Straub W D 1988 J. Appl. Phys. 63 5375

    [54]

    Ohbuchi Y, Yoshino J, Okamoto Y, Morimoto J 1999 J. Appl. Phys. 38 899

    [55]

    Fan J, Freer R 1994 J. Am. Ceram. Soc. 77 2663

    [56]

    Winston R A, Cordaro J F 1990 J. Appl. Phys. 68 6495

    [57]

    Han J, Mantas P Q, Senos A M R 2002 J. Eur. Ceram. Soc. 22 49

    [58]

    Levinson L M, Philipp H R 1986 J. Am. Ceram. Soc. Bull. 65 639

    [59]

    Chen J D, Liu Z Y 1982 Dielectric Physics (Beijing:Mechanical Industry Press) p151(in Chinese)[陈季丹, 刘子玉1982电介质物理学(北京:机械工业出版社)第151页]

    [60]

    Tsonos C, Kanapitsas A, Triantis D, Anastasiadis C, Stavrakas I, Pissis P, Neagu E 2011 Ceram. Int. 37 207

    [61]

    Hong Y W, Kim J H 2004 Ceram. Int. 30 1307

    [62]

    Andres-Verges M, West A R 1997 J. Electroceram. 1 125

    [63]

    Li S T, Wang H, Lin C J, Li J Y 2013 Acta Phys. Sin. 62 087701 (in Chinese)[李盛涛, 王辉, 林春江, 李建英2013物理学报62 087701]

    [64]

    Pathmanathan K, Stevens J R 1990 J. Appl. Phys. 68 5128

    [65]

    Davidson D W 1961 Can. J. Chem. 39 571

    [66]

    Zhao X T, Li J Y, Li H, Li S T 2012 J. Appl. Phys. 111 124106

    [67]

    Gupta T K, Carlson W G, Hower P L 1981 J. Appl. Phys. 52 4104

    [68]

    Chen Z X, Lin G C, Fu G A 1998 Sci. China Ser. A:Math. Phys. Astron. 41 71

    [69]

    Sinclair D C, West A R 1989 J. Appl. Phys. 66 3850

    [70]

    Al Abdullah K, Bui A, Loubiere A 1991 J. Appl. Phys. 69 4046

  • [1]

    Moulson A J, Herbert J M 2003 Electroceramics (Vol. 2) (Chichester:Wiley) pp150-156

    [2]

    Clarke D R 1999 J. Am. Ceram. Soc. 82 485

    [3]

    Wang Z L, Li S T 2009 Manufacture and Application of ZnO Varistor Ceramics (Beijing:Science Press) pp1-3(in Chinese)[王振林, 李盛涛2009氧化锌压敏陶瓷制造及应用(北京:科学出版社)第1–3页]

    [4]

    Levinson L M, Philipp H R 1975 J. Appl. Phys. 46 1332

    [5]

    Matsuoka M 1971 Jpn. J. Appl. Phys 10 736

    [6]

    Mahan G D, Levinson L M, Philipp H R 1979 J. Appl. Phys. 50 2799

    [7]

    Pike G E 1981 Mater. Res. Soc. Symp. Proc. 5 369

    [8]

    Blatter G, Greuter F 1986 Phys. Rev. B 34 8555

    [9]

    Choi J S, Yo C H 1976 J. Phys. Chem. Solids 37 1149

    [10]

    Allsopp H J, Roberts J P 1959 Trans. Faraday Soc. 55 1386

    [11]

    DupontPavlovsky N, Caralp F, Delhaes P, Amiell J 1976 Phys. Status Solidi A 35 615

    [12]

    Li S T, Cheng P F, Wang Y P, Zhu B 2007 Insulators and Surge Arresters 5 19 (in Chinese)[李盛涛, 成鹏飞, 王玉平, 朱斌2007电瓷避雷器5 19]

    [13]

    Levin J D 1975 CRC Crit. Rev. Sol. Stat. Sci. 5 597

    [14]

    Blatter G, Greuter F 1986 Phys. Rev. B 33 3952

    [15]

    Castro M S, Aldao C M 1993 Appl. Phys. Lett. 63 1077

    [16]

