搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于Knowm忆阻器的新型忆感器模型的设计与分析

朱雷杰 王发强

引用本文:
Citation:

基于Knowm忆阻器的新型忆感器模型的设计与分析

朱雷杰, 王发强

Design and analysis of new meminductor model based on Knowm memristor

Zhu Lei-Jie, Wang Fa-Qiang
科大讯飞全文翻译 (iFLYTEK Translation)
PDF
HTML
导出引用
  • 以往有关忆阻器模型及其应用研究主要集中于忆阻器基本概念构建并分析忆阻器模型及其等效电路模型, 而基于市场上商用忆阻器件的研究则很少. 本文根据忆感器与忆阻器之间的理论关系, 基于全球首款商用忆阻器芯片: Knowm忆阻器, 结合第二代电流传输器和跨导运算放大器, 构建了一种新型忆感器模型. 通过调节输入信号的频率和幅值以及运算跨导放大器的跨导增益, 可有效地在电路中实现忆感器忆感值的连续调节. 设计了新型忆感器的LTspice电路模型和硬件实验电路, 以电路仿真结果和硬件电路实验结果验证了新型忆感器模型的有效性和设计方法的正确性.
    In the past, the memristor model and its application research have mainly focused on constructing and analyzing the memristor model and its equivalent circuit model based on the basic concept of memristor, while the research based on commercial memristive devices in the market has been rare. According to the theoretical relationship between meminductor and memristor, a new model of meminductor is constructed based on Knowm memristor, the first commercial memristor chip in the world, combined with the second-generation current conveyor and transconductance operational amplifier. By adjusting the frequency and the amplitude of the input voltage and the transconductance gain of the transconductance operational amplifier, the continuous adjustment of the meminductance can be effectively achieved in the circuit. The LTspice circuit model and hardware experimental circuit of the proposed meminductor are designed. The validity of the new meminductor model and the correctness of the design method are verified by LTspice simulations and circuit experiments.
      通信作者: 王发强, faqwang@mail.xjtu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 51377124)和陕西省青年科技新星计划项目(批准号: 2016KJXX-40)资助的课题
      Corresponding author: Wang Fa-Qiang, faqwang@mail.xjtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51377124) and the New Star of Youth Science and Technology of Shaanxi Province, China (Grant No. 2016KJXX-40)
    [1]

    Chua L O 1971 IEEE Trans. Circuit Theory 18 507Google Scholar

    [2]

    Strukov D B, Snider G S, Stewart D R, Williams R S 2008 Nature 453 80Google Scholar

    [3]

    Jo S H, Chang T, Ebong I, Bhadviya B B, Mazumder P, Lu W 2010 Nano Lett. 10 1297Google Scholar

    [4]

    Corinto F, Ascoli A, Gilli M 2011 IEEE Trans. Circuits Syst. I 58 1323Google Scholar

    [5]

    Hu W, Wei R S 2019 IEEE Trans. Electron Devices 66 2589Google Scholar

    [6]

    Luo S J, Xu N, Guo Z, Zhang Y, Hong H, You L 2019 IEEE Electron Device Lett. 40 635Google Scholar

    [7]

    Yakopcic C, Taha T M, Subramanyam G, Pino R E, Rogers S 2011 IEEE Electron Device Lett. 32 1436Google Scholar

    [8]

    Corinto F, Ascoli A 2012 IEEE Trans. Circuits Syst. I 59 2713Google Scholar

    [9]

    Ventra M D, Pershin Y V, Chua L O 2009 Proc. IEEE 97 1371Google Scholar

    [10]

    Han J H, Song C, Gao S, Wang Y Y, Chen C, Pan F 2014 ACS Nano 8 10043Google Scholar

    [11]

    Biolek D, Biolek Z, Biolekova V 2009 Conference on Circuit Theory and Design Antalya, Turkey, August 23−27, 2009 p249

    [12]

    Biolek D, Biolek Z, Biolekova V 2011 Analog Integr. Circuits Sig. Process. 66 129Google Scholar

    [13]

    Li C, Wang X D 2012 Microelectronics 42 584

    [14]

    王晓媛, 俞军, 王光义 2018 物理学报 67 098501Google Scholar

    Wang X Y, Yu J, Wang G Y 2018 Acta Phys. Sin. 67 098501Google Scholar

    [15]

    Wang H, Wang X, Li C D 2013 Abstr. Appl. Anal. DOI:10.1155/2013/281675

    [16]

    Biolek D, Biolek Z, Kolka Z 2010 IEEE Asia Pacific Conference on Circuits and Systems Kuala Lumpur, Malaysia, December 6—9, 2010 p800

    [17]

