搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

光电协同调控下HfOx基阻变存储器的阻变特性

王英 黄慧香 黄香林 郭婷婷

引用本文:
Citation:

光电协同调控下HfOx基阻变存储器的阻变特性

王英, 黄慧香, 黄香林, 郭婷婷

Resistive switching characteristics of HfOx-based resistance random access memory under photoelectric synergistic regulation

Wang Ying, Huang Hui-Xiang, Huang Xiang-Lin, Guo Ting-Ting
PDF
HTML
导出引用
  • 利用磁控溅射法制备了Cu/HfOx/Pt和Cu/HfOx-ZnO/Pt器件. HfOx器件和HfOx-ZnO器件都表现出双极性阻变特性以及具有良好的保持性, 但HfOx-ZnO器件具有更加优异的阻变性能, 例如均一性、耐受性和重复性. 研究表明, 通过增加ZnO富氧层有利于提高器件的阻变性能. 另外, HfOx薄膜的禁带宽度约为5.10 eV, 对255 nm波长的光照没有响应. 而HfOx-ZnO薄膜的禁带宽度减小为4.31 eV, 该器件在波长255 nm的光照作用下, 不仅可以提高器件的阻变性能, 还可以通过设置不同强度的光照使器件具有多级存储的能力. 研究发现, 器件在有无光照作用下的阻变行为都与薄膜中的氧空位有关, 所以本文提出了氧空位导电细丝物理模型来解释器件的阻变行为. 本文使用光电协同的方法为研制出低功耗、高存储密度的阻变存储器提供了新思路.
    Cu/HfOx/Pt and Cu/HfOx-ZnO/Pt resistance random access memory (RRAM) devices are prepared by magnetron sputtering. The results show that the Cu/HfOx/Pt device has the stable bipolar resistive switching characteristics, good retention (as long as 104 s), and a switching ratio greater than 103. The current conduction mechanism of HfOx device is ohmic conduction at low resistance, while space charge limited current (SCLC) mechanism dominates at high resistance, and the conductive filament is composed of oxygen vacancies. Owing to the low content and random distribution of oxygen defects in the HfOx film, the endurance and uniformity of the device are poor. Compared with HfOx device, HfOx-ZnO device exhibits lower operating voltage and better uniformity and stability. The main reason is that ZnO material has smaller formation energy of oxygen vacancy, which can produce more oxygen defects under electric field to participate in the resistive switching behavior of the device, thereby reducing the operating voltage and improving the uniformity of the device. In addition, owing to the existence of the interface between HfOx and ZnO film, the random distribution of oxygen defects is inhibited, that is, the random fracture and formation of conductive filament are inhibited, which is beneficial to improving the uniformity of the device. In addition, the resistive switching behaviors of Cu/HfOx/Pt and Cu/HfOx-ZnO/Pt RRAM devices under different intensities of 255 nm ultraviolet illumination are studied. For Cu/HfOx/Pt device, the light of 255 nm wavelength shows little effect on its resistive switching characteristics. For the Cu/HfOx-ZnO/Pt RRAM device, the operating voltage and stability of the device can be improved by increasing the light intensity. Although the switching ratio of the device decreases with the increase of light intensity, the device can exhibit multiple resistance states by adjusting different light intensities to achieve multi-level storage. Finally, the analysis of the I-V curves of the devices indicates that the two types of devices show similar resistive switching mechanisms under the illumination of light or no light, which can be explained by the resistive switching mechanism of oxygen vacancy conductive filament. Therefore, a physical model based on the oxygen vacancy conductive filament is established to explain the resistive switching behavior of the device in this paper.
      通信作者: 郭婷婷, guott@chd.edu.cn
    • 基金项目: 国家自然科学基金青年科学基金(批准号: 51802025)和陕西省自然科学基础研究计划(批准号: 2020JQ-384)资助的课题.
      Corresponding author: Guo Ting-Ting, guott@chd.edu.cn
    • Funds: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 51802025) and the Natural Science Foundation Research Plan of Shaanxi Province, China (Grant No. 2020JQ-384).
    [1]

    Guo T, Elshekh H, Yu Z, Yu B, Wang D, Kadhim M S, Chen Y Z, Hou W T, Sun B 2019 Mater. Today Commun. 20 100540Google Scholar

    [2]

    Yoo S J, Agbenyeke R E, Choi H, Jeon K, Ryu J J, Eom T, Park B K, Chung T M, Jeong D S, Song W 2022 Appl. Surf. Sci. 577 151936Google Scholar

