搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

集成电路微互连结构中的热迁移

张金松 吴懿平 王永国 陶媛

引用本文:
Citation:

集成电路微互连结构中的热迁移

张金松, 吴懿平, 王永国, 陶媛

Thermomigration in micro interconnects in integrated circuits

Zhang Jin-Song, Wu Yi-Ping, Wang Yong-Guo, Tao Yuan
PDF
导出引用
  • 高工作电流在集成电路微互连结构中产生大量焦耳热,引起局部区域的温升、形成高温度梯度,金属原子沿着温度梯度反向运动发生热迁移.热迁移是集成电路微互连失效的主要原因之一.阐述了热迁移原理、失效模式及原子迁移方程.综述和分析了在单纯温度场、电场和温度场耦合等不同载荷条件下金属引线和合金焊料的热迁移研究.归纳并提出了集成电路微互连结构热迁移研究亟待解决的问题.
    With the reduction of feature size of integrated circuits, higher current density has been introduced in electronic devices which produces a significant Joule heating effect. This also brings about an increase of the temperature which induces a very high temperature gradient in some local regions of micro interconnects. As a result, thermomigration will occur and metal atoms will move opposite to the direction of the temperature gradient. Thermomigration is one of common modes in reliability failures in electronic devices. This paper reviews and analyzes the previous researches on the thermomigration theory and experiment in stripe and solder interconnects under the temperature loading and the current/temperature loading. The challenges of thermomigration are discussed for interconnects in electronic devices in the future.
    • 基金项目: 国家自然科学基金(批准号:60876070)和上海大学创新基金(批准号:A10-0109-08-004)资助的课题.
    [1]

    [1]Pecht M, Chan Y C 2004 China’s Electronics Industry (College Park: Calce Epsc Press) p18

    [2]

    [2]Tu K N, Gusak A M, Li M 2003 J. Appl. Phys. 93 1335

    [3]

    [3]Lee T Y, Tu K N 2001 J. Appl. Phys. 89 3189

    [4]

    [4]Wu Y P, Zhang J S, Wu F S, An B 2006 J. Semicond. 27 1136 (in Chinese) [吴懿平、张金松、吴丰顺、安兵 2006 半导体学报 27 1136]

    [5]

    [5]Van Gurp G J, De Waard P J, Du Chatenier F J 1984 Appl. Phys. Lett. 45 1054

    [6]

    [6]Ye H, Basaran C, Hopkins D C, Frear D, Lin J K 2004 54th Electronic Components and Technology Conference (Las Vegas: IEEE) p988

    [7]

    [7]Huang A T, Gusak A M, Tu K N, Lai Y S 2006 Appl. Phys. Lett. 88 141911

    [8]

    [8]Chuang Y C, Liu C Y 2006 Appl. Phys. Lett. 88 174105

    [9]

    [9]Johns R A, Blackburn D A 1975 Thin Solid Films 25 291

    [10]

    ]Morozumi S, Goto S, Yoshida T 1976 Scripta Mater. 10 537

    [11]

    ]Fee D C, Johnson C E 1981 J. Nucl. Mater. 96 71

    [12]

    ]McKee R A, Stark J P 1975 Acta Mater. 23 1145

    [13]

    ]Van Gurp G J, De Waard P J, Du Chatenier F J 1985 J. Appl. Phys. 58 728

    [14]

    ]Morillon B, Dilhac J M, Auriel G, Ganibal C, Anceau C 2002 32nd European Solid-State Device Research Conference(Firenze: IEEE) p327

    [15]

    ]De Munari I, Speroni F, Reverberi M, Neva C, Lonzi L, Fantini F 1996 Microelectron. Reliab. 36 1875

    [16]

    ]Van Gurp G J 1976 Thin Solid Films 38 295

    [17]

    ]Oldham D J, Bleay J A, Blackburn D A 1977 Acta Mater. 25 1345

    [18]

    ]Nguyen H V, Salm C, Krabbenbrg B, Weide-Zaage K, Bisschopb J, Mouthma A J, Kuper F G 2004 42nd Annual International Reliability Physics Symposium (Phoenix: IEEE) p619

    [19]

    ]Ru C Q 1999 Acta Mater. 47 3571

    [20]

    ]Ru C Q 2000 J. Mater. Sci. 35 5575

    [21]

