搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

SiOx(x=1.3)薄膜的优化阻变特性与退火温度的关系探究

任圣 马忠元 江小帆 王越飞 夏国银 陈坤基 黄信凡 徐骏 徐岭 李伟 冯端

引用本文:
Citation:

SiOx(x=1.3)薄膜的优化阻变特性与退火温度的关系探究

任圣, 马忠元, 江小帆, 王越飞, 夏国银, 陈坤基, 黄信凡, 徐骏, 徐岭, 李伟, 冯端

Dependence of annealing temperatures on the optimized resistive switching behavior from SiOx (x=1.3) films

Ren Sheng, Ma Zhong-Yuan, Jiang Xiao-Fan, Wang Yue-Fei, Xia Guo-Yin, Chen Kun-Ji, Huang Xin-Fan, Xu Jun, Xu Ling, Li Wei, Feng Duan
PDF
导出引用
  • 采用电子束蒸发技术在Si衬底上制备了亚氧化硅SiOx (x=1.3)薄膜,研究了不同温度热退火处理的SiOx薄膜作为阻变层的ITO/SiOx/Si/Al结构的阻变特性. 研究发现,在电极尺寸相同的条件下,随着退火温度的增加,该结构的高低阻态比显著提高,最高可达109. X射线光电子能谱和电子顺磁共振能谱的分析表明,不同退火温度下形成的不同价态的硅悬挂键是低阻态下细丝通道的主要来源. 椭偏仪的测试结果表明,经过热退火处理的SiOx薄膜折射率的增大是导致高阻态下器件电阻增大的原因.
    SiOx films (x=1.3) are deposited on the silicon substrates by electron beam evaporation. The resistive switching behaviors from the device consisting of indium tin oxide (ITO)/SiOx/Si/Al with annealed SiOx layer as the resistive layer are investigated. It is found that on/off ratio of the device increases with the annealing temperature rising. The maximum on/off ratio reaches 109. The analyses of X-ray photoelectron spectrum and electron paramagnetic resonance spectrum reveal that the silicon dangling bonds in different valence states can be formed at different annealing temperatures, which is the main source of the conducting filament pathway. The result of ellipsometer indicates that the increase of refractive index of annealed SiOx film leads to the increase of the resistance of high resistance state.
    • 基金项目: 国家重点基础研究发展计划(批准号:2010CB934402,2013CB632101)、国家自然科学基金(批准号:61071008,60976001)、中央高等学校基本科研基金(批准号:1095021030,1116021004,1114021005)和高等学校博士学科点专项科研基金(批准号:20130091110024)资助的课题.
    • Funds: Project supported by the State Key Development Program for Basic Research of China (Grant Nos. 2010CB934402, 2013CB632101), the National Natural Science Foundation of China (Grant Nos. 61071008, 60976001), the Fundamental Scientific Research Foundation for the Central Universities of China (Grant Nos. 1095021030, 1116021004, 1114021005), and the Specialized Research Foundation for the Doctoral Program of Institution of Higher Education of China (Grant No. 20130091110024).
    [1]

    Liu C Y, Shih Y R, Huang S J 2013 Solid State Commun. 159 13

    [2]

    Waser R, Dittmann R, Staikov G, Szot K 2009 Adv. Mater. 21 2632

    [3]

    Sawa A 2008 Mater. Today 11 28

    [4]

    Lu C Y, Hsieh K Y, Liu R 2009 Microelectron. Eng. 86 283

    [5]

    Huang D, Wu J J, Tang Y H 2013 Chin. Phys. B 22 038401

    [6]

    Bardeen J, Brattain W H 1948 Phys. Rev. 74 230

    [7]

    Waser R, Aono M 2007 Nat. Mater. 6 833

    [8]

    Lee H Y, Chen P S, Wu T Y, Chen Y S, Wang C C, Tzeng P J, Lin C H, Chen F, Lien C H, Tsai M J 2008 International Electron Devices Meeting San Francisco, USA, December 15-17, 2008 p1

