搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

嵌入Ag纳米颗粒层的DNA忆阻器

王媛 董瑞新 闫循领

引用本文:
Citation:

嵌入Ag纳米颗粒层的DNA忆阻器

王媛, 董瑞新, 闫循领

Organic memristive devices based on DNA embedded in silver nanoparticles layer

Wang Yuan, Dong Rui-Xin, Yan Xun-Ling
PDF
导出引用
  • 构建了具有“Al/DNA-CTMAB/Ag NPs/DNA-CTMAB/ITO”结构的有机忆阻器件, 并对其电流-电压 (I-V)曲线进行测量. 结果表明, 嵌入Ag纳米颗粒层, 不仅可以增强器件的导电性, 而且忆阻特性也显著提高. 当颗粒粒径在15–20 nm范围时, 开-关电流比ION/IOFF能够达到103. 器件的I-V特性受扫描电压幅值VA的影响, 随着VA的增大, 高阻态的电流变化较小, 而低阻态的电流明显增大, 开(或关)电压VSET (VRESET)和ION/IOFF增加. 实验还发现, 器件高低阻状态的相互转换取决于外加电场的方向, 说明该忆阻器具有极性.
    Two-terminal electrical bistable device is fabricated with structure “Al/deoxyribonucleic acid-cetyltrimethylam- monium bromide/silver nanoparticles/deoxyribonucleic acid-cetyltrimethylammonium bromide/indium tin oxide”, and I-V curves are measured. The results show that the conductivity and the memristive characteristics are significantly improved by the embedding Ag nanoparticles layer. The optimal particle diameters are in a range of 15 - 20 nm, and the maximum on/off current ratio can reach 103. It is also found that I-V characteristic of the device depends on the sweeping voltage amplitude VA. As VA increases, switching voltages (VSET, VRESET) and the on/off current ratio ION/IOFF increase. Furthermore, the transition between high-and low-resistance-state depends on the direction of the applied electric field, which shows that the device possesses polarity.
    • 基金项目: 国家自然科学基金(批准号: 11375081)和山东省自然科学基金(批准号: ZR2012FM026, ZR2012FL20)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11375081) and the Natural Science Foundation of Shandong Province, China (Grant Nos. ZR2012FM026, ZR2012FL20).
    [1]

    Chen R, Zhou L W, Wang J Y, Chen C J, Shao X L, Jiang H, Zhang K L, L L R, Zhao J S 2014 Acta Phys. Sin. 63 067202 (in Chinese) [陈然, 周立伟, 王建云, 陈长军, 邵兴隆, 蒋浩, 张楷亮, 吕联荣, 赵金石 2014 物理学报 63 067202]

    [2]

    Wei X Y, Hu M, Zhang K L, Wang F, Liu K 2013 Acta Phys. Sin. 62 047201 (in Chinese) [韦晓莹, 胡明, 张楷亮, 王芳, 刘凯 2013 物理学报 62 047201]

    [3]

    Zhang T, Yin J, Zhao G F, Zhang W F, Xia Y D, Liu Z G 2014 Chin. Phys. B 23 087304

    [4]

    Chen J C, Liu C L, Sun Y S, Tung S H, Chen W C 2012 Soft Matter 8 526

    [5]

    Ouyang J, Chu C W, Tseng R J H, Prakash A, Yang Y 2005 Proc. IEEE 93 1287

    [6]

    Rong J L, Chen Y H, Zhou J, Zhang X, Wang L, Cao J 2013 Acta Phys. Sin. 62 228502 (in Chinese) [容佳玲, 陈赟汉, 周洁, 张雪, 王立, 曹进 2013 物理学报 62 228502]

    [7]

    Chen J, Ma D 2005 Appl. Phys. Lett. 87 023505

    [8]

    Lauters M, McCarthy B, Sarid D, Jabbour G E 2006 Appl. Phys. Lett. 89 013507

    [9]

    Ouyang J, Chu C W, Szmanda C R, Ma L, Yang Y 2004 Nat. Mater. 3 918

    [10]

    Prakash A, Ouyang J, Lin J L, Yang Y 2006 J. Appl. Phys. 100 054309

    [11]

    Tondelier D, Lmimouni K, Vuillaume D, Fery C, Haas G 2004 Appl. Phys. Lett. 85 5763

    [12]

    Ma L P, Liu J, Yang Y 2002 Appl. Phys. Lett. 80 2997

    [13]

    Reddy V S, Karak S, Dhar A 2009 Appl. Phys. Lett. 94 173304

    [14]

    Bozano L D, Kean B W, Beinhoff M, Carter K R, Rice P M, Scott J C 2005 Adv. Funct. Mater. 15 1933

    [15]

    Jin Z W, Liu G, Wang J Z 2013 AIP Adv. 3 052113

    [16]

