搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于1, 2 - 二氰基苯/聚合物复合材料的高耐久性有机阻变存储器

李伟 朱慧文 孙彤 屈文山 李建刚 杨辉 高志翔 施薇 魏斌 王华

引用本文:
Citation:

基于1, 2 - 二氰基苯/聚合物复合材料的高耐久性有机阻变存储器

李伟, 朱慧文, 孙彤, 屈文山, 李建刚, 杨辉, 高志翔, 施薇, 魏斌, 王华

High endurance organic resistive switching memory based on 1, 2-dicyanobenzene and polymer composites

Li Wei, Zhu Hui-Wen, Sun Tong, Qu Wen-Shan, Li Jian-Gang, Yang Hui, Gao Zhi-Xiang, Shi Wei, Wei Bin, Wang Hua
PDF
HTML
导出引用
  • 本文报道了一种基于1,2-二氰基苯 (O-DCB) 与聚 (3-己基噻吩) (P3HT) 复合薄膜的高耐久性有机阻变存储器 (ORSM). ORSM表现出非易失型和双极性存储特性, 电流开关比 (Ion/off) 超过104, 耐久性高达400次, 保持时间为105 s, VsetVreset分别为–6.9 V和2.6 V. 器件的阻变机理是陷阱电荷的俘获与去俘获, 即负偏压或正偏压诱导电荷陷阱的填充和抽离过程, 导致电荷传输方式的改变, 从而产生高低电阻间的切换. 器件的高耐久性一方面是由于O-DCB较小的分子尺寸和较好的溶解性形成了均匀分布且稳定的电荷陷阱, 另一方面是由于O-DCB较好的分子平面促进了其与P3HT共轭链的相互作用. 该研究为高耐久性ORSM的实现提供了一种有效途径, 加快了ORSM的商业化应用进程.
    As the emerging data storage technology, organic resistive switching memory (ORSM) possesses numerous superiorities as the substitution for or the complementation of the traditional Si-based semiconductor memory. Poly(3-hexylthiophene) (P3HT) has been widely used as a polymer donor component of ORSMs due to its advantages of high mobility and high chemical stability. Up to now, ORSM based on P3HT has achieved high on/off current ratio (Ion/off), but the endurance still needs to be improved. Herein, high endurance ORSMs based on 1,2-dicyanobenzene (O-DCB) and P3HT composite are fabricated by spin coating and thermally evaporating, and exhibit non-volatile and bipolar memory characteristics. The ORSMs based on P3HT:15 wt.% O-DCB and P3HT:30 wt.% O-DCB exhibit the values of Ion/off exceeding 104 and 103 respectively, and both of them exert excellent endurance of 400 times, retention time of more than 105 s. The mechanism of the switching is explored by linear fitting of I-V curve and electrochemical impedance spectrum . The results indicate that the filling and vacant process of the charge traps induced by O-DCB and the inherent traps in P3HT bulk lead to a resistive switching effect. The negative or positive bias triggers off trapping and detrapping process, which leads the conductive way of charges to change, resulting in the resistive switching effect. The excellent endurance of ORSM is attributed to the uniform distribution of O-DCB in P3HT bulk because of the small molecular size and high solubility of O-DCB, resulting in well-distributed and stable charge traps. On the other hand, the out-bound planarity of O-DCB molecular promotes the close interaction with the conjugated chains of P3HT. This study enlightens an effective strategy to carry out high-endurance ORSM and facilitates their electronic applications in future.
      通信作者: 高志翔, 03100012@sxdtdx.edu.cn ; 施薇, shiwei@shu.edu.cn
    • 基金项目: 山西省应用基础研究计划面上自然基金(批准号: 201901D111316)、山西省高等学校科技创新项目(批准号: 2020L0488)、大同市工业攻关项目(批准号: 2019015)、山西省研究生教育创新项目(批准号: 2022Y761)和山西大同大学研究生教育创新项目(批准号: 22CX02, 22CX16)资助的课题.
      Corresponding author: Gao Zhi-Xiang, 03100012@sxdtdx.edu.cn ; Shi Wei, shiwei@shu.edu.cn
    • Funds: Project supported by the Applied Basic Research Project of Shanxi Province (Grant No. 201901D111316), the Science and technology innovation project of Shanxi Colleges and Universities (Grant No. 2020L0488), the Datong City Key Industry Research Project (Grant No. 2019015), the Graduate Education Innovation Project of Shanxi Province (Grant No.2022Y761), and the Graduate Education Innovation Project of Shanxi Datong University (Grant Nos. 22CX02, 22CX16).
    [1]