    [9]

    Zhao J W, Liu F J, Huang H Q, Hu Z F, Zhang X Q 2012 Chin. Phys. B 21 065201

    [10]

    Meng Y, Zhang P J, Liu Z Y, Liao Z L, Pan X Y, Liang X J, Zhao H W, Chen D M 2010 Chin. Phys. B 19 037304

    [11]

    Beck A, Bednorz J G, Gerber C, Rossel C, Widmer D 2000 Appl. Phys. Lett. 77 139

    [12]

    Terabe K, Hasegawa T, Nakayama T, Aono M 2005 Nature 433 47

    [13]

    Soni R, Meuffels P, Kohlstedt H, Kugeler C, Waser R 2009 Appl. Phys. Lett. 94 123503

    [14]

    Yao J, Sun Z Z, Zhong L, Douglas N, James M T 2010 Nano Lett. 10 4105

    [15]

    Wang Y F, Qian X Y, Chen K J, Fang Z H, Li W, Xu J 2013 Appl. Phys. Lett. 102 042103

    [16]

    Wang Y Z, Chen Y T, Xue F, Zhou F, Chang Y F, Fowler B, Lee J C 2012 Appl. Phys. Lett. 100 083502

    [17]

    Chen R, Zhou L W, Wang J Y, Chen C J, Shao X L, Jiang H, Zhang K L, L L R, Zhao J S 2014 Acta Phys. Sin. 63 067202 (in Chinese) [陈然, 周立伟, 王建云, 陈长军, 邵兴隆, 蒋浩, 张楷亮, 吕联荣, 赵金石 2014 物理学报 63 067202]

    [18]

    Huang R, Zhang L J, Gao D J, Pan Y, Qin S Q, Tang P, Cai Y M, Wang Y Y 2011 Appl. Phys. A 102 927

    [19]

    Schindler C, Weides M, Kozicki M N, Waser R 2008 Appl. Phys. Lett. 92 122910

    [20]

    Kim H D, An H M, Kim K C, Seo Y, Nam K H, Chung H B, Lee E B, Kim T G 2010 Semicond. Sci. Technol. 25 065002

    [21]

    Jo S H, Kim K H, Lu W 2009 Nano Lett. 9 870

    [22]

    Shamekh A M A, Tokuda N, Inokuma T 2011 J. Non-Cryst. Solids 357 981

    [23]

    Holzenkampfer E, Richter F W, Stuke J, Grote U V 1979 J. Non-Cryst. Solids 32 327

    [24]

    Hamann D R 2000 Phys. Rev. B 61 9899

    [25]

    Arndt J, Devine R A B, Revesz A G 1991 J. Non-Cryst. Solids 131 1206

  • [1]

    Liu C Y, Shih Y R, Huang S J 2013 Solid State Commun. 159 13

    [2]

    Waser R, Dittmann R, Staikov G, Szot K 2009 Adv. Mater. 21 2632

    [3]

    Sawa A 2008 Mater. Today 11 28

    [4]

    Lu C Y, Hsieh K Y, Liu R 2009 Microelectron. Eng. 86 283

    [5]

    Huang D, Wu J J, Tang Y H 2013 Chin. Phys. B 22 038401

    [6]

    Bardeen J, Brattain W H 1948 Phys. Rev. 74 230

    [7]

    Waser R, Aono M 2007 Nat. Mater. 6 833

    [8]

    Lee H Y, Chen P S, Wu T Y, Chen Y S, Wang C C, Tzeng P J, Lin C H, Chen F, Lien C H, Tsai M J 2008 International Electron Devices Meeting San Francisco, USA, December 15-17, 2008 p1

    [9]

    Zhao J W, Liu F J, Huang H Q, Hu Z F, Zhang X Q 2012 Chin. Phys. B 21 065201

    [10]

