搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Gibbons-Maeda dilaton黑洞的全息熵

谢志堃 余国祥 刘成周

引用本文:
Citation:

Gibbons-Maeda dilaton黑洞的全息熵

谢志堃, 余国祥, 刘成周

Holographic entropy of Gibbons-Maeda dilaton black hole

Xie Zhi-Kun, Yu Guo-Xiang, Liu Cheng-Zhou
PDF
导出引用
  • 依据全息原理,通过计算Gibbons-Maeda dilaton黑洞事件视界上量子场的统计熵,得到了该黑洞的全息熵和Bekenstein-Hawking熵.计算中利用非对易量子场论,克服了普通量子场论中态密度在视界上的发散困难,避免了黑洞熵热气体方法中紫外截断的引入.用留数定理克服了计算中的积分困难,所得的结果定量成立.研究表明,黑洞熵可以视为其视界上量子场的熵;通过计算视界上量子态的统计熵可以得到黑洞熵,计算中可以且应该避免视界外量子态的影响.
    In accordance with the holographic principle, by calculating the entropy of the quantum field just on the event horizon of the Gibbons-Maeda dilaton black hole, the holographic entropy and the Bekenstein-Hawking entropy of the black hole are obtained. By using the non-commutative quantum field theory, the divergence of the state density near the event horizon in usual quantum field theory is removed and the ultraviolet cutoff in the heat gas method of black hole entropy is avoided.Using the residue theorem, the integral difficulty in the calculation is overcome and the results here are obtained quantitatively. The results show that black hole entropy is identical with the statistical entropy of the quantum states at the horizon. Black hole entropy may be obtained by calculating the quantum states only at the event horizon, and in the calculation the influences of quantum states outside the horizon should be avoided.
    • 基金项目: 浙江省自然科学基金(批准号:Y6090739)、山东省自然科学基金(批准号:Y2008A33)和山东省教育厅科研发展计划(批准号: J08LI51) 资助的课题.
    [1]

    [1]Bekenstein J D 1973 Phys. Rev. D 7 2333

    [2]

    [2]Hawking S W 1975 Commun. Math. Phys. 43 199

    [3]

    [3]Susskind L 1995 J. Math. Phys. 36 6377

    [4]

    [4]Hooft Gt 1996 Int. J. Mod. Phys. A 11 4623

    [5]

    [5]Khriplovich I B 2005 Int. J. Mod. Phys. D 14 181

    [6]

    [6]Hooft Gt 1985 Nucl. Phys. B 256 727

    [7]

    [7]Jing J L 1998 Int. J. Theor. Phys. 37 1441

    [8]

    [8]Ghosh A, Mitra P 1994 Phys. Rev. Lett. 73 2521

    [9]

    [9]Mukohyama S W, Israel W 1998 Phys. Rev. D 58 104005

    [10]

    ]Liu W B, Zhu J Y, Zhao Z 2000 Acta Phys.Sin. 49 581 (in Chinese) [刘文彪、朱建阳、赵峥 2000 物理学报 49 581]

    [11]

    ]Li X, Zhao Z 2001 Chin.Phys.Lett. 18 463

    [12]

    ]Liu W B, Zhao Z 2001 Chin. Phys. Lett. 18 310

    [13]

    ]Shen Y G 2002 Phys. Lett. B 537 187

    [14]

    ]Zhu B,Yao G Z,Zhao Z 2002 Acta Phys.Sin. 51 2656 (in Chinese) [朱斌、姚国政、赵峥 2002 物理学报 51 2656]

    [15]

    ]Song T P, Yao G Z 2002 Acta Phys. Sin. 51 1144 (in Chinese) [宋太平、姚国政 2002 物理学报 51 1144]

    [16]

    ]Sun M C 2003 Acta Phys. Sin. 52 1350 (in Chinese) [孙鸣超 2003 物理学报 52 1350]

    [17]

    ]Song T P, Hou C X 2002 Acta Phys. Sin. 51 1398 (in Chinese) [宋太平、侯晨霞 2002 物理学报 51 1398]

    [18]

    ]Carlip S 2001 Rep. Prog. Phys. 64 885

    [19]

    ]Plchinski J 1996 Rev. Mod. Phys. 68 1245

    [20]

    ]Plchinski J 1996 Prog. Theor. Phys. 123(Suppl.) 9

    [21]

    ]Koga J I, Maeda K I 1995 Phys. Rev. D 52 7066

    [22]

    ]Garfinkle D, Horowitz G T, Strominger A 1991 Phys. Rev. D 43 3140

    [23]

    ]Witten E 1998 Adv. Theor. Math. Phys. 2 253

    [24]

    ]Maldacena J M 1998 Adv. Theor. Math. Phys. 2 231

    [25]

    ]Snyder H S 1947 Phys. Rev. 71 38

    [26]

    ]Witten E 1996 Nucl. Phys. B 460 335

    [27]