    [3]

    Killedar S T, Ahir N A, Morankar P J, Tiwari A P, Kim D K 2020 Opt. Mater. 109 110333Google Scholar

    [4]

    龚少康, 周静, 王志青, 朱茂聪, 沈杰, 吴智, 陈文 2021 物理学报 70 197301Google Scholar

    Gong S K, Zhou J, Wang Z Q, Zhu M C, Shen J, Wu Z, Chen W 2021 Acta Phys. Sin. 70 197301Google Scholar

    [5]

    Guo T T, Huang H X, Huang X L, Wang Y, Duan L, Xu Z 2022 J. Alloys Compd. 921 166218Google Scholar

    [6]

    More K D, Narwade V N, Halge D I, Dadge J W, Bogle K A 2020 Physica B 595 412339Google Scholar

    [7]

    He H K, Yang R, Zhou W, Huang H M, Xiong J, Gan L, Zhai T Y, Guo X 2018 Small 14 1800079Google Scholar

    [8]

    Zhou H, Wei X D, Wei W, Ye C, Zhang R L, Zhang L, Xia Q, Huang H, Wang B 2019 Surf. Coat. Tech. 359 150Google Scholar

    [9]

    张娇娇, 周龙, 王洪强, 董广志, 樊慧庆 2023 铸造技术 44 23Google Scholar

    Zhang J J, Zhou L, Wang H Q, Dong G Z, Fan H Q 2023 Foundry Technology 44 23Google Scholar

    [10]

    Wang Y H, He Z Q, Lai X B, Liu B Y, Chen Y B, Zhang L W, Wang F P 2021 J. Alloys Compd. 873 159809Google Scholar

    [11]

    Strukov D B, Snider G S, Stewart D R, Williams R S 2008 Nature 453 80Google Scholar

    [12]

    Zhang L, Huang H, Ye C, Chang K C, Zhang R L, Xia Q, Wei X D, Wei W, Wang W F 2018 Semicond. Sci. Tech. 33 085013Google Scholar

    [13]

    代月花, 潘志勇, 陈真, 王菲菲, 李宁, 金波, 李晓风 2016 物理学报 65 073101Google Scholar

    Dai Y H, Pan Z Y, Chen Z, Wang F F, Li N, Jin B, Li X F 2016 Acta Phys. Sin. 65 073101Google Scholar

    [14]

    Leydecker T, Herder M, Pavlica E, Bratina G, Hecht S, Orgiu E, Samorì P 2016 Nat Nanotechnol. 11 769Google Scholar

    [15]

    Lee Y J, Liu K H, Peng Y, Yen M C, Tamada K 2020 Nat. Commun. 12 4460Google Scholar

    [16]

    曾凡菊, 谭永前, 唐孝生, 张小梅, 尹海峰 2021 物理学报 70 157301Google Scholar

    Zeng F J, Tan Y Q, Tang X S, Zhang X M, Yin H F 2021 Acta Phys. Sin. 70 157301Google Scholar

    [17]

    Ge N N, Gong C H, Yuan X C, Zeng H Z, Wei X H 2018 RSC Adv. 8 29499Google Scholar

    [18]

    Kao M C, Chen H Z, Chen K H, Shi J B, Chen K P 2020 Thin Solid Films 697 137816Google Scholar

    [19]

    Chen Z L, Yu Y, Jin L F, Li Y F, Li Q Y, Li T T, Li J, Zhao H L, Zhang Y T, Dai H T 2021 J. Mater Chem. C 8 2178Google Scholar

    [20]

    Singh L, Kaushik V, Rajput S, Kumar M 2021 J. Lightwave Technol. 39 5869Google Scholar

    [21]

    Ungureanu M, Zazpe R, Golmar F, Stoliar P, Llopis R, Casanova F, Hueso L E 2012 Adv. Mater. 24 2496Google Scholar

    [22]

    Zhu X J, Lu W D 2018 Acs Nano 12 1242Google Scholar

    [23]

    Russo P, Xiao M, Liang R, Zhou N Y 2018 Adv Funct. Mater. 28 17062301Google Scholar

    [24]

    Xie S, Pei L, Li M Y, Zhu Y D, Cheng X Y, Ding H Q, Xiong R 2018 J. Alloys Compd. 778 141Google Scholar

    [25]