    Zhang Z, Wang Z, Shi T, Bi C, Rao F, Cai Y, Liu Q, Wu H, Zhou P 2020 InfoMat 2 261Google Scholar

    [2]

    Service R F 2018 Science 361 321Google Scholar

    [3]

    Debenedictis E P 2019 Computer 52 114Google Scholar

    [4]

    Zahoor F, Azni Zulkifli T Z, Khanday F A 2020 Nanoscale Res. Lett. 15 90Google Scholar

    [5]

    Wong H S P, Lee H Y, Yu S, Chen Y S, Wu Y, Chen P S, Lee B, Chen F T, Tsai M J 2012 Proc. IEEE 100 1951Google Scholar

    [6]

    Sangwan V K, Lee H S, Bergeron H, Balla I, Beck M E, Chen K S, Hersam M C 2018 Nature 554 500Google Scholar

    [7]

    Gismatulin A A, Orlov O M, Gritsenko V A, Kruchinin V N, Mizginov D S, Krasnikov G Y 2020 Appl. Phys. Lett. 116 203502Google Scholar

    [8]

    Younis A, Lin C H, Guan X, Shahrokhi S, Huang C Y, Wang Y, He T, Singh S, Hu L, Retamal J R D, He J H, Wu T 2021 Adv. Mater. 33 2005000Google Scholar

    [9]

    朱佳雪, 张续猛, 王睿, 刘琦 2022 物理学报 71 148503Google Scholar

    Zhu J X, Zhang X M, Wang R, Liu Q 2022 Acta Phys. Sin. 71 148503Google Scholar

    [10]

    古亚娜, 梁燕, 王光义, 夏晨阳 2022 物理学报 71 110501Google Scholar

    Gu Y N, Liang Y, Wang G Y, Xia C Y 2022 Acta Phys. Sin. 71 110501Google Scholar

    [11]

    Paul F, Paul S 2022 Small 18 2106442Google Scholar

    [12]

    Lee J H, Park S P, Park K, Kim H J 2019 Adv. Funct. Mater. 30 1907437

    [13]

    Gao S, Yi X, Shang J, Liu G, Li R W 2019 Chem. Soc. Rev. 48 1531Google Scholar

    [14]

    卢颖, 陈威林, 高双, 李润伟 2020 材料导报 34 1146Google Scholar

    Lu Y, Chen W L, Gao S, Li R W 2020 Mat. Rep. 34 1146Google Scholar

    [15]

    陈威林, 高双, 伊晓辉, 尚杰, 刘钢, 李润伟 2019 功能高分子学报 32 434

    Chen W L, Gao S, Yi X H, Shang J, Liu G, Li R W 2019 J. Funct. Polym. 32 434

    [16]

    Lian H, Cheng X Z, Hao H T, Han J B, Lau M T, Li Z K, Zhou Z, Dong Q C, Wong W Y 2022 Chem. Soc. Rev. 51 1926Google Scholar

    [17]

    孙艳梅 2017 博士学位论文 (哈尔滨: 黑龙江大学)

    Sun Y M 2017 Ph. D. Dissertation (Haerbin: Heilongjiang University) (in Chinese)

    [18]

    朱志强 2021 硕士学位论文 (常州: 常州大学)

    Zhu Z Q 2021 M.S. Thesis (Changzhou: Changzhou University) (in Chinese)

    [19]

    Hou J, Zhang B, Li D, Fu Y, Liu G, Chen Y 2019 J. Mater. Chem. C 7 14664Google Scholar

    [20]

    Narasimhan Arunagirinathan R, Gopikrishna P, Das D, Iyer P K 2019 ACS Appl. Electron. Mater. 1 600Google Scholar

