搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

ZnO压敏陶瓷的介电谱

成鹏飞 李盛涛 李建英

引用本文:
Citation:

ZnO压敏陶瓷的介电谱

成鹏飞, 李盛涛, 李建英

Dielectric spectra of ZnO varistor ceramics

Cheng Peng-Fei, Li Sheng-Tao, Li Jian-Ying
PDF
导出引用
  • 在-160℃-200℃温度范围内、0.1 Hz-0.1 MHz频率范围内测量了 ZnO压敏陶瓷的介电频谱, 发现可以采用电导率谱低频端的类直流特性来表征晶界Schottky势垒的电子输运过程, 获得的Schottky势垒高度为0.77 eV. 基于背靠背双Schottky势垒模型, 提出当存在直流偏压时, 势垒高度将随直流偏压线性增大. 基于此势垒模型计算了ZnO压敏陶瓷单晶界的直流偏压大小, 进而计算出晶粒平均尺寸为6.8 μm, 该理论值与通过扫描电子显微镜断面照片获得的测量值的偏差在5%以内. 可见采用介电谱不但可以获得势垒高度实现电气性能的表征, 还能获得晶粒尺寸实现显微结构的表征.
    In this paper, the dielectric spectra of ZnO varistor ceramics are measured by Novocontrol wide band dielectric spectrometer in a temperature range of -160℃-200℃ and frequency range of 0.1 Hz-0.1 MHz. It is found that electron transportation can be characterized by the flat region on a low frequency side of σ'-f curve. The Schottky barrier height is 0.77 eV obtained from σ'-f curve, which is consistent very well with the data from I-V curves given in other literature. On the basis of back-to-back double Schottky barrier model, Schottky barrier height corresponding to electron transportation across grainboundary is explained to be the energy difference between interface state and barrier top. According to this explanation, Schottky barrier height will increase linearly with the increase of DC voltage applied. The linear variation of barrier height with the increase of DC voltage applied is confirmed experimentally. Finally, the theoretical value of averaged grain size is obtained to be 6.8 μm, which is almost identical to 6.5 μm measured from SEM images. Therefore, the macroscopic electrical properties and the microstructure can be expressed at the same time by dielectric spectra.
    • 基金项目: 陕西省教育厅科研专项(批准号: 12JK0434);西安工程大学博士科研启动基金(批准号: BS0814)和国家自然科学基金(批准号: 50977071, 50972118)资助的课题.
    • Funds: Project supported by the Scientific Research Plan Projects of Education Department of Shaanxi Province of China (Grant No. 12JK0434), the Doctoral Scientific Research Foundation of Xi'an Polytechnic University, China (Grant No. BS0814) and the National Natural Science Foundation of China (Grant Nos. 50977071, 50972118).
    [1]

    Cheng P F, Li S T, Zhang L, Li L Y 2008 Appl. Phys. Lett. 93 012902

    [2]

    Cheng P F, Li S T, Li J Y 2010 Acta Phys. Sin. 59 560 (in Chinese) [成鹏飞, 李盛涛, 李建英 2010 物理学报 59 560]

    [3]

    Cheng P F, Li S T, Li J Y 2009 Acta Phys. Sin. 58 5721 (in Chinese) [成鹏飞, 李盛涛, 李建英 2009 物理学报 58 5721]

    [4]

    Li S T, Cheng P F, Zhao L, Li J Y 2009 Acta Phys. Sin. 58 523 (in Chinese) [李盛涛, 成鹏飞, 赵雷, 李建英 2009 物理学报 58 523]

    [5]

    Sinclair D C, Adams T B, Morrison F D, West A R 2002 Appl. Phys. Lett. 80 2053

    [6]

    Krohns A, Lunkenheimer P, Ebbinghaus S G, Loidl A 2008 J. Appl. Phys. 103 084107

    [7]

    Li J Y, Li S T, Liu F Y, Alim M A 2003 J. Mater. Sci: Mater. Electron 14 483

    [8]

    Li J Y, Li S G, Alim M A 2006 J. Mater. Sci: Mater. Electron 17 503

    [9]

    Cheng P F, Li S T, Jiao X L 2006 Acta Phys. Sin. 55 4253 (in Chinese) [成鹏飞, 李盛涛, 焦兴六 2006 物理学报 55 4253]

    [10]

    Cheng P F, Li S T 2006 Chin. J. Mater. Res. 20 394

    [11]

