搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于Cu/SiOx/Al结构的阻变存储器多值特性及机理的研究

陈然 周立伟 王建云 陈长军 邵兴隆 蒋浩 张楷亮 吕联荣 赵金石

引用本文:
Citation:

基于Cu/SiOx/Al结构的阻变存储器多值特性及机理的研究

陈然, 周立伟, 王建云, 陈长军, 邵兴隆, 蒋浩, 张楷亮, 吕联荣, 赵金石

Multilevel switching mechanism for resistive random access memory based on Cu/SiOx/Al structure

Chen Ran, Zhou Li-Wei, Wang Jian-Yun, Chen Chang-Jun, Shao Xing-Long, Jiang Hao, Zhang Kai-Liang, Lü Lian-Rong, Zhao Jin-Shi
PDF
导出引用
  • 采用氧化硅材料构建了Cu/SiOx/Al的三明治结构阻变存储器件. 用半导体参数分析仪对其阻变特性进行测量,结果表明其具有明显的阻变特性,并且通过调节限制电流,得到了四个稳定的阻态,各相邻阻态的电阻比大于10,并且具有良好的数据保持能力. 在不同温度条件下对各个阻态进行电学测试及拟合,明确了不同阻态的电子传输机理不尽相同:阻态1和阻态2为欧姆传导机制,阻态3为P-F(Pool-Frenkel)发射机制,阻态4 为肖特基发射机制. 根据电子传输机制,建立了铜细丝导电模型并对Cu/SiOx/Al阻变存储器件各个阻态的电致阻变机制进行解释.
    In this paper, resistive switching device based on Cu/SiOx/Al structure is fabricated to examine its resistive switching characteristics and explore its resistive switching mechanisms. By adjusting limiting current, four stable resistance states are obtained. All of the resistive ratios between adjacent resistance states are over than 10. Moreover, the retention data of these four states at room temperature keep stable up to 1000 s. The temperature-dependent measurement and I-V curves fitting results show that the resistive switching mechanisms of the four states are different: resistance states 1 and 2 are due to Ohmic conduction mechanism, resistance state 3 is due to Pool-Frenkel emission, and resistance state 4 is due to Schottky emission mechanism. Subsequently, a resistive switching model for Cu/SiOx/Al structure is proposed.
    • 基金项目: 国家自然科学基金(批准号:61274113,11204212)、教育部新世纪优秀人才支持计划(批准号:NCET-11-1064)、天津市科技计划项目(批准号:13JCYBJC15700,13JCZDJC26100)和天津市高等学校科技发展基金计划(批准号:20100703,20130701)资助的 课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61274113, 11204212), the Program for New Century Excellent Talents in University, China (Grant No. NCET-11-1064), the Tianjin Natural Science Foundation, China (Grant Nos. 13JCYBJC15700, 13JCZDJC26100), and the Tianjin Science and Technology Developmental Funds of Universities and Colleges, China (Grant Nos. 20100703, 20130701).
    [1]

    Waser R, Aono M 2007 Nat. Mater. 6 833

    [2]

    Waser R 2012 J. Nanosci. Nanotechnol. 12 7628

    [3]

    Jeong D S, Thomas R, Katiyar R S, Scott J F, Kohlstedt H, Petraru A, Hwang C S 2012 Rep. Prog. Phys. 75 076502

    [4]

    Yang J J, Strukov D B, Stewart D R 2013 Nat. Nanotechnol. 8 13

    [5]

    Mikolajick T, Nagel N, Riedel S, Mueller T, Kuesters K H 2007 Mater. Sci. Pol. 25 33

    [6]

    Wang Y, Liu Q, Long S, Wang W, Wang Q, Zhang M, Zhang S, Li Y, Zuo Q, Yang J, Liu M 2010 Nanotechnology 21 045202

    [7]

    Schindler C, Thermadam S C P, Waser R, Kozicki M N 2007 IEEE Trans. Electron Dev. 54 2762

    [8]

    Hwang S K, Lee J M, Kim S, Park J S, Park H I, Ahn C W, Lee K J, Lee T, Kim S O 2012 Nano Lett. 12 2217

    [9]

    Li Y T, Long S B, Lu H B, Liu Q, Wang Q, Wang Y, Zhang S, Lian W T, Liu S, Liu M 2011 Chin. Phys. B 20 017305