    Liu G, Jin Z W, Zhang Z G, Wang J Z 2014 Appl. Phys. Lett. 104 023303

    [17]

    Ouyang J 2013 Org. Electron. 14 665

    [18]

    Tian X Z, Yang S Z, Zeng M, Wang L F, Wei J K, Xu Z, Wang W L, Bai X D 2014 Adv. Mater. 26 3649

  • [1]

    Chen R, Zhou L W, Wang J Y, Chen C J, Shao X L, Jiang H, Zhang K L, L L R, Zhao J S 2014 Acta Phys. Sin. 63 067202 (in Chinese) [陈然, 周立伟, 王建云, 陈长军, 邵兴隆, 蒋浩, 张楷亮, 吕联荣, 赵金石 2014 物理学报 63 067202]

    [2]

    Wei X Y, Hu M, Zhang K L, Wang F, Liu K 2013 Acta Phys. Sin. 62 047201 (in Chinese) [韦晓莹, 胡明, 张楷亮, 王芳, 刘凯 2013 物理学报 62 047201]

    [3]

    Zhang T, Yin J, Zhao G F, Zhang W F, Xia Y D, Liu Z G 2014 Chin. Phys. B 23 087304

    [4]

    Chen J C, Liu C L, Sun Y S, Tung S H, Chen W C 2012 Soft Matter 8 526

    [5]

    Ouyang J, Chu C W, Tseng R J H, Prakash A, Yang Y 2005 Proc. IEEE 93 1287

    [6]

    Rong J L, Chen Y H, Zhou J, Zhang X, Wang L, Cao J 2013 Acta Phys. Sin. 62 228502 (in Chinese) [容佳玲, 陈赟汉, 周洁, 张雪, 王立, 曹进 2013 物理学报 62 228502]

    [7]

    Chen J, Ma D 2005 Appl. Phys. Lett. 87 023505

    [8]

    Lauters M, McCarthy B, Sarid D, Jabbour G E 2006 Appl. Phys. Lett. 89 013507

    [9]

    Ouyang J, Chu C W, Szmanda C R, Ma L, Yang Y 2004 Nat. Mater. 3 918

    [10]

    Prakash A, Ouyang J, Lin J L, Yang Y 2006 J. Appl. Phys. 100 054309

    [11]

    Tondelier D, Lmimouni K, Vuillaume D, Fery C, Haas G 2004 Appl. Phys. Lett. 85 5763

    [12]

    Ma L P, Liu J, Yang Y 2002 Appl. Phys. Lett. 80 2997

    [13]

    Reddy V S, Karak S, Dhar A 2009 Appl. Phys. Lett. 94 173304

    [14]

    Bozano L D, Kean B W, Beinhoff M, Carter K R, Rice P M, Scott J C 2005 Adv. Funct. Mater. 15 1933

    [15]

    Jin Z W, Liu G, Wang J Z 2013 AIP Adv. 3 052113

    [16]

    Liu G, Jin Z W, Zhang Z G, Wang J Z 2014 Appl. Phys. Lett. 104 023303

    [17]

    Ouyang J 2013 Org. Electron. 14 665

    [18]

    Tian X Z, Yang S Z, Zeng M, Wang L F, Wei J K, Xu Z, Wang W L, Bai X D 2014 Adv. Mater. 26 3649