    Cheng P F, Li S T, Li J Y 2012 Adv. Mater. Res. 393-395 24

  • [1]

    Cheng P F, Li S T, Zhang L, Li L Y 2008 Appl. Phys. Lett. 93 012902

    [2]

    Cheng P F, Li S T, Li J Y 2010 Acta Phys. Sin. 59 560 (in Chinese) [成鹏飞, 李盛涛, 李建英 2010 物理学报 59 560]

    [3]

    Cheng P F, Li S T, Li J Y 2009 Acta Phys. Sin. 58 5721 (in Chinese) [成鹏飞, 李盛涛, 李建英 2009 物理学报 58 5721]

    [4]

    Li S T, Cheng P F, Zhao L, Li J Y 2009 Acta Phys. Sin. 58 523 (in Chinese) [李盛涛, 成鹏飞, 赵雷, 李建英 2009 物理学报 58 523]

    [5]

    Sinclair D C, Adams T B, Morrison F D, West A R 2002 Appl. Phys. Lett. 80 2053

    [6]

    Krohns A, Lunkenheimer P, Ebbinghaus S G, Loidl A 2008 J. Appl. Phys. 103 084107

    [7]

    Li J Y, Li S T, Liu F Y, Alim M A 2003 J. Mater. Sci: Mater. Electron 14 483

    [8]

    Li J Y, Li S G, Alim M A 2006 J. Mater. Sci: Mater. Electron 17 503

    [9]

    Cheng P F, Li S T, Jiao X L 2006 Acta Phys. Sin. 55 4253 (in Chinese) [成鹏飞, 李盛涛, 焦兴六 2006 物理学报 55 4253]

    [10]

    Cheng P F, Li S T 2006 Chin. J. Mater. Res. 20 394

    [11]

    Cheng P F, Li S T, Li J Y 2012 Adv. Mater. Res. 393-395 24

  • [1] 代雪峰, 贡同. 铁磁性电极条件下T型双量子点结构中马约拉纳束缚态的解耦现象. 物理学报, 2024, 73(5): 057301. doi: 10.7498/aps.73.20231434
    [2] 雷照康, 武耀蓉, 黄晨阳, 莫润阳, 沈壮志, 王成会, 郭建中, 林书玉. 驻波场中环状空化泡聚集结构的稳定性分析. 物理学报, 2024, 0(0): . doi: 10.7498/aps.73.20231956
    [3] 杨东如, 程用志, 罗辉, 陈浮, 李享成. 基于双开缝环结构的半反射和半透射超宽带超薄双偏振太赫兹超表面. 物理学报, 2023, 72(15): 158701. doi: 10.7498/aps.72.20230471
    [4] 孙颖慧, 穆丛艳, 蒋文贵, 周亮, 王荣明. 金属纳米颗粒与二维材料异质结构的界面调控和物理性质. 物理学报, 2022, 71(6): 066801. doi: 10.7498/aps.71.20211902
    [5] 张超江, 许洪光, 徐西玲, 郑卫军. ${\bf Ta_4C}_{ n}^{\bf -/0}$ (n = 0—4)团簇的电子结构、成键性质及稳定性. 物理学报, 2021, 70(2): 023601. doi: 10.7498/aps.70.20201351
    [6] 郭文锑, 黄璐, 许桂贵, 钟克华, 张健敏, 黄志高. 本征磁性拓扑绝缘体MnBi2Te4电子结构的压力应变调控. 物理学报, 2021, 70(4): 047101. doi: 10.7498/aps.70.20201237
    [7] 于长秋, 马世昌, 陈志远, 项晨晨, 李海, 周铁军. 结构改进的厘米尺寸谐振腔的磁场传感特性. 物理学报, 2021, 70(16): 160701. doi: 10.7498/aps.70.20210247
    [8] 张芳, 贾利群, 孙现亭, 戴宪起, 黄奇祥, 李伟. 电场对graphene/InSe范德瓦耳斯异质结肖特基势垒的调控. 物理学报, 2020, 69(15): 157302. doi: 10.7498/aps.69.20191987
    [9] 丁学利, 贾冰, 李玉叶. 利用相位响应曲线解释抑制性反馈增强神经电活动. 物理学报, 2019, 68(18): 180502. doi: 10.7498/aps.68.20190197
计量
  • 文章访问数:  6325
  • PDF下载量:  955
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-01-20
  • 修回日期:  2012-03-16
  • 刊出日期:  2012-09-05

/

返回文章
返回