    Gupta T K 1990 J. Am. Ceram. Soc. 73 1817

    [17]

    He J L, Cheng C L, Hu J 2016 AIP Adv. 6 030701

    [18]

    Li J Y, Li S T, Cheng P F, Alim M A 2015 J. Mater. Sci. Mater. Electron. 26 4782

    [19]

    Levinson L M, Philipp H R 1976 J. Appl. Phys. 47 1117

    [20]

    Chiou B S, Chung M C 1991 J. Electron. Mater. 20 885

    [21]

    Zhang M R, Liu F Y, Liu Z Y 1991 Proceedings of the 3rd International Conference on Properties and Applications of Dielectric Materials Tokyo, Japan July 8-12, 1991 p513

    [22]

    Tsuda K, Mukae K 1989 J. Ceram. Soc. Jpn. 97 1211

    [23]

    Oba F, Nishitani S R, Isotani S, Adachi H, Tanaka I 2001 J. Appl. Phys. 90 824

    [24]

    Look D C, Claflin B 2001 Phys. Status Soldi 41 624

    [25]

    Lin J J, Li S T, He J Q, Liu W F 2016 Int. J. Inorg. Mater. 31 981 (in Chinese)[蔺家骏, 李盛涛, 何锦强, 刘文凤2016无机材料学报31 981]

    [26]

    Li J Y, Li S T, Liu F Y, Alim M A 2006 J. Mater. Sci.:Mater. Electron. 17 211

    [27]

    Zhao X T, Li J Y, Jia R, Li S T 2013 Acta Phys. Sin. 62 077701 (in Chinese)[赵学童, 李建英, 贾然, 李盛涛2013物理学报62 077701]

    [28]

    Zhao X T, Li J Y, Li H, Li S T 2012 Acta Phys. Sin. 61 153103 (in Chinese)[赵学童, 李建英, 李欢, 李盛涛2012物理学报61 153103]

    [29]

    Addison W E 1953 Structural Principles in Inorganic Compounds (New York:Wiley) p57

    [30]

    Erhart P, Albe K, Klein A 2006 Phys. Rev. B 73 205203

    [31]

    Janotti A, van de WAlle C G 2007 Phys. Rev. B 76 165202

    [32]

    Janotti A, van de Walle G G 2005 Appl. Phys. Lett. 87 122

    [33]

    Eda K, Iga A, Matsuoka M 1979 Jpn. J. Appl. Phys. 18 997

    [34]

    Eda K, Iga A, Matsuoka M 1980 J. Appl. Phys. 51 2678

    [35]

    Kohan A F, Ceder G, Morgan D, van de Walle C G 2000 Phys. Rev. B 61 15019

    [36]

    Gupta T K, Carlson W G 1985 J. Mater. Sci. 20 3487

    [37]

    Levinson L M, Phillipp H R 1974 Appl. Phys. Lett. 24 75

    [38]

    Zhao X T, Liao R J, Liang N C, Yang L J, Li J, Li J Y 2014 J. Appl. Phys. 116 014103

    [39]

    Eda K 1989 IEEE Electr. Insul. Mag. 5 28

    [40]

    Selim A F, Gupta T K, Hower P L, Carlson W G 1980 J. Appl. Phys. 51 765

    [41]

    Levine J D 1971 J. Appl. Phys. 42 3991

    [42]

    Levinson L M, Philipp H R 1978 J. Appl. Phys. 49 6142

    [43]

    Cordaro J F, Shim Y, May J E 1986 J. Appl. Phys. 60 4186

    [44]

    Cheng P F, Li S T, Zhang L, Li J 2008 Appl. Phys. Lett. 93 012902

    [45]

    Greuter F, Blatter G 1990 Semicond. Sci. Technol. 5 111

    [46]

    Shim Y, Cordaro J F 1988 J. Appl. Phys. 64 3994

    [47]

    Shim Y, Cordaro J F 1988 J. Am. Ceram. Soc. 71 184

    [48]

    Wang Y P, Lee W I, Tseng T Y 1996 Appl. Phys. Lett. 69 1807

    [49]

