搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于ITO/聚甲基丙烯酸甲酯/Al的有机阻变存储器SPICE仿真

容佳玲 陈赟汉 周洁 张雪 王立 曹进

引用本文:
Citation:

基于ITO/聚甲基丙烯酸甲酯/Al的有机阻变存储器SPICE仿真

容佳玲, 陈赟汉, 周洁, 张雪, 王立, 曹进

SPICE simulation of organic resistive memory with structure of ITO/polymethylmethacrylate/Al

Rong Jia-Ling, Chen Yun-Han, Zhou Jie, Zhang Xue, Wang Li, Cao Jin
PDF
导出引用
  • 探索了ITO/PMMA/Al器件的阻变机理及其SPICE电路仿真, 通过优化聚甲基丙烯酸甲酯(PMMA)层退火温度, 器件可实现连续擦-读-写-读操作. 基于不同退火温度PMMA薄膜的表面形貌研究, 构建了单层有机阻变器件的非线性电荷漂移模型, 以及描述该模型掺杂区界面移动的状态方程, 并通过反馈控制积分器建立了SPICE仿真电路. 最后, 代入器件实际测量参数, 得到与器件实际结果基本一致的电流-电压模拟曲线. 结果验证了单层有机器件的阻变机理, 说明该非线性电荷漂移模型的SPICE仿真在有机阻变器件仿真中同样适用.
    In this paper the resistive mechanism of the device with structure of ITO/PMMA/Al and the relevant SPICE simulation circuit are investigated. By optimizing the annealing temperature of PMMA, the devices can achieve continuous erasable-readable-writeable-readable operation. Based on the surface morphology researches of PMMA with different annealing temperatures, a physics model of nonlinear charge-drift mechanism in doping system is established to explain the resistance characteristics of the organic device. And the state equations are established to describe the interface movement of different doping regions in the model. Then, the SPICE simulation circuit is set up with feedback control integrator. Finally, substituting the measured parameters of device into the simulation circuit, we obtain the current-voltage simulation curve which is in good agreement with the actual results of the device. The results verify the resistance mechanism of nonlinear charge-drift in our device, and the applicability of the SPICE simulation of nonlinear charge-drift model based on inorganic memristors to the organic resistive memory.
    • 基金项目: 上海自然科学基金(批准号: 09ZR1411900)、上海市科委(批准号: 11100703200)和上海大学创新基金(批准号: sdcx2012063)资助的课题.
    • Funds: Project supported by the Shanghai Natural Science Funds, China (Grant No. 09ZR1411900), the Shanghai Science and Technology Commission Project, China (Grant No. 11100703200), and the Shanghai University Innovation Funds, China (Grant No. sdcx2012063).
    [1]

    Jia L N, Huang A P, Zheng X H, Xiao Z S, Wang M 2011 Acta Phys. Sin. 61 120502 (in Chinese) [贾林楠, 黄安平, 郑晓虎, 肖志松, 王玫 2012 物理学报 61 217306]

    [2]

    Liu S, Li Y T, Wang Y, Long S B, L H B, Liu Q, Wang Q, Zhang S, Lian W T, Liu M 2011 Chin. Phys. B 20 017305

    [3]

    Zhang T, Bai Y, Jia C H, Zhang W F 2012 Chin. Phys. B 21 107304

    [4]

    Hu H, Cai J M, Zhang C D, Gao M, Pan Y, Du S X, Sun Q F, Gao H J, Xie X C, Niu Q 2010 Chin. Phys. B 19 037202

    [5]

    Lai Y S, Tu C H, Kwong D L, Chen J S 2005 Appl. Phys. Lett. 87 122101

    [6]

    Tondelier D, Lmimouni K, Vuillaume D, Fery C, Haas G 2004 Appl. Phys. Lett. 85 5763

    [7]

    Mahapatro A K, Agrawal R, Ghosh S 2004 J. Appl. Phys. 96 3583

    [8]

    Majumdar H S, Baral J K, Österbacka R, Ikkalab O, Stubba H 2005 Org. Electron. 6 188

    [9]

    Ma L P, Liu J, Yang Y 2002 Appl. Phys. Lett. 80 2997

    [10]

    Möller S, Perlov C, Jackson W, Taussig C, Forrest S R 2003 Nature 426 166

    [11]

    Ji Y, Cho B, Song S, Kim T W, Choe M, Kahng Y H, Lee T 2010 Adv. Mater. 22 3071

    [12]