    [21]

    Sun Y, Li L, Wen D, Bai X 2015 J. Phys. Chem. C 119 19520Google Scholar

    [22]

    Po R, Bernardi A, Calabrese A, Carbonera C, Corso G, Pellegrino A 2014 Energy Environ. Sci. 7 925Google Scholar

    [23]

    Li Y, Zhang Y, Wu B, Pang S, Yuan X, Duan C, Huang F, Cao Y 2022 Solar RRL 2200073

    [24]

    Xian K, Liu Y, Liu J, Yu J, Xing Y, Peng Z, Zhou K, Gao M, Zhao W, Lu G, Zhang J, Hou J, Geng Y, Ye L 2022 J. Mater. Chem. A 10 3418Google Scholar

    [25]

    Liu M, Fan Q, Yang K, Zhao Z, Zhao X, Zhou Z, Zhang J, Lin F, Jen A K Y, Zhang F 2022 Sci. China Chem. 65 1642Google Scholar

    [26]

    Song J, Guo T, Huang C, Liu M, Cui H, Huang W, Wang Y, Li T 2022 Chem. Eng. J. 446

    [27]

    Chaudhary D, Munjal S, Khare N, Vankar V D 2018 Carbon 130 553Google Scholar

    [28]

    Jin Z, Liu G, Wang J 2013 AIP Adv. 3 052113Google Scholar

    [29]

    Liang J, Su Y, Lin Q, Zhou H, Zhang S, Pei Y, Hu R 2014 Semicond. Sci. Technol. 29 115029Google Scholar

    [30]

    Sherazi S S H, Rehman M M, Ur Rehman H M M, Kim W Y, Siddiqui G U, Karimov K S 2020 Semicond. Sci. Technol. 35 125012Google Scholar

    [31]

    Sim R, Ming W, Setiawan Y, Lee P S 2012 J. Phys. Chem. C 117 677

    [32]

    Wang P, Liu Q, Zhang C Y, Jiang J, Wang L H, Chen D Y, Xu Q F, Lu J M 2015 Nanoscale 7 19579Google Scholar

    [33]

    丛麟权, 李文骁, 马瑛, 曲旭坡, 邢颖 2020 染料与染色 57 24

    Cong L Q, Li W X, Ma Y, Qu X P, Xing Y 2020 Dyestuffs and Coloration 57 24

    [34]

    王述 1983 辽宁化工 56

    Wang S 1983 Liaoning Chem. Ind. 56 (in Chinses)

    [35]

    Uoyama H, Goushi K, Shizu K, Nomura H, Adachi C 2012 Nature 492 234Google Scholar

    [36]

    Yuan J, Wang Y, Li L, Wang S, Tang X, Wang H, Li M, Zheng C, Chen R 2020 J. Phys. Chem. C 124 10129Google Scholar

    [37]

    Zhang L, Li Y, Shi J, Shi G, Cao S 2013 Mater. Chem. Phys. 142 626Google Scholar

    [38]

    Wu J Y, Lai T H, Fang M J, Chen J Y, Kuo M Y, Chiu Y H, Hsieh P Y, Tsao C W, Chang H E, Chang Y P, Wang C Y, Chen C Y, Sone M, Wu W W, Chang T F M, Hsu Y J 2022 ACS Appl. Nano Mater. 5 8404Google Scholar

    [39]

    Khan M U, Hassan G, Raza M A, Bae J, Kobayashi N P 2019 J. Mater. Sci.: Mater. Electron. 30 4607Google Scholar

    [40]

    Rose A 1955 Phys. Rev. 97 1538Google Scholar

    [41]

    Cölle M, Büchel M, De Leeuw D M 2006 Org. Electron. 7 305Google Scholar

    [42]

    Jiang X L, Zhao Y G, Chen Y S, Li D, Luo Y X, Zhao D Y, Sun Z, Sun J R, Zhao H W 2013 Appl. Phys. Lett. 102 253507Google Scholar

    [43]

    Pan S, Zhu Z, Yu H, Lan W, Wei B, Guo K 2021 J. Mater. Chem. C 9 5643Google Scholar