    Lee W I, Young R L 1996 Appl. Phys. Lett. 69 526

    [50]

    Shohata N, Matsumura T, Ohno T 1980 Jpn. J. Appl. Phys. 19 1793

    [51]

    Simpson J C, Cordaro J F 1988 J. Appl. Phys. 63 1781

    [52]

    Leach C, Vernon-Parry K D, Ali N K 2010 J. Electroceram. 25 188

    [53]

    Rohatgi A, Pang S K, Gupta T K, Straub W D 1988 J. Appl. Phys. 63 5375

    [54]

    Ohbuchi Y, Yoshino J, Okamoto Y, Morimoto J 1999 J. Appl. Phys. 38 899

    [55]

    Fan J, Freer R 1994 J. Am. Ceram. Soc. 77 2663

    [56]

    Winston R A, Cordaro J F 1990 J. Appl. Phys. 68 6495

    [57]

    Han J, Mantas P Q, Senos A M R 2002 J. Eur. Ceram. Soc. 22 49

    [58]

    Levinson L M, Philipp H R 1986 J. Am. Ceram. Soc. Bull. 65 639

    [59]

    Chen J D, Liu Z Y 1982 Dielectric Physics (Beijing:Mechanical Industry Press) p151(in Chinese)[陈季丹, 刘子玉1982电介质物理学(北京:机械工业出版社)第151页]

    [60]

    Tsonos C, Kanapitsas A, Triantis D, Anastasiadis C, Stavrakas I, Pissis P, Neagu E 2011 Ceram. Int. 37 207

    [61]

    Hong Y W, Kim J H 2004 Ceram. Int. 30 1307

    [62]

    Andres-Verges M, West A R 1997 J. Electroceram. 1 125

    [63]

    Li S T, Wang H, Lin C J, Li J Y 2013 Acta Phys. Sin. 62 087701 (in Chinese)[李盛涛, 王辉, 林春江, 李建英2013物理学报62 087701]

    [64]

    Pathmanathan K, Stevens J R 1990 J. Appl. Phys. 68 5128

    [65]

    Davidson D W 1961 Can. J. Chem. 39 571

    [66]

    Zhao X T, Li J Y, Li H, Li S T 2012 J. Appl. Phys. 111 124106

    [67]

    Gupta T K, Carlson W G, Hower P L 1981 J. Appl. Phys. 52 4104

    [68]

    Chen Z X, Lin G C, Fu G A 1998 Sci. China Ser. A:Math. Phys. Astron. 41 71

    [69]

    Sinclair D C, West A R 1989 J. Appl. Phys. 66 3850

    [70]