    ]Tan C M, Zhang G, Gan Z H 2004 IEEE Trans. Device Mater. Reliab. 4 450

    [22]

    ]Basaran C, Ye H, Hopkins D C, Frear D, Lin J K 2005 Adv. Packaging 10 14

    [23]

    ]Basaran C, Ye H, Hopkins D C, Frear D, Lin J K 2005 J. Electron. Packaging 127 157

    [24]

    ]Ye H, Basaran C, Hopkins D C 2003 Appl. Phys. Lett. 82 1045

    [25]

    ]Ye H, Basaran C, Hopkins D C 2003 Int. J. Solids Struct. 40 7269

    [26]

    ]Roush W, Jaspal J 1982 32nd Electronic Components Conference (San Diego: IEEE) p342

    [27]

    ]Hsiao H Y, Chen C 2007 Appl. Phys. Lett. 90 152105

    [28]

    ]Ouyang F Y, Tu K N, Lai Y S, Gusak M A 2006 Appl. Phys. Lett. 89 221906

    [29]

    ]Rinne G A 2003 28th Electronic Manufacturing Technology Symposium (San Jose: IEEE) p177

    [30]

    ]Yang D, Wu B Y, Chan Y C, Tu K N 2007 J. Appl. Phys. 102 043502

    [31]

    ]Chen H Y, Chen C, Tu K N 2008 Appl. Phys. Lett. 93 122103

    [32]

    ]Hsiao H Y, Chen C 2009 Appl. Phys. Lett. 94 092107

    [33]

    ]Basaran C, Li S D, Abdulhamid M F 2008 J. Appl. Phys. 103 123520

    [34]

    ]Abdulhamid M F, Basaran C 2009 J. Electron. Packaging 131 011002

    [35]

    ]Gu X, Chan Y C 2009 J. Appl. Phys. 105 093537

    [36]

    ]Rinne G A 2003 Microelectron. Reliab. 43 1975

    [37]

    ]Zhang J S 2008 Ph. D. Dissertation (Wuhan: Huazhong University of Science and Technology) (in Chinese) [张金松 2008 博士学位论文 (武汉:华中科技大学)]

    [38]

    ]Zhang J S, Chan Y C, Wu Y P, Xi H J, Wu F S, Wu B Y 2008 J. Alloys Compd. 458 492

    [39]

    ]Zhang J S, Xi H J, Wu Y P, Wu F S 2008 J. Semicond. 29 174 (in Chinese) [张金松、奚弘甲、吴懿平、吴丰顺 2008 半导体学报 29 174]

    [40]

    ]Zhang J S, Xi H J, Wu Y P, Wu F S 2009 J. Electron. Mater. 38 678

  • [1]

    [1]Pecht M, Chan Y C 2004 China’s Electronics Industry (College Park: Calce Epsc Press) p18

    [2]

    [2]Tu K N, Gusak A M, Li M 2003 J. Appl. Phys. 93 1335

    [3]

    [3]Lee T Y, Tu K N 2001 J. Appl. Phys. 89 3189

    [4]

    [4]Wu Y P, Zhang J S, Wu F S, An B 2006 J. Semicond. 27 1136 (in Chinese) [吴懿平、张金松、吴丰顺、安兵 2006 半导体学报 27 1136]

    [5]

    [5]Van Gurp G J, De Waard P J, Du Chatenier F J 1984 Appl. Phys. Lett. 45 1054

    [6]

    [6]Ye H, Basaran C, Hopkins D C, Frear D, Lin J K 2004 54th Electronic Components and Technology Conference (Las Vegas: IEEE) p988

    [7]

    [7]Huang A T, Gusak A M, Tu K N, Lai Y S 2006 Appl. Phys. Lett. 88 141911

    [8]

    [8]Chuang Y C, Liu C Y 2006 Appl. Phys. Lett. 88 174105

    [9]

    [9]Johns R A, Blackburn D A 1975 Thin Solid Films 25 291

    [10]

    ]Morozumi S, Goto S, Yoshida T 1976 Scripta Mater. 10 537

    [11]

    ]Fee D C, Johnson C E 1981 J. Nucl. Mater. 96 71

    [12]

    ]McKee R A, Stark J P 1975 Acta Mater. 23 1145

    [13]

    ]Van Gurp G J, De Waard P J, Du Chatenier F J 1985 J. Appl. Phys. 58 728

    [14]

