-
基于铜互连电迁移失效微观机理分析建立一种Cu/SiCN互连电迁移失效阻变模型, 并提出一种由互连阻变曲线特征参数即跳变台阶高度与斜率来获取失效物理参数的提取方法. 研究结果表明, 铜互连电迁移失效时间由一定电应力条件下互连阴极末端晶粒耗尽时间决定. 铜互连电迁移失效一般分为沟槽型和狭缝型两种失效模式. 沟槽型空洞失效模式对应的阻变曲线一般包括跳变台阶区和线性区两个特征区域. 晶粒尺寸分布与临界空洞长度均符合正态对数分布且分布参数基本一致. 阻变曲线线性区斜率与温度呈指数函数关系. 利用阻变模型提取获得的电迁移扩散激活能约为0.9 eV, 与Black 方法基本一致.A resistometric model based on microscopic analysis of electromigration failure mechanism is built. An extraction method for failure parameters of electromigration in copper interconnects is proposed from resistometric characteristics including the slope and step height. The results show that the failure time can be considered as the time to deplete grains at the cathode line end under a given stressing current. Two dominant failure modes with resuling slit and trench voids are observed in electromigration induced failures. The resistance curve for the trench-voiding failure mode consists of two characteristic regions,i.e., a step jump and an oblique line. The grain size and the extracted critical void length are lognormally distributed with close parameters. The variation in the slop of the oblique line in resistance curve with temperature obeys an exponential law. Activation energy of approximately 0.9 eV obtained from the resisometric model is consistent with that from Black equation.
-
Keywords:
- interconnect /
- electromigration /
- resitometric characteristic
[1] Rosenberg R, Edelstein D C, Hu C K, Rodbell K P 2011 Annual Review of Materials Science 30 229
[2] Tu K N 2003 J. Appl. Phys. 94 5451
[3] Gall M, Capasso C, Jawarani D, Hernandez R, Kawasaki H, Ho P S 2001 J. Appl. Phys. 90 732
[4] Lee K D, Ho P S 2004 IEEE Transactions on Device and Materials Reliability 4 237
[5] Hu C K, Gignac L, Rosenberg R 2006 Microelectronics Reliability 46 213
[6] Doyen L, Petitprez E, Waltz P, Federspiel X, Arnaud L, Wouters Y 2008 J. Appl. Phys. 104 123521
[7] Ceric H, Selberherr S 2011 Materials Science and Engineering R 71 53
[8] Nelson W 1982 Applied Life Data Analysis (New York: Wiley) 168
[9] Hu C K, Rosenberg R, Lee K Y 1999 Appl. Phys. Lett. 74 2945
[10] Choi Z S, Mönig R, Thompson C V 2007 Appl. Phys. Lett. 90 241913
[11] Wu Z Y, Yang Y T, Chai C C, Liu L, Peng J, Wei J T 2012 Acta Phys. Sin. 61 018501 (in Chinese) [吴振宇, 杨银堂, 柴常春, 刘莉, 彭杰, 魏经天 2012 物理学报 61 018501]
[12] Black J R 1969 IEEE Transactions on Electron Devices 16 338
[13] Lloyd J R, Lane M W, Liniger E G, Hu C K, Shaw T M, Rosenberg R 2005 IEEE Transactions on Device and Materials Reliability 5 113
-
[1] Rosenberg R, Edelstein D C, Hu C K, Rodbell K P 2011 Annual Review of Materials Science 30 229
[2] Tu K N 2003 J. Appl. Phys. 94 5451
[3] Gall M, Capasso C, Jawarani D, Hernandez R, Kawasaki H, Ho P S 2001 J. Appl. Phys. 90 732
[4] Lee K D, Ho P S 2004 IEEE Transactions on Device and Materials Reliability 4 237
[5] Hu C K, Gignac L, Rosenberg R 2006 Microelectronics Reliability 46 213
[6] Doyen L, Petitprez E, Waltz P, Federspiel X, Arnaud L, Wouters Y 2008 J. Appl. Phys. 104 123521
[7] Ceric H, Selberherr S 2011 Materials Science and Engineering R 71 53
[8] Nelson W 1982 Applied Life Data Analysis (New York: Wiley) 168
[9] Hu C K, Rosenberg R, Lee K Y 1999 Appl. Phys. Lett. 74 2945
[10] Choi Z S, Mönig R, Thompson C V 2007 Appl. Phys. Lett. 90 241913
[11] Wu Z Y, Yang Y T, Chai C C, Liu L, Peng J, Wei J T 2012 Acta Phys. Sin. 61 018501 (in Chinese) [吴振宇, 杨银堂, 柴常春, 刘莉, 彭杰, 魏经天 2012 物理学报 61 018501]
[12] Black J R 1969 IEEE Transactions on Electron Devices 16 338
[13] Lloyd J R, Lane M W, Liniger E G, Hu C K, Shaw T M, Rosenberg R 2005 IEEE Transactions on Device and Materials Reliability 5 113
计量
- 文章访问数: 8711
- PDF下载量: 523
- 被引次数: 0