    Xue W H, Ci W J, Xu X H, Liu G 2020 Chin. Phys. B. 29 048401Google Scholar

    [26]

    Sharath S U, Bertaud T, Kurian J, Hildebrandt E, Walczyk C, Calka P, Zaumseil P, Sowinska M, Walczyk D, Gloskovskii A, Schroeder T, Alff L 2014 Appl. Phys. Lett. 104 063502Google Scholar

    [27]

    Guo T T, Wang Y X, Duan L, Fan J B, Wang Z Z 2021 Vacuum 189 110224Google Scholar

    [28]

    Bon C Y, Kim D, Lee K, Choi S, Yoo S I 2020 AIP Adv. 10 115117Google Scholar

    [29]

    Kannadasan N, Shanmugam N, Cholan S, Sathishkumar K, Viruthagiri G, Poonguzhali R 2014 Current Appl. Phys. 14 1760Google Scholar

    [30]

    Pereira L, Barquinha P, Fortunato E, Martins R 2005 Mater. Sci Engineer B 118 210Google Scholar

    [31]

    Praksgh R, Sharma S, Kumar A, Kaur D 2019 Appl. Phys. Lett. 115 052108Google Scholar

    [32]

    Wu P, Zhang J, Lu J G, Li X F, Wu C J, Sun R J, Feng L S, Jiang Q J, Lu B, Pan X H 2014 IEEE T Electron. Dev. 61 1431Google Scholar

    [33]

    Liu P, She G W, Liao Z L, Wang Y, Wang Z Z, Shi W S, Zhang X H, Lee S T, Chen D M 2009 Appl. Phys. Lett. 94 635Google Scholar

    [34]

    Laiho R, Poloskin D S, Stepanov Y P, Vlasenko M P, Vlasenko L S, Zakhvalinskii V S 2009 J Appl. Phys. 106 56Google Scholar

    [35]

    Wang X J, Wang Y Y, Feng M, Wang K Y, Tian Y M 2020 Current Appl. Phys. 20 261104Google Scholar

    [36]

    Tan T T, Du Y H, Sun Y L, Zhang H, Cao A, Zha G Q 2019 J. Mater. Sci. 30 13445Google Scholar

  • 图 1  HfOx-ZnO样品的测试示意图(a)和TEM图像(b)

    Fig. 1.  Test schematic (a) and TEM images (b) of HfOx-ZnO samples.

    图 2  (a), (b) HfOx薄膜的XPS能谱; (c), (d) ZnO薄膜的XPS能谱

    Fig. 2.  (a), (b) XPS spectra of HfOx film; (c), (d) XPS spectra of ZnO film.

    图 3  器件的双极性I-V曲线(插图为电形成过程) (a) HfOx; (b) HfOx-ZnO

    Fig. 3.  Bipolar I-V curves of the device (Inset shows the forming process): (a) HfOx; (b) HfOx-ZnO.

    图 4  两种器件的阻变性能 (a)操作电压分布; (b)电阻分布; (c)耐受性; (d)保持性

    Fig. 4.  Switching properties of two samples: (a) Statistical distribution of switching voltages; (b) statistical distribution of resistances; (c) endurance; (d) retention properties.

    图 5  薄膜的UV-Vis光谱图(插图为光学带隙) (a) HfOx; (b) HfOx-ZnO

    Fig. 5.  UV-Vis spectra of the films (Inset shows Tauc plot): (a) HfOx; (b) HfOx-ZnO.

    图 6  不同强度光照下器件的I-V曲线(插图为电形成过程)(a) HfOx; (b) HfOx-ZnO; (c) HfOx-ZnO器件开启电压随光照强度的变化

    Fig. 6.  Bipolar I-V curves of the device under different light intensity: (The inset shows the forming process): (a) HfOx; (b) HfOx-ZnO; (c) forming voltage of HfOx-ZnO device changes with the light intensity.

    图 7  HfOx-ZnO器件不同强度光照下的阻变性能 (a)—(e)耐受性; (f)操作电压分布

    Fig. 7.  Resistive switching performance of the HfOx-ZnO device under different light intensities: (a)–(e) Endurance; (f) statistical distribution of switching voltages.

    图 8  HfOx-ZnO器件的多级存储的性能 (a)高低阻值; (b)保持性

    Fig. 8.  Multilevel memory performance of HfOx-ZnO device: (a) High and low resistances; (b) retention properties.