    ]Morillon B, Dilhac J M, Auriel G, Ganibal C, Anceau C 2002 32nd European Solid-State Device Research Conference(Firenze: IEEE) p327

    [15]

    ]De Munari I, Speroni F, Reverberi M, Neva C, Lonzi L, Fantini F 1996 Microelectron. Reliab. 36 1875

    [16]

    ]Van Gurp G J 1976 Thin Solid Films 38 295

    [17]

    ]Oldham D J, Bleay J A, Blackburn D A 1977 Acta Mater. 25 1345

    [18]

    ]Nguyen H V, Salm C, Krabbenbrg B, Weide-Zaage K, Bisschopb J, Mouthma A J, Kuper F G 2004 42nd Annual International Reliability Physics Symposium (Phoenix: IEEE) p619

    [19]

    ]Ru C Q 1999 Acta Mater. 47 3571

    [20]

    ]Ru C Q 2000 J. Mater. Sci. 35 5575

    [21]

    ]Tan C M, Zhang G, Gan Z H 2004 IEEE Trans. Device Mater. Reliab. 4 450

    [22]

    ]Basaran C, Ye H, Hopkins D C, Frear D, Lin J K 2005 Adv. Packaging 10 14

    [23]

    ]Basaran C, Ye H, Hopkins D C, Frear D, Lin J K 2005 J. Electron. Packaging 127 157

    [24]

    ]Ye H, Basaran C, Hopkins D C 2003 Appl. Phys. Lett. 82 1045

    [25]

    ]Ye H, Basaran C, Hopkins D C 2003 Int. J. Solids Struct. 40 7269

    [26]

    ]Roush W, Jaspal J 1982 32nd Electronic Components Conference (San Diego: IEEE) p342

    [27]

    ]Hsiao H Y, Chen C 2007 Appl. Phys. Lett. 90 152105

    [28]

    ]Ouyang F Y, Tu K N, Lai Y S, Gusak M A 2006 Appl. Phys. Lett. 89 221906

    [29]

    ]Rinne G A 2003 28th Electronic Manufacturing Technology Symposium (San Jose: IEEE) p177

    [30]

    ]Yang D, Wu B Y, Chan Y C, Tu K N 2007 J. Appl. Phys. 102 043502

    [31]

    ]Chen H Y, Chen C, Tu K N 2008 Appl. Phys. Lett. 93 122103

    [32]

    ]Hsiao H Y, Chen C 2009 Appl. Phys. Lett. 94 092107

    [33]

    ]Basaran C, Li S D, Abdulhamid M F 2008 J. Appl. Phys. 103 123520

    [34]

    ]Abdulhamid M F, Basaran C 2009 J. Electron. Packaging 131 011002

    [35]

    ]Gu X, Chan Y C 2009 J. Appl. Phys. 105 093537

    [36]

    ]Rinne G A 2003 Microelectron. Reliab. 43 1975

    [37]

    ]Zhang J S 2008 Ph. D. Dissertation (Wuhan: Huazhong University of Science and Technology) (in Chinese) [张金松 2008 博士学位论文 (武汉:华中科技大学)]

    [38]

    ]Zhang J S, Chan Y C, Wu Y P, Xi H J, Wu F S, Wu B Y 2008 J. Alloys Compd. 458 492

    [39]

    ]Zhang J S, Xi H J, Wu Y P, Wu F S 2008 J. Semicond. 29 174 (in Chinese) [张金松、奚弘甲、吴懿平、吴丰顺 2008 半导体学报 29 174]

    [40]