    Joo W J, Choi T L, Lee K H, Chung Y S 2007 J. Phys. Chem. B 111 7756

    [13]

    Ma L, Xu Q, Yang Y 2004 Appl. Phys. Lett. 84 4908

    [14]

    Reddy V S, Karak S, Ray S K, Dhar A 2009 Org. Electron. 10 138

    [15]

    Baral J K, Majumdar H S, Laiho A, Jiang H, Kauppinen E I, Ras R H A, Ruokolainen J, Ikkala O, Öesterbacka R 2008 Nanotechnology 19 035203

    [16]

    Carbone A, Kotowska B K, Kotowski D 2005 Phys. Rev. Lett. 95 236601

    [17]

    Mark P, Helfrich W 1962 J. Appl. Phys. 33 205

    [18]

    Lin H T, Pei Z, Chan Y J 2007 IEEE Electron. Dev. Lett. 28 569

    [19]

    Ling Q D, Song Y, Ding S J, Zhu C X, Chan D S H, Kwong D L, Kang E T, Neoh K G 2005 Adv. Mater. 17 455

    [20]

    Ling Q D, Lim S L, Song Y, Zhu C X, Chan D S H, Kang E T, Neoh K G 2007 Langmuir 23 312

    [21]

    Song Y, Ling Q D, Zhu C, Kang E T, Chan D S H, Wang Y H, Kwong D L 2006 IEEE Electron. Dev. Lett. 27 154

    [22]

    Song Y, Tan Y P, Teo E Y H, Zhu C X, Chan D S H, Ling Q D, Neoh K G, Kang E T 2006 J. Appl. Phys. 100 084508

    [23]

    Wang M L, Zhou J, Gao X D, Ding B F, Shi Z, Sun X Y, Ding X M, Hou X Y 2007 Appl. Phys. Lett. 91 143511

    [24]

    Strukov D B, Snider G S, Stewart D R, Williams R S 2008 Nature 453 80

    [25]

    Zdenek B, Biolek D, Biolková V 2009 Radioengineering 18 210

    [26]

    Chua L O 2011 Appl. Phys. A: Mater. Sci. Process 102 765

    [27]

    Huang L, Huang A P, Zheng X H, Xiao Z S, Wang M 2012 Acta Phys. Sin. 61 137701 (in Chinese) [黄力, 黄安平, 郑晓虎, 肖志松, 王玫 2012 物理学报 61 137701]

    [28]

    Bao B C, Hu W, Xu J P, Liu Z, Zou L 2011 Acta Phys. Sin. 60 120502 (in Chinese) [包伯成, 胡文, 许建平, 刘中, 邹凌 2011 物理学报 60 120502]

    [29]

    Liang Y, Yu D S, Chen H 2013 Acta Phys. Sin. 62 158501 (in Chinese) [梁燕, 于东升, 陈昊 2013 物理学报 62 158501]

    [30]

    Bao B C, Xu J P, Zhou G H, Ma Z H, Zou L 2011 Chin. Phys. B 20 120502

  • [1]

    Jia L N, Huang A P, Zheng X H, Xiao Z S, Wang M 2011 Acta Phys. Sin. 61 120502 (in Chinese) [贾林楠, 黄安平, 郑晓虎, 肖志松, 王玫 2012 物理学报 61 217306]

    [2]

    Liu S, Li Y T, Wang Y, Long S B, L H B, Liu Q, Wang Q, Zhang S, Lian W T, Liu M 2011 Chin. Phys. B 20 017305

    [3]

    Zhang T, Bai Y, Jia C H, Zhang W F 2012 Chin. Phys. B 21 107304

    [4]

    Hu H, Cai J M, Zhang C D, Gao M, Pan Y, Du S X, Sun Q F, Gao H J, Xie X C, Niu Q 2010 Chin. Phys. B 19 037202

    [5]

    Lai Y S, Tu C H, Kwong D L, Chen J S 2005 Appl. Phys. Lett. 87 122101

    [6]

    Tondelier D, Lmimouni K, Vuillaume D, Fery C, Haas G 2004 Appl. Phys. Lett. 85 5763

    [7]

    Mahapatro A K, Agrawal R, Ghosh S 2004 J. Appl. Phys. 96 3583

    [8]

    Majumdar H S, Baral J K, Österbacka R, Ikkalab O, Stubba H 2005 Org. Electron. 6 188