    图 9  器件的阻变机制 (a) HfOx; (b) HfOx-ZnO; (c) Cu/HfOx/Pt器件LRS阻值与温度的关系

    Fig. 9.  Resistive switching mechanism of devices: (a) HfOx; (b) HfOx-ZnO; (c) relationship between LRS resistance and temperature of Cu/HfOx/Pt.

    图 10  HfOx-ZnO器件的电阻开关物理微观过程

    Fig. 10.  Physical microscopic process of the resistance switch of the HfOx-ZnO device.

  • [1]

    Guo T, Elshekh H, Yu Z, Yu B, Wang D, Kadhim M S, Chen Y Z, Hou W T, Sun B 2019 Mater. Today Commun. 20 100540Google Scholar

    [2]

    Yoo S J, Agbenyeke R E, Choi H, Jeon K, Ryu J J, Eom T, Park B K, Chung T M, Jeong D S, Song W 2022 Appl. Surf. Sci. 577 151936Google Scholar

    [3]

    Killedar S T, Ahir N A, Morankar P J, Tiwari A P, Kim D K 2020 Opt. Mater. 109 110333Google Scholar

    [4]

    龚少康, 周静, 王志青, 朱茂聪, 沈杰, 吴智, 陈文 2021 物理学报 70 197301Google Scholar

    Gong S K, Zhou J, Wang Z Q, Zhu M C, Shen J, Wu Z, Chen W 2021 Acta Phys. Sin. 70 197301Google Scholar

    [5]

    Guo T T, Huang H X, Huang X L, Wang Y, Duan L, Xu Z 2022 J. Alloys Compd. 921 166218Google Scholar

    [6]

    More K D, Narwade V N, Halge D I, Dadge J W, Bogle K A 2020 Physica B 595 412339Google Scholar

    [7]

    He H K, Yang R, Zhou W, Huang H M, Xiong J, Gan L, Zhai T Y, Guo X 2018 Small 14 1800079Google Scholar

    [8]

    Zhou H, Wei X D, Wei W, Ye C, Zhang R L, Zhang L, Xia Q, Huang H, Wang B 2019 Surf. Coat. Tech. 359 150Google Scholar

    [9]

    张娇娇, 周龙, 王洪强, 董广志, 樊慧庆 2023 铸造技术 44 23Google Scholar

    Zhang J J, Zhou L, Wang H Q, Dong G Z, Fan H Q 2023 Foundry Technology 44 23Google Scholar

    [10]

    Wang Y H, He Z Q, Lai X B, Liu B Y, Chen Y B, Zhang L W, Wang F P 2021 J. Alloys Compd. 873 159809Google Scholar

    [11]

    Strukov D B, Snider G S, Stewart D R, Williams R S 2008 Nature 453 80Google Scholar

    [12]

    Zhang L, Huang H, Ye C, Chang K C, Zhang R L, Xia Q, Wei X D, Wei W, Wang W F 2018 Semicond. Sci. Tech. 33 085013Google Scholar

    [13]

    代月花, 潘志勇, 陈真, 王菲菲, 李宁, 金波, 李晓风 2016 物理学报 65 073101Google Scholar

    Dai Y H, Pan Z Y, Chen Z, Wang F F, Li N, Jin B, Li X F 2016 Acta Phys. Sin. 65 073101Google Scholar

    [14]

    Leydecker T, Herder M, Pavlica E, Bratina G, Hecht S, Orgiu E, Samorì P 2016 Nat Nanotechnol. 11 769Google Scholar

    [15]

    Lee Y J, Liu K H, Peng Y, Yen M C, Tamada K 2020 Nat. Commun. 12 4460Google Scholar

    [16]

    曾凡菊, 谭永前, 唐孝生, 张小梅, 尹海峰 2021 物理学报 70 157301Google Scholar

    Zeng F J, Tan Y Q, Tang X S, Zhang X M, Yin H F 2021 Acta Phys. Sin. 70 157301Google Scholar

    [17]

    Ge N N, Gong C H, Yuan X C, Zeng H Z, Wei X H 2018 RSC Adv. 8 29499Google Scholar

    [18]

    Kao M C, Chen H Z, Chen K H, Shi J B, Chen K P 2020 Thin Solid Films 697 137816Google Scholar

    [19]

    Chen Z L, Yu Y, Jin L F, Li Y F, Li Q Y, Li T T, Li J, Zhao H L, Zhang Y T, Dai H T 2021 J. Mater Chem. C 8 2178Google Scholar