    [44]

    Yamazaki Y, Yamashita K, Tani Y, Aoyama T, Ogawa T 2020 J. Mater. Chem. C 8 14423Google Scholar

    [45]

    Barsukov Y, Macdonald J 2005 Impedance Spectroscopy: Theory, Experiment, and Applications (New Jersey: Wiley-Interscience) pp1–528

    [46]

    Zhou G, Yao Y, Lu Z, Yang X, Han J, Wang G, Rao X, Li P, Liu Q, Song Q 2017 Nanotechnology 28 425202Google Scholar

    [47]

    Lai Y C, Ohshimizu K, Lee W Y, Hsu J C, Higashihara T, Ueda M, Chen W C 2011 J. Mater. Chem. 21 14502Google Scholar

    [48]

    Chen J C, Liu C L, Sun Y S, Tung S H, Chen W C 2012 Soft Matter 8 526Google Scholar

    [49]

    Lian S L, Liu C L, Chen W C 2011 ACS Appl. Mater. Interfaces 3 4504Google Scholar

    [50]

    周朋超, 张卫东, 顾嘉陆, 陈卉敏, 胡腾达, 蒲华燕, 兰伟霞, 魏斌 2020 物理学报 69 198801Google Scholar

    Zhou P C, Zhang W D, Gu J L, Chen H M, Hu T D, Pu H Y, Lan W X, Wei B 2020 Acta Phys. Sin. 69 198801Google Scholar

    [51]

    Meyer E A, Castellano R K, Diederich F 2003 Angew. Chem., Int. Ed. Engl. 42 1210Google Scholar

  • 图 1  (a) P3HT和O-DCB的分子结构; (b) ORSM器件结构

    Fig. 1.  (a) Chemical structures of P3HT and O-DCB; (b) schematic diagram of the ORSM.

    图 2  (a) O-DCB的吸收光谱、激发光谱和发射光谱; P3HT, P3HT: 15% O-DCB和P3HT: 30% O-DCB的 (b) 吸收光谱和 (c) 荧光光谱; P3HT, P3HT: 15% O-DCB, P3HT: 30% O-DCB和P3HT: 45% O-DCB薄膜的AFM形貌图; P3HT: 15% O-DCB和P3HT: 30% O-DCB薄膜S和N元素的分布图

    Fig. 2.  (a) Absorption, excitation and emission spectra of O-DCB; (b) normalized UV-vis absorption spectra and (c) PL spectra of P3HT, P3HT: 15% O-DCB and P3HT: 30% O-DCB. AFM images of (d) P3HT, (e) P3HT: 15% O-DCB, (f) P3HT: 30% O-DCB, and (g) P3HT: 45% O-DCB films. Distribution maps of S and N elements of (h)(i) P3HT: 15% O-DCB and (j)(k) P3HT: 30% O-DCB films.

    图 3  (a) P3HT, (b) P3HT: 15% O-DCB, (c) P3HT: 30% O-DCB, (d) P3HT: 45% O-DCB器件的I-V特性; (e) P3HT: 15% O-DCB和 (f) P3HT: 30% O-DCB器件的Ion/off-V特性; (g) P3HT: 15% O-DCB和 (h) P3HT: 30% O-DCB器件的切换速度测试

    Fig. 3.  I-V characterizations of devices with (a) P3HT, (b) P3HT:15% O-DCB, (c) P3HT:30% O-DCB, and (d) P3HT:45% O-DCB. Ion/off-V characterizations of devices with (e) P3HT:15% O-DCB and (f) P3HT:30% O-DCB. Switching speed test of devices with (g) P3HT:15% O-DCB and (h) P3HT:30% O-DCB.

    图 4  (a)—(c) D1和 (d)—(f) D2的 (a)(d) 耐久性、(b)(e) 保持性和 (c)(f) 脉冲周期、宽度、电压为4 μs、4 μs和–1 V时的读脉冲稳定性测试

    Fig. 4.  (a)(d) Endurance cycles test, (b)(e) retention time test, and (c)(f) reading pulse test with the pulse period and width of 4 μs and 4 μs and the voltage of –1 V of (a)–(c) D1 and (d)–(f) D2.