    ]Zhang J S, Xi H J, Wu Y P, Wu F S 2009 J. Electron. Mater. 38 678

  • [1] 刘一凡, 张志勇. 后摩尔时代的碳基电子技术: 进展、应用与挑战. 物理学报, 2022, 71(6): 068503. doi: 10.7498/aps.71.20212076
    [2] 张宁, 徐开凯, 陈彦旭, 朱坤峰, 赵建明, 于奇. 金属-氧化物-半导体硅发光器件在集成电路中的应用前景. 物理学报, 2019, 68(16): 167803. doi: 10.7498/aps.68.20191004
    [3] 肖廷辉, 于洋, 李志远. 石墨烯-硅基混合光子集成电路. 物理学报, 2017, 66(21): 217802. doi: 10.7498/aps.66.217802
    [4] 董刚, 武文珊, 杨银堂. 三维集成电路堆叠硅通孔动态功耗优化. 物理学报, 2015, 64(2): 026601. doi: 10.7498/aps.64.026601
    [5] 赵宁, 钟毅, 黄明亮, 马海涛, 刘小平. 热迁移对Cu/Sn/Cu焊点液-固界面Cu6Sn5生长动力学的影响. 物理学报, 2015, 64(16): 166601. doi: 10.7498/aps.64.166601
    [6] 王俊平, 戚苏阳, 刘士钢. 基于版图优化的综合灵敏度模型. 物理学报, 2014, 63(12): 128503. doi: 10.7498/aps.63.128503
    [7] 赖占平. 二维辉钼材料及器件研究进展. 物理学报, 2013, 62(5): 056801. doi: 10.7498/aps.62.056801
    [8] 吴振宇, 董嗣万, 刘毅, 柴常春, 杨银堂. 铜互连电迁移失效阻变特性研究. 物理学报, 2012, 61(24): 248501. doi: 10.7498/aps.61.248501
    [9] 何亮, 杜磊, 黄晓君, 陈华, 陈文豪, 孙鹏, 韩亮. 金属互连电迁移噪声的非高斯性模型研究. 物理学报, 2012, 61(20): 206601. doi: 10.7498/aps.61.206601
    [10] 吴振宇, 杨银堂, 柴常春, 刘莉, 彭杰, 魏经天. 基于微观结构的Cu互连电迁移失效研究. 物理学报, 2012, 61(1): 018501. doi: 10.7498/aps.61.018501
    [11] 朱樟明, 左平, 杨银堂. 考虑硅通孔的三维集成电路热传输解析模型. 物理学报, 2011, 60(11): 118001. doi: 10.7498/aps.60.118001
    [12] 吴振宇, 柴常春, 李跃进, 刘静, 汪家友, 杨银堂. Cu互连应力迁移温度特性研究. 物理学报, 2009, 58(4): 2625-2630. doi: 10.7498/aps.58.2625
    [13] 吴振宇, 杨银堂, 柴常春, 李跃进, 汪家友, 刘 彬. 通孔尺寸对铜互连应力迁移失效的影响. 物理学报, 2008, 57(6): 3730-3734. doi: 10.7498/aps.57.3730
    [14] 何 亮, 杜 磊, 庄奕琪, 陈春霞, 卫 涛, 黄小君. 金属互连电迁移噪声的相关维数研究. 物理学报, 2007, 56(12): 7176-7182. doi: 10.7498/aps.56.7176
    [15] 陈春霞, 杜 磊, 何 亮, 胡 瑾, 黄小君, 卫 涛. 金属互连电迁移噪声的分形特征. 物理学报, 2007, 56(11): 6674-6679. doi: 10.7498/aps.56.6674
    [16] 肖 夏, 尤学一, 姚素英. 表征超大规模集成电路互连纳米薄膜硬度特性的声表面波的频散特性. 物理学报, 2007, 56(4): 2428-2433. doi: 10.7498/aps.56.2428
    [17] 张文杰, 易万兵, 吴 瑾. 铝互连线的电迁移问题及超深亚微米技术下的挑战. 物理学报, 2006, 55(10): 5424-5434. doi: 10.7498/aps.55.5424
    [18] 宗兆翔, 杜 磊, 庄奕琪, 何 亮, 吴 勇. 超大规模集成电路互连电迁移自由体积电阻模型. 物理学报, 2005, 54(12): 5872-5878. doi: 10.7498/aps.54.5872
    [19] 何宝平, 郭红霞, 龚建成, 王桂珍, 罗尹虹, 李永宏. 浮栅ROM集成电路空间低剂量率辐射失效时间预估. 物理学报, 2004, 53(9): 3125-3129. doi: 10.7498/aps.53.3125
    [20] 贺朝会, 耿斌, 何宝平, 姚育娟, 李永宏, 彭宏论, 林东生, 周辉, 陈雨生. 大规模集成电路总剂量效应测试方法初探. 物理学报, 2004, 53(1): 194-199. doi: 10.7498/aps.53.194
计量
  • 文章访问数:  8952
  • PDF下载量:  1186
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-07-08
  • 修回日期:  2009-11-20
  • 刊出日期:  2010-03-05

/

返回文章
返回