    Al Abdullah K, Bui A, Loubiere A 1991 J. Appl. Phys. 69 4046

  • [1] 马孟宇, 蔚翠, 何泽召, 郭建超, 刘庆彬, 冯志红. 氢终端金刚石薄膜生长及其表面结构研究. 物理学报, 2024, 0(0): . doi: 10.7498/aps.73.20240053
    [2] 刘庆彬, 蔚翠, 郭建超, 马孟宇, 何泽召, 周闯杰, 高学栋, 余浩, 冯志红. 多晶金刚石对硅基氮化镓材料的影响. 物理学报, 2023, 72(9): 098104. doi: 10.7498/aps.72.20221942
    [3] 马天慧, 雷作涛, 张晓萌, 付秋月, 布和巴特尔, 朱崇强, 杨春晖. 密度泛函理论研究ZnGeP2晶体中缺陷的稳定性及迁移机制. 物理学报, 2022, 71(22): 227101. doi: 10.7498/aps.71.20220610
    [4] 李龙, 王鸣, 倪海彬, 沈添怿. 采用溶胶凝胶协同自组装与光刻相结合的方法在反蛋白石结构薄膜中引入二维缺陷. 物理学报, 2014, 63(5): 054206. doi: 10.7498/aps.63.054206
    [5] 赵学童, 李建英, 贾然, 李盛涛. 直流老化及热处理对ZnO压敏陶瓷缺陷结构的影响. 物理学报, 2013, 62(7): 077701. doi: 10.7498/aps.62.077701
    [6] 王辉, 蔺家骏, 何锦强, 廖永力, 李盛涛. 沉淀剂对ZnO压敏陶瓷缺陷结构和电气性能的影响. 物理学报, 2013, 62(22): 226103. doi: 10.7498/aps.62.226103
    [7] 张丽娟, 王力海, 刘建党, 李强, 成斌, 张杰, 安然, 赵明磊, 叶邦角. 非铁电压电复合陶瓷SrTiO3-Bi12TiO20 (ST-BT) 的正电子湮没谱学研究. 物理学报, 2012, 61(23): 237805. doi: 10.7498/aps.61.237805
    [8] 成鹏飞, 李盛涛, 李建英. ZnO压敏陶瓷的介电谱. 物理学报, 2012, 61(18): 187302. doi: 10.7498/aps.61.187302
    [9] 向军, 郭银涛, 周广振, 褚艳秋. 碱土和过渡金属掺杂NdAlO3导电陶瓷的制备、结构与电性能研究. 物理学报, 2012, 61(22): 227201. doi: 10.7498/aps.61.227201
    [10] 赵学童, 李建英, 李欢, 李盛涛. ZnO压敏陶瓷缺陷结构表征及冲击老化机理研究. 物理学报, 2012, 61(15): 153103. doi: 10.7498/aps.61.153103
    [11] 袁昌来, 刘心宇, 黄静月, 周昌荣, 许积文. Bi0.5Ba0.5FeO3 陶瓷的电性能及阻抗分析. 物理学报, 2011, 60(2): 025201. doi: 10.7498/aps.60.025201
    [12] 向军, 郭银涛, 褚艳秋, 周广振. 双掺杂的Sm0.9Sr0.1Al1-xCoxO3-δ钙钛矿结构导电陶瓷的制备及其电性能. 物理学报, 2011, 60(2): 027203. doi: 10.7498/aps.60.027203
    [13] 尹桂来, 李建英, 尧广, 成鹏飞, 李盛涛. ZnO压敏陶瓷冲击老化的电子陷阱过程研究. 物理学报, 2010, 59(9): 6345-6350. doi: 10.7498/aps.59.6345
    [14] 杨洪东, 于奇, 王向展, 李竞春, 宁宁, 杨谟华. 基于低温硅技术的赝晶SiGe应变弛豫机理. 物理学报, 2010, 59(8): 5743-5748. doi: 10.7498/aps.59.5743
    [15] 成鹏飞, 李盛涛, 李建英. ZnO-Bi2O3系压敏陶瓷的晶界电子结构. 物理学报, 2010, 59(1): 560-565. doi: 10.7498/aps.59.560
    [16] 李盛涛, 成鹏飞, 杨雁, 张乐. ZnO压敏陶瓷电导研究的新方法. 物理学报, 2009, 58(4): 2543-2548. doi: 10.7498/aps.58.2543
    [17] 成鹏飞, 李盛涛, 李建英. ZnO压敏陶瓷介电损耗的温度谱研究. 物理学报, 2009, 58(8): 5721-5725. doi: 10.7498/aps.58.5721
    [18] 李盛涛, 成鹏飞, 赵雷, 李建英. ZnO压敏陶瓷中缺陷的介电谱研究. 物理学报, 2009, 58(1): 523-528. doi: 10.7498/aps.58.523
    [19] 成鹏飞, 李盛涛, 焦兴六. ZnO-Bi2O3系压敏陶瓷的导电过程与等效势垒高度. 物理学报, 2006, 55(8): 4253-4258. doi: 10.7498/aps.55.4253
    [20] 初宝进, 李国荣, 殷庆瑞, 张望重, 陈大任. 非化学计量和掺杂对(Na1/2Bi1/2)0.92Ba0.08TiO3陶瓷电性能的影响. 物理学报, 2001, 50(10): 2012-2016. doi: 10.7498/aps.50.2012
计量
  • 文章访问数:  5532
  • PDF下载量:  385
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-10-06
  • 修回日期:  2016-11-01
  • 刊出日期:  2017-01-20

/

返回文章
返回