    图 5  (a) D1和 (b) D2的I-V曲线的线性拟合结果; (c) P3HT器件以及 (d)(f) D1和 (e)(g) D2分别在(d)(e) LRS和(f)(g) HRS的Nyquist图; (h) 阻抗的虚部与频率关系图

    Fig. 5.  Linear fitting of the I-V curves of (a) D1 and (b) D2. Nyquist plots of (c) P3HT based device, (d)(f) D1 and (e)(g) D2 in (d)(e) LRS and (f)(g) HRS; (h) plots of the imaginary part of the impedance vs. frequency of devices in LRS.

    图 6  (a) ORSM的能级结构图; (b)—(f)器件的阻变机理示意图 (b) 陷阱电荷俘获阶段; (c) 陷阱填满阶段; (d) 陷阱电荷去俘获阶段; (e) 空陷阱阶段; (f) 电流泄露

    Fig. 6.  (a) Energy diagram of the ORSM; (b)–(f) Schematic illustration of the switching mechanism: Charge transfer processes of (b) trap filling, (c) fully filling trap, (d) trap pumping, (e) vacant trap, and (f) current leakage.

    表 1  D1和D2的器件参数汇总

    Table 1.  Summary of device parameters for D1 and D2.

    器件Vset/VVreset/VIon/off耐久性保持性/s存储类型
    D1–6.92.61.5×104400105Flash
    D2–6.22.81.0×103400105Flash
    下载: 导出CSV
  • [1]

    Zhang Z, Wang Z, Shi T, Bi C, Rao F, Cai Y, Liu Q, Wu H, Zhou P 2020 InfoMat 2 261Google Scholar

    [2]

    Service R F 2018 Science 361 321Google Scholar

    [3]

    Debenedictis E P 2019 Computer 52 114Google Scholar

    [4]

    Zahoor F, Azni Zulkifli T Z, Khanday F A 2020 Nanoscale Res. Lett. 15 90Google Scholar

    [5]

    Wong H S P, Lee H Y, Yu S, Chen Y S, Wu Y, Chen P S, Lee B, Chen F T, Tsai M J 2012 Proc. IEEE 100 1951Google Scholar

    [6]

    Sangwan V K, Lee H S, Bergeron H, Balla I, Beck M E, Chen K S, Hersam M C 2018 Nature 554 500Google Scholar

    [7]

    Gismatulin A A, Orlov O M, Gritsenko V A, Kruchinin V N, Mizginov D S, Krasnikov G Y 2020 Appl. Phys. Lett. 116 203502Google Scholar

    [8]

    Younis A, Lin C H, Guan X, Shahrokhi S, Huang C Y, Wang Y, He T, Singh S, Hu L, Retamal J R D, He J H, Wu T 2021 Adv. Mater. 33 2005000Google Scholar

    [9]

    朱佳雪, 张续猛, 王睿, 刘琦 2022 物理学报 71 148503Google Scholar

    Zhu J X, Zhang X M, Wang R, Liu Q 2022 Acta Phys. Sin. 71 148503Google Scholar

    [10]

    古亚娜, 梁燕, 王光义, 夏晨阳 2022 物理学报 71 110501Google Scholar

    Gu Y N, Liang Y, Wang G Y, Xia C Y 2022 Acta Phys. Sin. 71 110501Google Scholar

    [11]

    Paul F, Paul S 2022 Small 18 2106442Google Scholar

    [12]

    Lee J H, Park S P, Park K, Kim H J 2019 Adv. Funct. Mater. 30 1907437

    [13]

    Gao S, Yi X, Shang J, Liu G, Li R W 2019 Chem. Soc. Rev. 48 1531Google Scholar

    [14]

    卢颖, 陈威林, 高双, 李润伟 2020 材料导报 34 1146Google Scholar

    Lu Y, Chen W L, Gao S, Li R W 2020 Mat. Rep. 34 1146Google Scholar

    [15]