    Pershin Y V, Ventra M D 2010 Electron. Lett. 46 517Google Scholar

    [18]

    Pershin Y V, Ventra M D 2011 Electron. Lett. 47 243Google Scholar

    [19]

    Yu D S, Liang Y, Lu H H C, Fernando T, Hu Y H 2014 Chin. Phys. B 23 070702Google Scholar

    [20]

    Yu D S, Zhou Z, Iu H H C, Fernando T, Hu Y H 2014 IEEE Trans. Circuits Syst. II 61 758Google Scholar

    [21]

    Sah M P, Budhathoki R K, Yang C J, Kim H 2014 Circuits Syst. Signal Process. 33 2363Google Scholar

    [22]

    Wang G Y, Jin P P, Wang X W, Shen Y R, Yuan F, Wang X Y 2016 Chin. Phys. B 25 090502Google Scholar

    [23]

    李志军, 曾以成, 谭志平 2014 物理学报 63 098501Google Scholar

    Li Z J, Zeng Y C, Tan Z P 2014 Acta Phys. Sin. 63 098501Google Scholar

    [24]

    Yunus B 2018 Electrica 18 36

    [25]

    Zhao Q, Wang C H, Zhang X 2019 Chaos 29 013141Google Scholar

    [26]

    Michael A N, Timothy W M 2014 Plos One 9 e85175Google Scholar

  • 图 1  Knowm忆阻器符号

    Fig. 1.  Symbol of Knowm memristor.

    图 2  Knowm忆阻器的理论模型

    Fig. 2.  Theoretical model of Knowm memristor.

    图 3  忆感器模拟电路图

    Fig. 3.  Emulator circuit for meminductor.

    图 4  不同参数情况下的$\varphi - i$关系图 (a) $f$ = 100—140 Hz,${g_{\rm{m}}}$ = 1.62 mA/V; (b) $f$ = 240—400 Hz, ${g_{\rm{m}}}$ = 1.62 mA/V; (c) $f$ = 500—1400 Hz,${g_{\rm{m}}}$ = 1.62 mA/V; (d) $f$ = 120 Hz,${g_{\rm{m}}}$ = 1.49—1.97 mA/V

    Fig. 4.  $\varphi - i$relationship diagram under different parameters: (a) $f$ = 100—140 Hz,${g_{\rm{m}}}$ = 1.62 mA/V; 11. (b) $f$ = 240—400 Hz, ${g_{\rm{m}}}$ = 1.62 mA/V; (c) $f$ = 500—1400 Hz,${g_{\rm{m}}}$ = 1.62 mA/V; (d) $f$ = 120 Hz,${g_{\rm{m}}}$ =1.49—1.97 mA/V.

    图 5  不同Knowm忆阻器参数情况下的$\varphi - i$关系图 (a) ${V_a}$, ${V_{\rm{b}}}$; (b) ${G_{\rm{a}}}$, ${G_{\rm{b}}}$

    Fig. 5.  $\varphi - i$relationship diagram under different Knowm memristor parameters: (a) ${V_a}$,${V_{\rm{b}}}$; (b) ${G_{\rm{a}}}$,${G_{\rm{b}}}$.

    图 6  实验接线图

    Fig. 6.  Wiring diagram for the experiment.

    图 7  不同参数作用下的$\varphi - i$关系图, 其中第一通道为${v_{\rm{o}}}(t)/{\rm{V}}$, 第二通道为${v_{\rm{1}}}(t)/{\rm{V}}$ (a) $f$ = 100 Hz,${g_{\rm{m}}}$ = 1.62 mA/V; (b) $f$ = 120 Hz,${g_{\rm{m}}}$ = 1.62 mA/V; (c) $f$ = 140 Hz, ${g_{\rm{m}}}$ = 1.62 mA/V; (d) $f$ = 120 Hz,${g_{\rm{m}}}$ = 1.49 mA/V

    Fig. 7.  $\varphi - i$relationship diagram under different parameters. The first channel is ${v_{\rm{o}}}(t)/{\rm{V}}$, and the second channel is$ {v_{{1}}}(t)/{\rm{V}} $: (a) $f$ = 100 Hz,${g_{\rm{m}}}$ = 1.62 mA/V; (b) $f$ = 120 Hz,${g_{\rm{m}}}$ = 1.62 mA/V; (c) $f$ = 140 Hz,${g_{\rm{m}}}$ = 1.62 mA/V; (d) $f$ = 120 Hz,${g_{\rm{m}}}$ = 1.49 mA/V.

    表 1  LTspice仿真电路中使用的元件参数值

    Table 1.  Component parameter values used in LTspice simulation circuits.