    [10]

    Liu Z Y, Zhang P J, Meng Y, Li D, Meng Q Y, Li J Q, Zhao H W 2012 Chin. Phys. B 21 047302

    [11]

    Park J, Biju K P, Jung S, Lee W, Lee J, Kim S, Park S, Shin J, Hwang H 2011 IEEE Electron Dev. Lett. 32 476

    [12]

    Choi S J, Park G S, Kim K H, Cho S, Yang W Y, Li X S, Moon J H, Lee K J, Kim K 2011 Adv. Mater. 23 3272

    [13]

    Zhao J W, Liu F J, Huang H Q, Hu Z F, Zhang X Q 2012 Chin. Phys. B 21 065201

    [14]

    Huang D, Wu J J, Tang Y H 2013 Chin. Phys. B 22 038401

    [15]

    Russo U, Kamalanathan D, Ielmini D, Lacaita A L, Kozicki M N 2009 IEEE Trans. Electron Dev. 56 1040

    [16]

    Liu M, Abid Z, Wang W, He X L, Liu Q, Guan W H 2009 Appl. Phys. Lett. 94 233106

    [17]

    He C L, Shi Z W, Zhang L C, Yang W, Yang R, Shi D X, Zhang G Y 2012 ACS Nano. 6 4214

    [18]

    Zhang Y, Wu H, Bai Y, Chen A, Yu Z, Zhang J, Qian H 2013 Appl. Phys. Lett. 102 233502

    [19]

    Yoon J H, Han J H, Jung J S, Jeon W, Kim G H, Song S J, Seok J Y, Yoon K J, Lee M H, Hwang C S 2013 Adv. Mater. 25 1987

    [20]

    Meng Y, Zhang P J, Liu Z Y, Liao Z L, Pan X Y, Liang X J, Zhao H W, Chen D M 2010 Chin. Phys. B 19 037304

    [21]

    Wen X Z, Chen X, Wu N J, Ignatiev A 2011 Chin. Phys. B 20 097703

    [22]

    Wei X Y, Hu M, Zhang K L, Wang F, Liu K 2012 Acta Phys. Sin. 62 047201 (in Chinese) [韦晓莹, 胡明, 张楷亮, 王芳, 刘凯 2012 物理学报 62 047201]

    [23]

    Mehonic A, Cueff S b, Wojdak M, Hudziak S, Jambois O, Labbé C, Garrido B, Rizk R, Kenyon A J 2012 J. Appl. Phys. 111 074507

    [24]

    Edelstein D, Heidenreich J, Goldblatt R, Cote W, Uzoh C, Lustig N, Roper P, McDevitt T, Motsiff W, Simon A, Dukovic J, Wachnik R, Rathore H, Schulz R, Su L, Luce S, Slattery J 1997 Int. Electron Dev. Meeting 1997 IEDM Technical Digest Washington DC, USA, Dec. 10–10, 1997 p773

  • [1]

    Waser R, Aono M 2007 Nat. Mater. 6 833

    [2]

    Waser R 2012 J. Nanosci. Nanotechnol. 12 7628

    [3]

    Jeong D S, Thomas R, Katiyar R S, Scott J F, Kohlstedt H, Petraru A, Hwang C S 2012 Rep. Prog. Phys. 75 076502

    [4]

    Yang J J, Strukov D B, Stewart D R 2013 Nat. Nanotechnol. 8 13

    [5]

    Mikolajick T, Nagel N, Riedel S, Mueller T, Kuesters K H 2007 Mater. Sci. Pol. 25 33

    [6]

    Wang Y, Liu Q, Long S, Wang W, Wang Q, Zhang M, Zhang S, Li Y, Zuo Q, Yang J, Liu M 2010 Nanotechnology 21 045202

    [7]

    Schindler C, Thermadam S C P, Waser R, Kozicki M N 2007 IEEE Trans. Electron Dev. 54 2762

    [8]

    Hwang S K, Lee J M, Kim S, Park J S, Park H I, Ahn C W, Lee K J, Lee T, Kim S O 2012 Nano Lett. 12 2217

    [9]

    Li Y T, Long S B, Lu H B, Liu Q, Wang Q, Wang Y, Zhang S, Lian W T, Liu S, Liu M 2011 Chin. Phys. B 20 017305