    陈威林, 高双, 伊晓辉, 尚杰, 刘钢, 李润伟 2019 功能高分子学报 32 434

    Chen W L, Gao S, Yi X H, Shang J, Liu G, Li R W 2019 J. Funct. Polym. 32 434

    [16]

    Lian H, Cheng X Z, Hao H T, Han J B, Lau M T, Li Z K, Zhou Z, Dong Q C, Wong W Y 2022 Chem. Soc. Rev. 51 1926Google Scholar

    [17]

    孙艳梅 2017 博士学位论文 (哈尔滨: 黑龙江大学)

    Sun Y M 2017 Ph. D. Dissertation (Haerbin: Heilongjiang University) (in Chinese)

    [18]

    朱志强 2021 硕士学位论文 (常州: 常州大学)

    Zhu Z Q 2021 M.S. Thesis (Changzhou: Changzhou University) (in Chinese)

    [19]

    Hou J, Zhang B, Li D, Fu Y, Liu G, Chen Y 2019 J. Mater. Chem. C 7 14664Google Scholar

    [20]

    Narasimhan Arunagirinathan R, Gopikrishna P, Das D, Iyer P K 2019 ACS Appl. Electron. Mater. 1 600Google Scholar

    [21]

    Sun Y, Li L, Wen D, Bai X 2015 J. Phys. Chem. C 119 19520Google Scholar

    [22]

    Po R, Bernardi A, Calabrese A, Carbonera C, Corso G, Pellegrino A 2014 Energy Environ. Sci. 7 925Google Scholar

    [23]

    Li Y, Zhang Y, Wu B, Pang S, Yuan X, Duan C, Huang F, Cao Y 2022 Solar RRL 2200073

    [24]

    Xian K, Liu Y, Liu J, Yu J, Xing Y, Peng Z, Zhou K, Gao M, Zhao W, Lu G, Zhang J, Hou J, Geng Y, Ye L 2022 J. Mater. Chem. A 10 3418Google Scholar

    [25]

    Liu M, Fan Q, Yang K, Zhao Z, Zhao X, Zhou Z, Zhang J, Lin F, Jen A K Y, Zhang F 2022 Sci. China Chem. 65 1642Google Scholar

    [26]

    Song J, Guo T, Huang C, Liu M, Cui H, Huang W, Wang Y, Li T 2022 Chem. Eng. J. 446

    [27]

    Chaudhary D, Munjal S, Khare N, Vankar V D 2018 Carbon 130 553Google Scholar

    [28]

    Jin Z, Liu G, Wang J 2013 AIP Adv. 3 052113Google Scholar

    [29]

    Liang J, Su Y, Lin Q, Zhou H, Zhang S, Pei Y, Hu R 2014 Semicond. Sci. Technol. 29 115029Google Scholar

    [30]

    Sherazi S S H, Rehman M M, Ur Rehman H M M, Kim W Y, Siddiqui G U, Karimov K S 2020 Semicond. Sci. Technol. 35 125012Google Scholar

    [31]

    Sim R, Ming W, Setiawan Y, Lee P S 2012 J. Phys. Chem. C 117 677

    [32]

    Wang P, Liu Q, Zhang C Y, Jiang J, Wang L H, Chen D Y, Xu Q F, Lu J M 2015 Nanoscale 7 19579Google Scholar

    [33]

    丛麟权, 李文骁, 马瑛, 曲旭坡, 邢颖 2020 染料与染色 57 24

    Cong L Q, Li W X, Ma Y, Qu X P, Xing Y 2020 Dyestuffs and Coloration 57 24

    [34]

    王述 1983 辽宁化工 56

    Wang S 1983 Liaoning Chem. Ind. 56 (in Chinses)

    [35]

    Uoyama H, Goushi K, Shizu K, Nomura H, Adachi C 2012 Nature 492 234Google Scholar

    [36]

    Yuan J, Wang Y, Li L, Wang S, Tang X, Wang H, Li M, Zheng C, Chen R 2020 J. Phys. Chem. C 124 10129Google Scholar

    [37]

    Zhang L, Li Y, Shi J, Shi G, Cao S 2013 Mater. Chem. Phys. 142 626Google Scholar

    [38]