    [9]

    Ma L P, Liu J, Yang Y 2002 Appl. Phys. Lett. 80 2997

    [10]

    Möller S, Perlov C, Jackson W, Taussig C, Forrest S R 2003 Nature 426 166

    [11]

    Ji Y, Cho B, Song S, Kim T W, Choe M, Kahng Y H, Lee T 2010 Adv. Mater. 22 3071

    [12]

    Joo W J, Choi T L, Lee K H, Chung Y S 2007 J. Phys. Chem. B 111 7756

    [13]

    Ma L, Xu Q, Yang Y 2004 Appl. Phys. Lett. 84 4908

    [14]

    Reddy V S, Karak S, Ray S K, Dhar A 2009 Org. Electron. 10 138

    [15]

    Baral J K, Majumdar H S, Laiho A, Jiang H, Kauppinen E I, Ras R H A, Ruokolainen J, Ikkala O, Öesterbacka R 2008 Nanotechnology 19 035203

    [16]

    Carbone A, Kotowska B K, Kotowski D 2005 Phys. Rev. Lett. 95 236601

    [17]

    Mark P, Helfrich W 1962 J. Appl. Phys. 33 205

    [18]

    Lin H T, Pei Z, Chan Y J 2007 IEEE Electron. Dev. Lett. 28 569

    [19]

    Ling Q D, Song Y, Ding S J, Zhu C X, Chan D S H, Kwong D L, Kang E T, Neoh K G 2005 Adv. Mater. 17 455

    [20]

    Ling Q D, Lim S L, Song Y, Zhu C X, Chan D S H, Kang E T, Neoh K G 2007 Langmuir 23 312

    [21]

    Song Y, Ling Q D, Zhu C, Kang E T, Chan D S H, Wang Y H, Kwong D L 2006 IEEE Electron. Dev. Lett. 27 154

    [22]

    Song Y, Tan Y P, Teo E Y H, Zhu C X, Chan D S H, Ling Q D, Neoh K G, Kang E T 2006 J. Appl. Phys. 100 084508

    [23]

    Wang M L, Zhou J, Gao X D, Ding B F, Shi Z, Sun X Y, Ding X M, Hou X Y 2007 Appl. Phys. Lett. 91 143511

    [24]

    Strukov D B, Snider G S, Stewart D R, Williams R S 2008 Nature 453 80

    [25]

    Zdenek B, Biolek D, Biolková V 2009 Radioengineering 18 210

    [26]

    Chua L O 2011 Appl. Phys. A: Mater. Sci. Process 102 765

    [27]

    Huang L, Huang A P, Zheng X H, Xiao Z S, Wang M 2012 Acta Phys. Sin. 61 137701 (in Chinese) [黄力, 黄安平, 郑晓虎, 肖志松, 王玫 2012 物理学报 61 137701]

    [28]

    Bao B C, Hu W, Xu J P, Liu Z, Zou L 2011 Acta Phys. Sin. 60 120502 (in Chinese) [包伯成, 胡文, 许建平, 刘中, 邹凌 2011 物理学报 60 120502]

    [29]

    Liang Y, Yu D S, Chen H 2013 Acta Phys. Sin. 62 158501 (in Chinese) [梁燕, 于东升, 陈昊 2013 物理学报 62 158501]

    [30]