  • [1] 黄君辉, 李元和, 王健, 李叔伦, 倪海桥, 牛智川, 窦秀明, 孙宝权. 静水压力调谐Ag纳米颗粒散射场下量子点激子寿命. 物理学报, 2022, 0(0): 0-0. doi: 10.7498/aps.71.20221344
    [2] 刘丽娟, 孔晓波, 刘永刚, 宣丽. 基于液晶/聚合物光栅的高转化效率有机半导体激光器. 物理学报, 2017, 66(24): 244204. doi: 10.7498/aps.66.244204
    [3] 刘俊娟, 魏增江, 常虹, 张亚琳, 邸冰. 杂质离子对有机共轭聚合物中极化子动力学性质的影响. 物理学报, 2016, 65(6): 067202. doi: 10.7498/aps.65.067202
    [4] 郭羽泉, 段书凯, 王丽丹. 纳米级尺寸参数对钛氧化物忆阻器的特性影响. 物理学报, 2015, 64(10): 108502. doi: 10.7498/aps.64.108502
    [5] 许中华, 陈卫兵, 叶玮琼, 杨伟丰. 聚合物和小分子叠层结构有机太阳电池研究. 物理学报, 2014, 63(21): 218801. doi: 10.7498/aps.63.218801
    [6] 孙凯, 何志群, 梁春军. 多温度阶梯退火对有机聚合物太阳能电池器件性能的影响. 物理学报, 2014, 63(4): 048801. doi: 10.7498/aps.63.048801
    [7] 薛冰, 许银生, 李烟塬, 戚嘉妮, 鲁珊珊, 鲁克伦, 陈丽艳, 张绍骞, 戴世勋. Ag纳米颗粒增强的Ho3+/Tm3+共掺铋锗酸盐玻璃的2m发光研究. 物理学报, 2014, 63(10): 107802. doi: 10.7498/aps.63.107802
    [8] 高博文, 高潮, 阙文修, 韦玮. 新型高效聚合物/富勒烯有机光伏电池研究进展. 物理学报, 2012, 61(19): 194213. doi: 10.7498/aps.61.194213
    [9] 吉选芒, 姜其畅, 刘劲松. 外加电场光折变有机聚合物串联回路中独立空间孤子对. 物理学报, 2011, 60(3): 034212. doi: 10.7498/aps.60.034212
    [10] 邓舒鹏, 李文萃, 黄文彬, 刘永刚, 彭增辉, 鲁兴海, 宣丽. 基于全息聚合物分散液晶的有机二维光子晶体激光器的研究. 物理学报, 2011, 60(8): 086103. doi: 10.7498/aps.60.086103
    [11] 邹建华, 兰林锋, 徐瑞霞, 杨伟, 彭俊彪. 有机薄膜晶体管驱动聚合物发光二极管研究. 物理学报, 2010, 59(2): 1275-1281. doi: 10.7498/aps.59.1275
    [12] 徐登. 有机盐掺杂聚合物微腔的受激发射特性研究(已撤稿). 物理学报, 2009, 58(4): 2781-2784. doi: 10.7498/aps.58.2781
    [13] 谢 耩, 温建忠, 汪国平, 王建波. 聚合物表面银纳米颗粒的大面积均匀沉积及其应用. 物理学报, 2005, 54(1): 242-245. doi: 10.7498/aps.54.242
    [14] 付吉永, 任俊峰, 刘德胜, 解士杰. 一维铁磁/有机共轭聚合物的自旋极化研究. 物理学报, 2004, 53(6): 1989-1993. doi: 10.7498/aps.53.1989
    [15] 封伟, 曹猛, 韦玮, 吴洪才, 万梅香, 吉野胜美. 有机聚合物受体给体复合体薄膜光伏电池性能研究. 物理学报, 2001, 50(6): 1157-1162. doi: 10.7498/aps.50.1157
    [16] 侯春风, 阿不都热苏力, 杜春光, 孙秀冬, 李师群. 光折变有机聚合物中的空间孤子. 物理学报, 2001, 50(11): 2159-2165. doi: 10.7498/aps.50.2159
    [17] 徐则达, 蔡志岗, 张灵志, 刘焰发, 杨 杰, 佘卫龙, 周建英. 有机聚合物薄膜中的横向效应与准晶结构. 物理学报, 2000, 49(6): 1091-1093. doi: 10.7498/aps.49.1091
    [18] 任立勇, 姚保利, 侯 洵, 易文辉, 汪敏强. 有机聚合物薄膜激光诱导相位孔衍射的实验和理论. 物理学报, 2000, 49(10): 1973-1977. doi: 10.7498/aps.49.1973
    [19] 吴长勤, 张宇钟, 傅荣堂, 孙 鑫. 纯有机聚合物磁性的模型研究. 物理学报, 1999, 48(4): 713-720. doi: 10.7498/aps.48.713
    [20] 傅荣堂, 王晓东, 孙 鑫, 川添良幸. 纯有机聚合物磁性的第一性原理研究. 物理学报, 1998, 47(11): 1840-1846. doi: 10.7498/aps.47.1840
计量
  • 文章访问数:  3443
  • PDF下载量:  552
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-08-10
  • 修回日期:  2014-10-13
  • 刊出日期:  2015-02-05

嵌入Ag纳米颗粒层的DNA忆阻器

  • 1. 聊城大学物理科学与信息工程学院, 山东省光通信和科学技术重点实验室, 聊城 252059
    基金项目: 国家自然科学基金(批准号: 11375081)和山东省自然科学基金(批准号: ZR2012FM026, ZR2012FL20)资助的课题.

摘要: 构建了具有“Al/DNA-CTMAB/Ag NPs/DNA-CTMAB/ITO”结构的有机忆阻器件, 并对其电流-电压 (I-V)曲线进行测量. 结果表明, 嵌入Ag纳米颗粒层, 不仅可以增强器件的导电性, 而且忆阻特性也显著提高. 当颗粒粒径在15–20 nm范围时, 开-关电流比ION/IOFF能够达到103. 器件的I-V特性受扫描电压幅值VA的影响, 随着VA的增大, 高阻态的电流变化较小, 而低阻态的电流明显增大, 开(或关)电压VSET (VRESET)和ION/IOFF增加. 实验还发现, 器件高低阻状态的相互转换取决于外加电场的方向, 说明该忆阻器具有极性.

English Abstract

参考文献 (18)

目录

    /

    返回文章
    返回