    ]Kempt A, Mangano G, Mann R B 1995 Phys. Rev. D 52 1108

    [28]

    ]Garay L J 1995 Int. J. Mod. Phys. A 10 145

    [29]

    ]Cheng L N, Minic D, Okamura N, Takeuchi T 2002 Phys. Rev. D 65 125028

    [30]

    ]Li X 2002 Phys. Lett. B 537 306

    [31]

    ]Li X 2002 Phys. Lett. B 540 9

    [32]

    ]Liu C Z 2004 Gen. Rel. Grav. 36 1135

    [33]

    ]Sun X F, Liu W B 2004 Mod. Phys. Lett. A 19 677

    [34]

    ]Bombelli L, Koul R K, Lee J, Sorkin R D 1986 Phys. Rev. D 34 373

    [35]

    ]Page D N 2005 New J. Phys. 7 203

  • [1]

    [1]Bekenstein J D 1973 Phys. Rev. D 7 2333

    [2]

    [2]Hawking S W 1975 Commun. Math. Phys. 43 199

    [3]

    [3]Susskind L 1995 J. Math. Phys. 36 6377

    [4]

    [4]Hooft Gt 1996 Int. J. Mod. Phys. A 11 4623

    [5]

    [5]Khriplovich I B 2005 Int. J. Mod. Phys. D 14 181

    [6]

    [6]Hooft Gt 1985 Nucl. Phys. B 256 727

    [7]

    [7]Jing J L 1998 Int. J. Theor. Phys. 37 1441

    [8]

    [8]Ghosh A, Mitra P 1994 Phys. Rev. Lett. 73 2521

    [9]

    [9]Mukohyama S W, Israel W 1998 Phys. Rev. D 58 104005

    [10]

    ]Liu W B, Zhu J Y, Zhao Z 2000 Acta Phys.Sin. 49 581 (in Chinese) [刘文彪、朱建阳、赵峥 2000 物理学报 49 581]

    [11]

    ]Li X, Zhao Z 2001 Chin.Phys.Lett. 18 463

    [12]

    ]Liu W B, Zhao Z 2001 Chin. Phys. Lett. 18 310

    [13]

    ]Shen Y G 2002 Phys. Lett. B 537 187

    [14]

    ]Zhu B,Yao G Z,Zhao Z 2002 Acta Phys.Sin. 51 2656 (in Chinese) [朱斌、姚国政、赵峥 2002 物理学报 51 2656]

    [15]

    ]Song T P, Yao G Z 2002 Acta Phys. Sin. 51 1144 (in Chinese) [宋太平、姚国政 2002 物理学报 51 1144]

    [16]

    ]Sun M C 2003 Acta Phys. Sin. 52 1350 (in Chinese) [孙鸣超 2003 物理学报 52 1350]

    [17]

    ]Song T P, Hou C X 2002 Acta Phys. Sin. 51 1398 (in Chinese) [宋太平、侯晨霞 2002 物理学报 51 1398]

    [18]

    ]Carlip S 2001 Rep. Prog. Phys. 64 885

    [19]

    ]Plchinski J 1996 Rev. Mod. Phys. 68 1245

    [20]

    ]Plchinski J 1996 Prog. Theor. Phys. 123(Suppl.) 9

    [21]

    ]Koga J I, Maeda K I 1995 Phys. Rev. D 52 7066

    [22]

    ]Garfinkle D, Horowitz G T, Strominger A 1991 Phys. Rev. D 43 3140

    [23]

    ]Witten E 1998 Adv. Theor. Math. Phys. 2 253

    [24]

    ]Maldacena J M 1998 Adv. Theor. Math. Phys. 2 231

    [25]

    ]Snyder H S 1947 Phys. Rev. 71 38

    [26]

    ]Witten E 1996 Nucl. Phys. B 460 335

    [27]

    ]Kempt A, Mangano G, Mann R B 1995 Phys. Rev. D 52 1108

    [28]

    ]Garay L J 1995 Int. J. Mod. Phys. A 10 145

    [29]

    ]Cheng L N, Minic D, Okamura N, Takeuchi T 2002 Phys. Rev. D 65 125028

    [30]

    ]Li X 2002 Phys. Lett. B 537 306

    [31]

    ]Li X 2002 Phys. Lett. B 540 9

    [32]

    ]Liu C Z 2004 Gen. Rel. Grav. 36 1135

    [33]

    ]Sun X F, Liu W B 2004 Mod. Phys. Lett. A 19 677

    [34]

    ]Bombelli L, Koul R K, Lee J, Sorkin R D 1986 Phys. Rev. D 34 373

    [35]