    [10]

    Liu Z Y, Zhang P J, Meng Y, Li D, Meng Q Y, Li J Q, Zhao H W 2012 Chin. Phys. B 21 047302

    [11]

    Park J, Biju K P, Jung S, Lee W, Lee J, Kim S, Park S, Shin J, Hwang H 2011 IEEE Electron Dev. Lett. 32 476

    [12]

    Choi S J, Park G S, Kim K H, Cho S, Yang W Y, Li X S, Moon J H, Lee K J, Kim K 2011 Adv. Mater. 23 3272

    [13]

    Zhao J W, Liu F J, Huang H Q, Hu Z F, Zhang X Q 2012 Chin. Phys. B 21 065201

    [14]

    Huang D, Wu J J, Tang Y H 2013 Chin. Phys. B 22 038401

    [15]

    Russo U, Kamalanathan D, Ielmini D, Lacaita A L, Kozicki M N 2009 IEEE Trans. Electron Dev. 56 1040

    [16]

    Liu M, Abid Z, Wang W, He X L, Liu Q, Guan W H 2009 Appl. Phys. Lett. 94 233106

    [17]

    He C L, Shi Z W, Zhang L C, Yang W, Yang R, Shi D X, Zhang G Y 2012 ACS Nano. 6 4214

    [18]

    Zhang Y, Wu H, Bai Y, Chen A, Yu Z, Zhang J, Qian H 2013 Appl. Phys. Lett. 102 233502

    [19]

    Yoon J H, Han J H, Jung J S, Jeon W, Kim G H, Song S J, Seok J Y, Yoon K J, Lee M H, Hwang C S 2013 Adv. Mater. 25 1987

    [20]

    Meng Y, Zhang P J, Liu Z Y, Liao Z L, Pan X Y, Liang X J, Zhao H W, Chen D M 2010 Chin. Phys. B 19 037304

    [21]

    Wen X Z, Chen X, Wu N J, Ignatiev A 2011 Chin. Phys. B 20 097703

    [22]

    Wei X Y, Hu M, Zhang K L, Wang F, Liu K 2012 Acta Phys. Sin. 62 047201 (in Chinese) [韦晓莹, 胡明, 张楷亮, 王芳, 刘凯 2012 物理学报 62 047201]

    [23]

    Mehonic A, Cueff S b, Wojdak M, Hudziak S, Jambois O, Labbé C, Garrido B, Rizk R, Kenyon A J 2012 J. Appl. Phys. 111 074507

    [24]

    Edelstein D, Heidenreich J, Goldblatt R, Cote W, Uzoh C, Lustig N, Roper P, McDevitt T, Motsiff W, Simon A, Dukovic J, Wachnik R, Rathore H, Schulz R, Su L, Luce S, Slattery J 1997 Int. Electron Dev. Meeting 1997 IEDM Technical Digest Washington DC, USA, Dec. 10–10, 1997 p773