    [20]

    Singh L, Kaushik V, Rajput S, Kumar M 2021 J. Lightwave Technol. 39 5869Google Scholar

    [21]

    Ungureanu M, Zazpe R, Golmar F, Stoliar P, Llopis R, Casanova F, Hueso L E 2012 Adv. Mater. 24 2496Google Scholar

    [22]

    Zhu X J, Lu W D 2018 Acs Nano 12 1242Google Scholar

    [23]

    Russo P, Xiao M, Liang R, Zhou N Y 2018 Adv Funct. Mater. 28 17062301Google Scholar

    [24]

    Xie S, Pei L, Li M Y, Zhu Y D, Cheng X Y, Ding H Q, Xiong R 2018 J. Alloys Compd. 778 141Google Scholar

    [25]

    Xue W H, Ci W J, Xu X H, Liu G 2020 Chin. Phys. B. 29 048401Google Scholar

    [26]

    Sharath S U, Bertaud T, Kurian J, Hildebrandt E, Walczyk C, Calka P, Zaumseil P, Sowinska M, Walczyk D, Gloskovskii A, Schroeder T, Alff L 2014 Appl. Phys. Lett. 104 063502Google Scholar

    [27]

    Guo T T, Wang Y X, Duan L, Fan J B, Wang Z Z 2021 Vacuum 189 110224Google Scholar

    [28]

    Bon C Y, Kim D, Lee K, Choi S, Yoo S I 2020 AIP Adv. 10 115117Google Scholar

    [29]

    Kannadasan N, Shanmugam N, Cholan S, Sathishkumar K, Viruthagiri G, Poonguzhali R 2014 Current Appl. Phys. 14 1760Google Scholar

    [30]

    Pereira L, Barquinha P, Fortunato E, Martins R 2005 Mater. Sci Engineer B 118 210Google Scholar

    [31]

    Praksgh R, Sharma S, Kumar A, Kaur D 2019 Appl. Phys. Lett. 115 052108Google Scholar

    [32]

    Wu P, Zhang J, Lu J G, Li X F, Wu C J, Sun R J, Feng L S, Jiang Q J, Lu B, Pan X H 2014 IEEE T Electron. Dev. 61 1431Google Scholar

    [33]

    Liu P, She G W, Liao Z L, Wang Y, Wang Z Z, Shi W S, Zhang X H, Lee S T, Chen D M 2009 Appl. Phys. Lett. 94 635Google Scholar

    [34]

    Laiho R, Poloskin D S, Stepanov Y P, Vlasenko M P, Vlasenko L S, Zakhvalinskii V S 2009 J Appl. Phys. 106 56Google Scholar

    [35]

    Wang X J, Wang Y Y, Feng M, Wang K Y, Tian Y M 2020 Current Appl. Phys. 20 261104Google Scholar

    [36]

    Tan T T, Du Y H, Sun Y L, Zhang H, Cao A, Zha G Q 2019 J. Mater. Sci. 30 13445Google Scholar