    元件参数值
    ${V_{{\rm{dd}}}}$/V$ \pm {\rm{10 }}$
    ${V_{\rm{m}}}$/mV60
    ${R_{\rm{1}}}$/kΩ56
    ${R_2}$/kΩ56
    ${R_6}$/kΩ51
    ${R_7}$/kΩ200
    $C$$100\;{\rm{ nF}}-{R_3} = {R_4} = 43\;{\rm{k}}\Omega,{R_5} = 22\;{\rm{k}}\Omega $
    ${\rm{47\;nF}}-{R_3} = {R_4}={\rm{80\;k}}\Omega,{R_5}={\rm{40\;k}}\Omega $
    $10\;{\rm{ nF}}-{R_3} = {R_4} = 100\;{\rm{ k}}\Omega,{R_5} = 50\;{\rm{ k}}\Omega $
    下载: 导出CSV
  • [1]

    Chua L O 1971 IEEE Trans. Circuit Theory 18 507Google Scholar

    [2]

    Strukov D B, Snider G S, Stewart D R, Williams R S 2008 Nature 453 80Google Scholar

    [3]

    Jo S H, Chang T, Ebong I, Bhadviya B B, Mazumder P, Lu W 2010 Nano Lett. 10 1297Google Scholar

    [4]

    Corinto F, Ascoli A, Gilli M 2011 IEEE Trans. Circuits Syst. I 58 1323Google Scholar

    [5]

    Hu W, Wei R S 2019 IEEE Trans. Electron Devices 66 2589Google Scholar

    [6]

    Luo S J, Xu N, Guo Z, Zhang Y, Hong H, You L 2019 IEEE Electron Device Lett. 40 635Google Scholar

    [7]

    Yakopcic C, Taha T M, Subramanyam G, Pino R E, Rogers S 2011 IEEE Electron Device Lett. 32 1436Google Scholar

    [8]

    Corinto F, Ascoli A 2012 IEEE Trans. Circuits Syst. I 59 2713Google Scholar

    [9]

    Ventra M D, Pershin Y V, Chua L O 2009 Proc. IEEE 97 1371Google Scholar

    [10]

    Han J H, Song C, Gao S, Wang Y Y, Chen C, Pan F 2014 ACS Nano 8 10043Google Scholar

    [11]

    Biolek D, Biolek Z, Biolekova V 2009 Conference on Circuit Theory and Design Antalya, Turkey, August 23−27, 2009 p249

    [12]

    Biolek D, Biolek Z, Biolekova V 2011 Analog Integr. Circuits Sig. Process. 66 129Google Scholar

    [13]

    Li C, Wang X D 2012 Microelectronics 42 584

    [14]

    王晓媛, 俞军, 王光义 2018 物理学报 67 098501Google Scholar

    Wang X Y, Yu J, Wang G Y 2018 Acta Phys. Sin. 67 098501Google Scholar

    [15]

    Wang H, Wang X, Li C D 2013 Abstr. Appl. Anal. DOI:10.1155/2013/281675

    [16]

    Biolek D, Biolek Z, Kolka Z 2010 IEEE Asia Pacific Conference on Circuits and Systems Kuala Lumpur, Malaysia, December 6—9, 2010 p800

    [17]

    Pershin Y V, Ventra M D 2010 Electron. Lett. 46 517Google Scholar

    [18]

    Pershin Y V, Ventra M D 2011 Electron. Lett. 47 243Google Scholar

    [19]

    Yu D S, Liang Y, Lu H H C, Fernando T, Hu Y H 2014 Chin. Phys. B 23 070702Google Scholar

    [20]

    Yu D S, Zhou Z, Iu H H C, Fernando T, Hu Y H 2014 IEEE Trans. Circuits Syst. II 61 758Google Scholar

    [21]

    Sah M P, Budhathoki R K, Yang C J, Kim H 2014 Circuits Syst. Signal Process. 33 2363Google Scholar

    [22]

    Wang G Y, Jin P P, Wang X W, Shen Y R, Yuan F, Wang X Y 2016 Chin. Phys. B 25 090502Google Scholar

    [23]

    李志军, 曾以成, 谭志平 2014 物理学报 63 098501Google Scholar

    Li Z J, Zeng Y C, Tan Z P 2014 Acta Phys. Sin. 63 098501Google Scholar

    [24]

    Yunus B 2018 Electrica 18 36

    [25]

    Zhao Q, Wang C H, Zhang X 2019 Chaos 29 013141Google Scholar

    [26]