    Wu J Y, Lai T H, Fang M J, Chen J Y, Kuo M Y, Chiu Y H, Hsieh P Y, Tsao C W, Chang H E, Chang Y P, Wang C Y, Chen C Y, Sone M, Wu W W, Chang T F M, Hsu Y J 2022 ACS Appl. Nano Mater. 5 8404Google Scholar

    [39]

    Khan M U, Hassan G, Raza M A, Bae J, Kobayashi N P 2019 J. Mater. Sci.: Mater. Electron. 30 4607Google Scholar

    [40]

    Rose A 1955 Phys. Rev. 97 1538Google Scholar

    [41]

    Cölle M, Büchel M, De Leeuw D M 2006 Org. Electron. 7 305Google Scholar

    [42]

    Jiang X L, Zhao Y G, Chen Y S, Li D, Luo Y X, Zhao D Y, Sun Z, Sun J R, Zhao H W 2013 Appl. Phys. Lett. 102 253507Google Scholar

    [43]

    Pan S, Zhu Z, Yu H, Lan W, Wei B, Guo K 2021 J. Mater. Chem. C 9 5643Google Scholar

    [44]

    Yamazaki Y, Yamashita K, Tani Y, Aoyama T, Ogawa T 2020 J. Mater. Chem. C 8 14423Google Scholar

    [45]

    Barsukov Y, Macdonald J 2005 Impedance Spectroscopy: Theory, Experiment, and Applications (New Jersey: Wiley-Interscience) pp1–528

    [46]

    Zhou G, Yao Y, Lu Z, Yang X, Han J, Wang G, Rao X, Li P, Liu Q, Song Q 2017 Nanotechnology 28 425202Google Scholar

    [47]

    Lai Y C, Ohshimizu K, Lee W Y, Hsu J C, Higashihara T, Ueda M, Chen W C 2011 J. Mater. Chem. 21 14502Google Scholar

    [48]

    Chen J C, Liu C L, Sun Y S, Tung S H, Chen W C 2012 Soft Matter 8 526Google Scholar

    [49]

    Lian S L, Liu C L, Chen W C 2011 ACS Appl. Mater. Interfaces 3 4504Google Scholar

    [50]

    周朋超, 张卫东, 顾嘉陆, 陈卉敏, 胡腾达, 蒲华燕, 兰伟霞, 魏斌 2020 物理学报 69 198801Google Scholar

    Zhou P C, Zhang W D, Gu J L, Chen H M, Hu T D, Pu H Y, Lan W X, Wei B 2020 Acta Phys. Sin. 69 198801Google Scholar

    [51]

    Meyer E A, Castellano R K, Diederich F 2003 Angew. Chem., Int. Ed. Engl. 42 1210Google Scholar