  • [1] 史晓红, 陈京金, 曹昕睿, 吴顺情, 朱梓忠. 富锂锰基三元材料Li1.167Ni0.167Co0.167Mn0.5O2中的氧空位形成. 物理学报, 2022, 71(17): 178202. doi: 10.7498/aps.71.20220274
    [2] 朱茂聪, 邵雅洁, 周静, 陈文, 王志青, 田晶. 铌掺杂锆钛酸铅铁电薄膜调控CuInS2量子点的阻变性能. 物理学报, 2022, 71(20): 207301. doi: 10.7498/aps.71.20220911
    [3] 周正, 黄鹏, 康晋锋. 基于非挥发存储器的存内计算技术. 物理学报, 2022, 71(14): 148507. doi: 10.7498/aps.71.20220397
    [4] 龚少康, 周静, 王志青, 朱茂聪, 沈杰, 吴智, 陈文. 尺寸调控SnO2量子点的阻变性能及调控机理. 物理学报, 2021, 70(19): 197301. doi: 10.7498/aps.70.20210608
    [5] 曾凡菊, 谭永前, 唐孝生, 张小梅, 尹海峰. 非铅卤素钙钛矿及其阻变性能研究进展. 物理学报, 2021, 70(15): 157301. doi: 10.7498/aps.70.20210065
    [6] 汤卉, 唐新桂, 蒋艳平, 刘秋香, 李文华. 铌酸锶钡陶瓷中氧空位对离子电导率和弛豫现象的影响. 物理学报, 2019, 68(22): 227701. doi: 10.7498/aps.68.20190562
    [7] 王泽普, 付念, 于涵, 徐晶威, 何祺, 郑树凯, 丁帮福, 闫小兵. 铟掺杂钨位增强钨酸铋氧空位光催化效率. 物理学报, 2019, 68(21): 217102. doi: 10.7498/aps.68.20191010
    [8] 余志强, 刘敏丽, 郎建勋, 钱楷, 张昌华. 基于Au/TiO2/FTO结构忆阻器的开关特性与机理研究. 物理学报, 2018, 67(15): 157302. doi: 10.7498/aps.67.20180425
    [9] 张志超, 王芳, 吴仕剑, 李毅, 弭伟, 赵金石, 张楷亮. 氧分压对Ni/HfOx/TiN阻变存储单元阻变特性的影响. 物理学报, 2018, 67(5): 057301. doi: 10.7498/aps.67.20172194
    [10] 郭家俊, 董静雨, 康鑫, 陈伟, 赵旭. 过渡金属元素X(X=Mn,Fe,Co,Ni)掺杂对ZnO基阻变存储器性能的影响. 物理学报, 2018, 67(6): 063101. doi: 10.7498/aps.67.20172459
    [11] 栗苹, 许玉堂. 氧空位迁移造成的氧化物介质层时变击穿的蒙特卡罗模拟. 物理学报, 2017, 66(21): 217701. doi: 10.7498/aps.66.217701
    [12] 代月花, 潘志勇, 陈真, 王菲菲, 李宁, 金波, 李晓风. 基于HfO2的阻变存储器中Ag导电细丝方向和浓度的第一性原理研究. 物理学报, 2016, 65(7): 073101. doi: 10.7498/aps.65.073101
    [13] 代广珍, 蒋先伟, 徐太龙, 刘琦, 陈军宁, 代月花. 密度泛函理论研究氧空位对HfO2晶格结构和电学特性影响. 物理学报, 2015, 64(3): 033101. doi: 10.7498/aps.64.033101
    [14] 蒋先伟, 鲁世斌, 代广珍, 汪家余, 金波, 陈军宁. 电荷俘获存储器数据保持特性第一性原理研究. 物理学报, 2015, 64(21): 213102. doi: 10.7498/aps.64.213102
    [15] 蒋然, 杜翔浩, 韩祖银, 孙维登. Ti/HfO2/Pt阻变存储单元中的氧空位聚簇分布. 物理学报, 2015, 64(20): 207302. doi: 10.7498/aps.64.207302
    [16] 陈然, 周立伟, 王建云, 陈长军, 邵兴隆, 蒋浩, 张楷亮, 吕联荣, 赵金石. 基于Cu/SiOx/Al结构的阻变存储器多值特性及机理的研究. 物理学报, 2014, 63(6): 067202. doi: 10.7498/aps.63.067202
    [17] 代广珍, 代月花, 徐太龙, 汪家余, 赵远洋, 陈军宁, 刘琦. HfO2中影响电荷俘获型存储器的氧空位特性第一性原理研究. 物理学报, 2014, 63(12): 123101. doi: 10.7498/aps.63.123101
    [18] 龚宇, 陈柏桦, 熊亮萍, 古梅, 熊洁, 高小铃, 罗阳明, 胡胜, 王育华. 氧空位对Eu2+, Dy3+掺杂的Ca5MgSi3O12发光及余辉性能的影响. 物理学报, 2013, 62(15): 153201. doi: 10.7498/aps.62.153201
    [19] 杨金, 周茂秀, 徐太龙, 代月花, 汪家余, 罗京, 许会芳, 蒋先伟, 陈军宁. 阻变存储器复合材料界面及电极性质研究. 物理学报, 2013, 62(24): 248501. doi: 10.7498/aps.62.248501
    [20] 姚明珍, 顾 牡. 钨酸铅晶体中与氧空位相关的色心研究. 物理学报, 2003, 52(2): 459-462. doi: 10.7498/aps.52.459
计量
  • 文章访问数:  2009
  • PDF下载量:  62
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-28
  • 修回日期:  2023-07-28
  • 上网日期:  2023-07-18
  • 刊出日期:  2023-10-05

/

返回文章
返回