    Meng Y, Zhang P J, Liu Z Y, Liao Z L, Pan X Y, Liang X J, Zhao H W, Chen D M 2010 Chin. Phys. B 19 037304

    [11]

    Beck A, Bednorz J G, Gerber C, Rossel C, Widmer D 2000 Appl. Phys. Lett. 77 139

    [12]

    Terabe K, Hasegawa T, Nakayama T, Aono M 2005 Nature 433 47

    [13]

    Soni R, Meuffels P, Kohlstedt H, Kugeler C, Waser R 2009 Appl. Phys. Lett. 94 123503

    [14]

    Yao J, Sun Z Z, Zhong L, Douglas N, James M T 2010 Nano Lett. 10 4105

    [15]

    Wang Y F, Qian X Y, Chen K J, Fang Z H, Li W, Xu J 2013 Appl. Phys. Lett. 102 042103

    [16]

    Wang Y Z, Chen Y T, Xue F, Zhou F, Chang Y F, Fowler B, Lee J C 2012 Appl. Phys. Lett. 100 083502

    [17]

    Chen R, Zhou L W, Wang J Y, Chen C J, Shao X L, Jiang H, Zhang K L, L L R, Zhao J S 2014 Acta Phys. Sin. 63 067202 (in Chinese) [陈然, 周立伟, 王建云, 陈长军, 邵兴隆, 蒋浩, 张楷亮, 吕联荣, 赵金石 2014 物理学报 63 067202]

    [18]

    Huang R, Zhang L J, Gao D J, Pan Y, Qin S Q, Tang P, Cai Y M, Wang Y Y 2011 Appl. Phys. A 102 927

    [19]

    Schindler C, Weides M, Kozicki M N, Waser R 2008 Appl. Phys. Lett. 92 122910

    [20]

    Kim H D, An H M, Kim K C, Seo Y, Nam K H, Chung H B, Lee E B, Kim T G 2010 Semicond. Sci. Technol. 25 065002

    [21]

    Jo S H, Kim K H, Lu W 2009 Nano Lett. 9 870

    [22]

    Shamekh A M A, Tokuda N, Inokuma T 2011 J. Non-Cryst. Solids 357 981

    [23]

    Holzenkampfer E, Richter F W, Stuke J, Grote U V 1979 J. Non-Cryst. Solids 32 327

    [24]

    Hamann D R 2000 Phys. Rev. B 61 9899

    [25]