    ]Page D N 2005 New J. Phys. 7 203

  • [1] 杨维. \begin{document}$\mathbf{S}\mathbf{L}\left(\boldsymbol{n}, \boldsymbol{R}\right)$\end{document}户田黑洞的隧穿效应. 物理学报, 2023, 72(1): 010401. doi: 10.7498/aps.72.20221415
    [2] 杨学军, 赵峥. 无截断薄膜模型与Dirac场的黑洞熵. 物理学报, 2011, 60(6): 060401. doi: 10.7498/aps.60.060401
    [3] 杨学军, 赵峥. 砖墙模型不能给出黑洞熵. 物理学报, 2011, 60(8): 080402. doi: 10.7498/aps.60.080402
    [4] 张丽春, 胡双启, 李怀繁, 赵 仁. 轴对称黑洞的量子统计熵. 物理学报, 2008, 57(6): 3328-3332. doi: 10.7498/aps.57.3328
    [5] 赵 仁, 张丽春, 胡双启. 黑洞的统计熵. 物理学报, 2006, 55(8): 3902-3905. doi: 10.7498/aps.55.3902
    [6] 苏九清, 李传安. 高自旋场对静态球对称黑洞熵的贡献. 物理学报, 2005, 54(2): 530-533. doi: 10.7498/aps.54.530
    [7] 张建华, 张青松. 高自旋场对Vaidya-Bonner黑洞熵的贡献. 物理学报, 2005, 54(11): 5500-5503. doi: 10.7498/aps.54.5500
    [8] 刘成周. 动态广义球对称含荷黑洞的量子熵. 物理学报, 2005, 54(5): 1977-1981. doi: 10.7498/aps.54.1977
    [9] 王波波. 环面黑洞背景下量子场的熵. 物理学报, 2004, 53(7): 2401-2406. doi: 10.7498/aps.53.2401
    [10] 韩亦文, 洪 云. Schwarzschild-de-Sitter黑洞宇宙视界量子态的熵. 物理学报, 2004, 53(10): 3270-3273. doi: 10.7498/aps.53.3270
    [11] 张丽春, 赵 仁. Sen黑洞熵与能斯特定理. 物理学报, 2004, 53(2): 362-366. doi: 10.7498/aps.53.362
    [12] 王钢柱, 王纪龙. 缓变动态Kerr-Newman黑洞的量子热力学性质. 物理学报, 2004, 53(6): 1669-1674. doi: 10.7498/aps.53.1669
    [13] 米丽琴. Anti-de Sitter时空中黑洞量子熵的发散结构. 物理学报, 2004, 53(7): 2065-2068. doi: 10.7498/aps.53.2065
    [14] 李固强. 自旋场对Barriola-vilenkin黑洞熵的量子修正. 物理学报, 2003, 52(6): 1346-1349. doi: 10.7498/aps.52.1346
    [15] 孟庆苗, 苏九清, 李传安. 球对称动态黑洞Dirac场的统计熵. 物理学报, 2003, 52(7): 1822-1826. doi: 10.7498/aps.52.1822
    [16] 李传安, 魏显起, 孟庆苗, 刘景伦. 动态广义球对称含荷黑洞的统计熵. 物理学报, 2002, 51(9): 2173-2176. doi: 10.7498/aps.51.2173
    [17] 赵仁, 张丽春. Kerr-Newman黑洞的统计熵. 物理学报, 2002, 51(6): 1167-1170. doi: 10.7498/aps.51.1167
    [18] 赵仁, 张丽春. Reissner-Nordstrom几何中标量场的统计熵与能斯特定理. 物理学报, 2001, 50(6): 1015-1018. doi: 10.7498/aps.50.1015
    [19] 赵仁, 张丽春. Kim黑洞熵与能斯特定理. 物理学报, 2001, 50(4): 593-596. doi: 10.7498/aps.50.593
    [20] 李传安. 黑洞的视界面公式. 物理学报, 2000, 49(8): 1648-1651. doi: 10.7498/aps.49.1648
计量
  • 文章访问数:  7052
  • PDF下载量:  937
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-09-18
  • 修回日期:  2009-12-24
  • 刊出日期:  2010-03-05

Gibbons-Maeda dilaton黑洞的全息熵

  • 1. 绍兴文理学院物理与电子信息系,绍兴 312000
    基金项目: 浙江省自然科学基金(批准号:Y6090739)、山东省自然科学基金(批准号:Y2008A33)和山东省教育厅科研发展计划(批准号: J08LI51) 资助的课题.

摘要: 依据全息原理,通过计算Gibbons-Maeda dilaton黑洞事件视界上量子场的统计熵,得到了该黑洞的全息熵和Bekenstein-Hawking熵.计算中利用非对易量子场论,克服了普通量子场论中态密度在视界上的发散困难,避免了黑洞熵热气体方法中紫外截断的引入.用留数定理克服了计算中的积分困难,所得的结果定量成立.研究表明,黑洞熵可以视为其视界上量子场的熵;通过计算视界上量子态的统计熵可以得到黑洞熵,计算中可以且应该避免视界外量子态的影响.

English Abstract

参考文献 (35)

目录

    /

    返回文章
    返回