  • [1] 柯庆, 代月花. 电化学金属化阻性存储器导电细丝生长中的离子动力学研究. 物理学报, 2023, 72(24): 248501. doi: 10.7498/aps.72.20231232
    [2] 刘丽娟, 孔晓波, 刘永刚, 宣丽. 基于液晶/聚合物光栅的高转化效率有机半导体激光器. 物理学报, 2017, 66(24): 244204. doi: 10.7498/aps.66.244204
    [3] 郭宇琦, 潘俊星, 张进军, 孙敏娜, 王宝凤, 武海顺. 在光敏性三元聚合物混合物中构造 多尺度有序图案. 物理学报, 2016, 65(5): 056401. doi: 10.7498/aps.65.056401
    [4] 代月花, 潘志勇, 陈真, 王菲菲, 李宁, 金波, 李晓风. 基于HfO2的阻变存储器中Ag导电细丝方向和浓度的第一性原理研究. 物理学报, 2016, 65(7): 073101. doi: 10.7498/aps.65.073101
    [5] 范昌君, 王瑞雪, 刘振, 雷勇, 李国庆, 熊祖洪, 杨晓晖. 基于溶液加工小分子材料发光层的有机-无机复合发光器件. 物理学报, 2015, 64(16): 167801. doi: 10.7498/aps.64.167801
    [6] 柴玉华, 郭玉秀, 卞伟, 李雯, 杨涛, 仪明东, 范曲立, 解令海, 黄维. 柔性有机非易失性场效应晶体管存储器的研究进展. 物理学报, 2014, 63(2): 027302. doi: 10.7498/aps.63.027302
    [7] 许中华, 陈卫兵, 叶玮琼, 杨伟丰. 聚合物和小分子叠层结构有机太阳电池研究. 物理学报, 2014, 63(21): 218801. doi: 10.7498/aps.63.218801
    [8] 张兆慧, 李海鹏, 韩奎. 纳米摩擦中极性有机分子超薄膜的结构、对称性及能量机理. 物理学报, 2013, 62(15): 158701. doi: 10.7498/aps.62.158701
    [9] 杨金, 周茂秀, 徐太龙, 代月花, 汪家余, 罗京, 许会芳, 蒋先伟, 陈军宁. 阻变存储器复合材料界面及电极性质研究. 物理学报, 2013, 62(24): 248501. doi: 10.7498/aps.62.248501
    [10] 容佳玲, 陈赟汉, 周洁, 张雪, 王立, 曹进. 基于ITO/聚甲基丙烯酸甲酯/Al的有机阻变存储器SPICE仿真. 物理学报, 2013, 62(22): 228502. doi: 10.7498/aps.62.228502
    [11] 张兆慧, 韩奎, 曹娟, 王帆, 杨丽娟. 有机分子超薄膜的结构对摩擦的影响. 物理学报, 2012, 61(2): 028701. doi: 10.7498/aps.61.028701
    [12] 许裕栗, 陈学谦, 陈厚样, 徐首红, 刘洪来. 接枝聚合物对小分子的选择性吸附研究. 物理学报, 2011, 60(11): 117104. doi: 10.7498/aps.60.117104
    [13] 孙转兰, 张晓青, 曹功勋, 王学文, 夏钟福. 有序结构氟聚合物压电驻极体的制备和压电性研究. 物理学报, 2010, 59(7): 5061-5066. doi: 10.7498/aps.59.5061
    [14] 刘 维, 樊荣伟, 李晓晖, 陈 辉, 夏元钦, 陈德应. 小分子改性的聚合物固体染料激光特性研究. 物理学报, 2007, 56(9): 5276-5280. doi: 10.7498/aps.56.5276
    [15] 聂 海, 张 波, 唐先忠. 聚合物掺杂有机小分子发光二极管的电致发光与杂质陷阱效应. 物理学报, 2007, 56(1): 263-267. doi: 10.7498/aps.56.263
    [16] 封伟, 曹猛, 韦玮, 吴洪才, 万梅香, 吉野胜美. 有机聚合物受体给体复合体薄膜光伏电池性能研究. 物理学报, 2001, 50(6): 1157-1162. doi: 10.7498/aps.50.1157
    [17] 徐则达, 蔡志岗, 张灵志, 刘焰发, 杨 杰, 佘卫龙, 周建英. 有机聚合物薄膜中的横向效应与准晶结构. 物理学报, 2000, 49(6): 1091-1093. doi: 10.7498/aps.49.1091
    [18] 任立勇, 姚保利, 侯 洵, 易文辉, 汪敏强. 有机聚合物薄膜激光诱导相位孔衍射的实验和理论. 物理学报, 2000, 49(10): 1973-1977. doi: 10.7498/aps.49.1973
    [19] 吴长勤, 张宇钟, 傅荣堂, 孙 鑫. 纯有机聚合物磁性的模型研究. 物理学报, 1999, 48(4): 713-720. doi: 10.7498/aps.48.713
    [20] 傅荣堂, 王晓东, 孙 鑫, 川添良幸. 纯有机聚合物磁性的第一性原理研究. 物理学报, 1998, 47(11): 1840-1846. doi: 10.7498/aps.47.1840
计量
  • 文章访问数:  2114
  • PDF下载量:  38
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-26
  • 修回日期:  2022-12-04
  • 上网日期:  2022-12-17
  • 刊出日期:  2023-02-20

/

返回文章
返回