    Arndt J, Devine R A B, Revesz A G 1991 J. Non-Cryst. Solids 131 1206

  • [1] 邓文, 汪礼胜, 刘嘉宁, 余雪玲, 陈凤翔. 光电协控多层MoS2记忆晶体管的阻变行为与机理研究. 物理学报, 2021, 70(21): 217302. doi: 10.7498/aps.70.20210750
    [2] 刘文姝, 高润亮, 冯红梅, 刘悦悦, 黄怡, 王建波, 刘青芳. 真空磁场热处理温度对不同厚度的Ni88Cu12薄膜畴结构及磁性的影响. 物理学报, 2020, 69(9): 097401. doi: 10.7498/aps.69.20191942
    [3] 曲艳东, 孔祥清, 李晓杰, 闫鸿浩. 热处理对爆轰合成的纳米TiO2混晶的结构相变的影响. 物理学报, 2014, 63(3): 037301. doi: 10.7498/aps.63.037301
    [4] 陈然, 周立伟, 王建云, 陈长军, 邵兴隆, 蒋浩, 张楷亮, 吕联荣, 赵金石. 基于Cu/SiOx/Al结构的阻变存储器多值特性及机理的研究. 物理学报, 2014, 63(6): 067202. doi: 10.7498/aps.63.067202
    [5] 赵学童, 李建英, 贾然, 李盛涛. 直流老化及热处理对ZnO压敏陶瓷缺陷结构的影响. 物理学报, 2013, 62(7): 077701. doi: 10.7498/aps.62.077701
    [6] 宗双飞, 沈祥, 徐铁峰, 陈昱, 王国祥, 陈芬, 李军, 林常规, 聂秋华. Ge20Sb15Se65薄膜的热致光学特性变化研究. 物理学报, 2013, 62(9): 096801. doi: 10.7498/aps.62.096801
    [7] 郑雪, 余学功, 杨德仁. -Si:H/SiNx叠层薄膜对晶体硅太阳电池的钝化. 物理学报, 2013, 62(19): 198801. doi: 10.7498/aps.62.198801
    [8] 贾晓琴, 何智兵, 牛忠彩, 何小珊, 韦建军, 李蕊, 杜凯. 热处理对制备辉光放电聚合物薄膜结构及光学性能的影响. 物理学报, 2013, 62(5): 056804. doi: 10.7498/aps.62.056804
    [9] 郑立仁, 黄柏标, 尉吉勇, 戴瑛. 非晶SiOx:C颗粒在空气中经高温煅烧后光学性质的研究. 物理学报, 2012, 61(21): 217803. doi: 10.7498/aps.61.217803
    [10] 吴振宇, 董嗣万, 刘毅, 柴常春, 杨银堂. 铜互连电迁移失效阻变特性研究. 物理学报, 2012, 61(24): 248501. doi: 10.7498/aps.61.248501
    [11] 蔡雅楠, 崔灿, 沈洪磊, 梁大宇, 李培刚, 唐为华. 热处理对富硅氧化硅薄膜中硅纳米晶形成的影响. 物理学报, 2012, 61(15): 157804. doi: 10.7498/aps.61.157804
    [12] 廖国进, 骆红, 闫绍峰, 戴晓春, 陈明. 基于透射光谱确定溅射Al2O3薄膜的光学(已撤稿). 物理学报, 2011, 60(3): 034201. doi: 10.7498/aps.60.034201
    [13] 於黄忠, 周晓明, 邓俊裕. 热处理对不同溶剂制备的共混体系太阳电池性能影响. 物理学报, 2011, 60(7): 077206. doi: 10.7498/aps.60.077206
    [14] 范平, 郑壮豪, 梁广兴, 张东平, 蔡兴民. Sb2Te3热电薄膜的离子束溅射制备与表征. 物理学报, 2010, 59(2): 1243-1247. doi: 10.7498/aps.59.1243
    [15] 梁丽萍, 郝建英, 秦 梅, 郑建军. 基于透射光谱确定溶胶凝胶ZrO2薄膜的光学常数. 物理学报, 2008, 57(12): 7906-7911. doi: 10.7498/aps.57.7906
    [16] 展晓元, 张 跃, 齐俊杰, 顾有松, 郑小兰. FePt薄膜中磁相互作用. 物理学报, 2007, 56(3): 1725-1729. doi: 10.7498/aps.56.1725
    [17] 李万万, 孙 康. Cd0.9Zn0.1Te晶体的Cd气氛扩散热处理研究. 物理学报, 2007, 56(11): 6514-6520. doi: 10.7498/aps.56.6514
    [18] 李万万, 孙 康. Cd1-xZnxTe晶体的In气氛扩散热处理研究. 物理学报, 2006, 55(4): 1921-1929. doi: 10.7498/aps.55.1921
    [19] 朱 俊, 张兴元, 陆红波. 退火与极化温度对尼龙11薄膜驻极体内陷阱能级分布的影响. 物理学报, 2005, 54(7): 3414-3417. doi: 10.7498/aps.54.3414
    [20] 林碧霞, 傅竹西, 贾云波, 廖桂红. 非掺杂ZnO薄膜中紫外与绿色发光中心. 物理学报, 2001, 50(11): 2208-2211. doi: 10.7498/aps.50.2208
计量
  • 文章访问数:  4325
  • PDF下载量:  435
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-04-16
  • 修回日期:  2014-05-30
  • 刊出日期:  2014-08-05

/

返回文章
返回