    Bao B C, Xu J P, Zhou G H, Ma Z H, Zou L 2011 Chin. Phys. B 20 120502

  • [1] 程双毅, 郁钧瑾, 付亚鹏, 他得安, 许凯亮. 非线性造影超声成像数值仿真方法. 物理学报, 2023, 72(15): 154302. doi: 10.7498/aps.72.20230323
    [2] 王英, 黄慧香, 黄香林, 郭婷婷. 光电协同调控下HfOx基阻变存储器的阻变特性. 物理学报, 2023, 72(19): 197201. doi: 10.7498/aps.72.20230797
    [3] 李伟, 朱慧文, 孙彤, 屈文山, 李建刚, 杨辉, 高志翔, 施薇, 魏斌, 王华. 基于1, 2 - 二氰基苯/聚合物复合材料的高耐久性有机阻变存储器. 物理学报, 2023, 72(4): 048501. doi: 10.7498/aps.72.20221507
    [4] 郭家俊, 董静雨, 康鑫, 陈伟, 赵旭. 过渡金属元素X(X=Mn,Fe,Co,Ni)掺杂对ZnO基阻变存储器性能的影响. 物理学报, 2018, 67(6): 063101. doi: 10.7498/aps.67.20172459
    [5] 孙悦, 曲斌, 全保刚. 碳纳米管/二硒化钼有机玻璃的非线性吸收、非线性散射和光限幅特性. 物理学报, 2018, 67(23): 236201. doi: 10.7498/aps.67.20181583
    [6] 代月花, 潘志勇, 陈真, 王菲菲, 李宁, 金波, 李晓风. 基于HfO2的阻变存储器中Ag导电细丝方向和浓度的第一性原理研究. 物理学报, 2016, 65(7): 073101. doi: 10.7498/aps.65.073101
    [7] 蒋先伟, 鲁世斌, 代广珍, 汪家余, 金波, 陈军宁. 电荷俘获存储器数据保持特性第一性原理研究. 物理学报, 2015, 64(21): 213102. doi: 10.7498/aps.64.213102
    [8] 柴玉华, 郭玉秀, 卞伟, 李雯, 杨涛, 仪明东, 范曲立, 解令海, 黄维. 柔性有机非易失性场效应晶体管存储器的研究进展. 物理学报, 2014, 63(2): 027302. doi: 10.7498/aps.63.027302
    [9] 陈然, 周立伟, 王建云, 陈长军, 邵兴隆, 蒋浩, 张楷亮, 吕联荣, 赵金石. 基于Cu/SiOx/Al结构的阻变存储器多值特性及机理的研究. 物理学报, 2014, 63(6): 067202. doi: 10.7498/aps.63.067202
    [10] 汪家余, 代月花, 赵远洋, 徐建彬, 杨菲, 代广珍, 杨金. 电荷俘获存储器的过擦现象. 物理学报, 2014, 63(20): 203101. doi: 10.7498/aps.63.203101
    [11] 汪家余, 赵远洋, 徐建彬, 代月花. 缺陷对电荷俘获存储器写速度影响. 物理学报, 2014, 63(5): 053101. doi: 10.7498/aps.63.053101
    [12] 阮望超, 岑兆丰, 李晓彤, 刘洋舟, 庞武斌. 基于光线光学的非线性自聚焦现象的仿真分析. 物理学报, 2013, 62(4): 044202. doi: 10.7498/aps.62.044202
    [13] 丁李利, 郭红霞, 陈伟, 闫逸华, 肖尧, 范如玉. 累积辐照影响静态随机存储器单粒子翻转敏感性的仿真研究. 物理学报, 2013, 62(18): 188502. doi: 10.7498/aps.62.188502
    [14] 杨金, 周茂秀, 徐太龙, 代月花, 汪家余, 罗京, 许会芳, 蒋先伟, 陈军宁. 阻变存储器复合材料界面及电极性质研究. 物理学报, 2013, 62(24): 248501. doi: 10.7498/aps.62.248501
    [15] 何博, 何浩波, 丰松江, 聂万胜. 液体火箭有机凝胶喷雾液滴蒸发模型及仿真研究. 物理学报, 2012, 61(14): 148201. doi: 10.7498/aps.61.148201
    [16] 张晓荷, 王冬杰, 夏海平. 卟啉铜接枝SiO2有机-无机复合材料及强的非线性折射率. 物理学报, 2011, 60(2): 024210. doi: 10.7498/aps.60.024210
    [17] 郑加金, 陆云清, 李培丽. 激发态分子内质子转移有机分子HBT的三阶非线性光学特性. 物理学报, 2010, 59(7): 4687-4693. doi: 10.7498/aps.59.4687
    [18] 李训栓, 彭应全, 杨青森, 刑宏伟, 路飞平. 有机半导体异质界面电荷传输解析模型研究. 物理学报, 2007, 56(9): 5441-5445. doi: 10.7498/aps.56.5441
    [19] 于世瑞, 赵有源, 李潞瑛. 有机材料ZnTBP-CA-PhR的非线性吸收和光学限幅性能. 物理学报, 2003, 52(4): 859-863. doi: 10.7498/aps.52.859
    [20] 章扬忠. 非线性电子磁漂移波. 物理学报, 1981, 30(12): 1649-1658. doi: 10.7498/aps.30.1649
计量
  • 文章访问数:  6084
  • PDF下载量:  635
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-07-18
  • 修回日期:  2013-08-25
  • 刊出日期:  2013-11-05

/

返回文章
返回