    Michael A N, Timothy W M 2014 Plos One 9 e85175Google Scholar

  • [1] 武长春, 周莆钧, 王俊杰, 李国, 胡绍刚, 于奇, 刘洋. 基于忆阻器的脉冲神经网络硬件加速器架构设计. 物理学报, 2022, 71(14): 148401. doi: 10.7498/aps.71.20220098
    [2] 张宇琦, 王俊杰, 吕子玉, 韩素婷. 应用于感存算一体化系统的多模调控忆阻器. 物理学报, 2022, 71(14): 148502. doi: 10.7498/aps.71.20220226
    [3] 胡炜, 廖建彬, 杜永乾. 一种适用于大规模忆阻网络的忆阻器单元解析建模策略. 物理学报, 2021, 70(17): 178505. doi: 10.7498/aps.70.20210116
    [4] 史晨阳, 闵光宗, 刘向阳. 蛋白质基忆阻器研究进展. 物理学报, 2020, 69(17): 178702. doi: 10.7498/aps.69.20200617
    [5] 刘汝新, 董瑞新, 闫循领, 肖夏. 忆阻器单阻态下的记忆电容行为及多态特性. 物理学报, 2019, 68(6): 068502. doi: 10.7498/aps.68.20181836
    [6] 邵楠, 张盛兵, 邵舒渊. 具有经验学习特性的忆阻器模型分析. 物理学报, 2019, 68(19): 198502. doi: 10.7498/aps.68.20190808
    [7] 邵楠, 张盛兵, 邵舒渊. 具有感觉记忆的忆阻器模型. 物理学报, 2019, 68(1): 018501. doi: 10.7498/aps.68.20181577
    [8] 王晓媛, 俞军, 王光义. 忆阻器、忆容器和忆感器的Simulink建模及其特性分析. 物理学报, 2018, 67(9): 098501. doi: 10.7498/aps.67.20172674
    [9] 吴洁宁, 王丽丹, 段书凯. 基于忆阻器的时滞混沌系统及伪随机序列发生器. 物理学报, 2017, 66(3): 030502. doi: 10.7498/aps.66.030502
    [10] 许碧荣, 王光义. 忆感器文氏电桥振荡器. 物理学报, 2017, 66(2): 020502. doi: 10.7498/aps.66.020502
    [11] 袁泽世, 李洪涛, 朱晓华. 基于忆阻器的数模混合随机数发生器. 物理学报, 2015, 64(24): 240503. doi: 10.7498/aps.64.240503
    [12] 王媛, 董瑞新, 闫循领. 嵌入Ag纳米颗粒层的DNA忆阻器. 物理学报, 2015, 64(4): 048402. doi: 10.7498/aps.64.048402
    [13] 袁方, 王光义, 靳培培. 一种忆感器模型及其振荡器的动力学特性研究. 物理学报, 2015, 64(21): 210504. doi: 10.7498/aps.64.210504
    [14] 俞清, 包伯成, 胡丰伟, 徐权, 陈墨, 王将. 基于一阶广义忆阻器的文氏桥混沌振荡器研究. 物理学报, 2014, 63(24): 240505. doi: 10.7498/aps.63.240505
    [15] 刘东青, 程海峰, 朱玄, 王楠楠, 张朝阳. 忆阻器及其阻变机理研究进展. 物理学报, 2014, 63(18): 187301. doi: 10.7498/aps.63.187301
    [16] 白玉蓉, 徐静平, 刘璐, 范敏敏, 黄勇, 程智翔. 高k栅介质小尺寸全耗尽绝缘体上锗p型金属氧化物半导体场效应晶体管漏源电流模型. 物理学报, 2014, 63(23): 237304. doi: 10.7498/aps.63.237304
    [17] 胡辉勇, 刘翔宇, 连永昌, 张鹤鸣, 宋建军, 宣荣喜, 舒斌. γ射线总剂量辐照效应对应变Sip型金属氧化物半导体场效应晶体管阈值电压与跨导的影响研究. 物理学报, 2014, 63(23): 236102. doi: 10.7498/aps.63.236102
    [18] 梁燕, 于东升, 陈昊. 基于模拟电路的新型忆感器等效模型. 物理学报, 2013, 62(15): 158501. doi: 10.7498/aps.62.158501
    [19] 贾林楠, 黄安平, 郑晓虎, 肖志松, 王玫. 界面效应调制忆阻器研究进展. 物理学报, 2012, 61(21): 217306. doi: 10.7498/aps.61.217306
    [20] 商怀超, 刘红侠, 卓青青. 低剂量率60Co γ 射线辐照下SOI MOS器件的退化机理. 物理学报, 2012, 61(24): 246101. doi: 10.7498/aps.61.246101
计量
  • 文章访问数:  10663
  • PDF下载量:  189
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-05-24
  • 修回日期:  2019-07-03
  • 上网日期:  2019-10-01
  • 刊出日期:  2019-10-05

/

返回文章
返回