  • [1] 柯庆, 代月花. 电化学金属化阻性存储器导电细丝生长中的离子动力学研究. 物理学报, 2023, 72(24): 248501. doi: 10.7498/aps.72.20231232
    [2] 李伟, 朱慧文, 孙彤, 屈文山, 李建刚, 杨辉, 高志翔, 施薇, 魏斌, 王华. 基于1, 2 - 二氰基苯/聚合物复合材料的高耐久性有机阻变存储器. 物理学报, 2023, 72(4): 048501. doi: 10.7498/aps.72.20221507
    [3] 王英, 黄慧香, 黄香林, 郭婷婷. 光电协同调控下HfOx基阻变存储器的阻变特性. 物理学报, 2023, 72(19): 197201. doi: 10.7498/aps.72.20230797
    [4] 周正, 黄鹏, 康晋锋. 基于非挥发存储器的存内计算技术. 物理学报, 2022, 71(14): 148507. doi: 10.7498/aps.71.20220397
    [5] 朱茂聪, 邵雅洁, 周静, 陈文, 王志青, 田晶. 铌掺杂锆钛酸铅铁电薄膜调控CuInS2量子点的阻变性能. 物理学报, 2022, 71(20): 207301. doi: 10.7498/aps.71.20220911
    [6] 龚少康, 周静, 王志青, 朱茂聪, 沈杰, 吴智, 陈文. 尺寸调控SnO2量子点的阻变性能及调控机理. 物理学报, 2021, 70(19): 197301. doi: 10.7498/aps.70.20210608
    [7] 曾凡菊, 谭永前, 唐孝生, 张小梅, 尹海峰. 非铅卤素钙钛矿及其阻变性能研究进展. 物理学报, 2021, 70(15): 157301. doi: 10.7498/aps.70.20210065
    [8] 郭家俊, 董静雨, 康鑫, 陈伟, 赵旭. 过渡金属元素X(X=Mn,Fe,Co,Ni)掺杂对ZnO基阻变存储器性能的影响. 物理学报, 2018, 67(6): 063101. doi: 10.7498/aps.67.20172459
    [9] 张志超, 王芳, 吴仕剑, 李毅, 弭伟, 赵金石, 张楷亮. 氧分压对Ni/HfOx/TiN阻变存储单元阻变特性的影响. 物理学报, 2018, 67(5): 057301. doi: 10.7498/aps.67.20172194
    [10] 代月花, 潘志勇, 陈真, 王菲菲, 李宁, 金波, 李晓风. 基于HfO2的阻变存储器中Ag导电细丝方向和浓度的第一性原理研究. 物理学报, 2016, 65(7): 073101. doi: 10.7498/aps.65.073101
    [11] 蒋然, 杜翔浩, 韩祖银, 孙维登. Ti/HfO2/Pt阻变存储单元中的氧空位聚簇分布. 物理学报, 2015, 64(20): 207302. doi: 10.7498/aps.64.207302
    [12] 刘东青, 程海峰, 朱玄, 王楠楠, 张朝阳. 忆阻器及其阻变机理研究进展. 物理学报, 2014, 63(18): 187301. doi: 10.7498/aps.63.187301
    [13] 任圣, 马忠元, 江小帆, 王越飞, 夏国银, 陈坤基, 黄信凡, 徐骏, 徐岭, 李伟, 冯端. SiOx(x=1.3)薄膜的优化阻变特性与退火温度的关系探究. 物理学报, 2014, 63(16): 167201. doi: 10.7498/aps.63.167201
    [14] 韦晓莹, 胡明, 张楷亮, 王芳, 刘凯. 氧化钒薄膜的微结构及阻变特性研究. 物理学报, 2013, 62(4): 047201. doi: 10.7498/aps.62.047201
    [15] 容佳玲, 陈赟汉, 周洁, 张雪, 王立, 曹进. 基于ITO/聚甲基丙烯酸甲酯/Al的有机阻变存储器SPICE仿真. 物理学报, 2013, 62(22): 228502. doi: 10.7498/aps.62.228502
    [16] 杨金, 周茂秀, 徐太龙, 代月花, 汪家余, 罗京, 许会芳, 蒋先伟, 陈军宁. 阻变存储器复合材料界面及电极性质研究. 物理学报, 2013, 62(24): 248501. doi: 10.7498/aps.62.248501
    [17] 谢子健, 胡作启, 王宇辉, 赵旭. 相变存储单元RESET多值存储过程的数值仿真研究. 物理学报, 2012, 61(10): 100201. doi: 10.7498/aps.61.100201
    [18] 张祖发, 张 胤, 冯 洁, 蔡燕飞, 林殷茵, 蔡炳初, 汤庭鳌, Bomy Chen. 基于Si掺杂Sb2Te3薄膜的相变存储器研究. 物理学报, 2007, 56(7): 4224-4228. doi: 10.7498/aps.56.4224
    [19] 赖云锋, 冯 洁, 乔保卫, 凌 云, 林殷茵, 汤庭鳌, 蔡炳初, 陈邦明. 氮掺杂Ge2Sb2Te5相变存储器的多态存储功能. 物理学报, 2006, 55(8): 4347-4352. doi: 10.7498/aps.55.4347
    [20] 孙劲鹏, 王太宏. 基于库仑阻塞原理的多值存储器. 物理学报, 2003, 52(10): 2563-2568. doi: 10.7498/aps.52.2563
计量
  • 文章访问数:  4992
  • PDF下载量:  919
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-11-03
  • 修回日期:  2013-12-06
  • 刊出日期:  2014-03-05

/

返回文章
返回