搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纳米级尺寸参数对钛氧化物忆阻器的特性影响

郭羽泉 段书凯 王丽丹

引用本文:
Citation:

纳米级尺寸参数对钛氧化物忆阻器的特性影响

郭羽泉, 段书凯, 王丽丹

Influence of length parameter on the characteristics of nanoscale titanium oxide memristor

Guo Yu-Quan, Duan Shu-Kai, Wang Li-Dan
PDF
导出引用
  • 随着忆阻器研究的不断深入, 忆阻器的研究已经进入微观阶段, 包括忆阻器内部结构的探究、内部粒子间的运动规律、各参数对忆阻器特性的影响等. 然而, 这些成果中没有关于尺寸参数对忆阻器特性影响的研究, 而尺寸参数是忆阻器成功制备的关键因素之一, 这大大限制了忆阻器的发展和实际应用. 本文从欧姆电阻定律入手, 从理论角度详细分析了尺寸参数对惠普忆阻器以及自旋忆阻器的性能影响. 在此基础上进行了一系列电路仿真实验, 得到不同尺寸参数下忆阻器的相关特性曲线. 文中各选取其中最具代表性的四组实验结果进行展示, 对这些结果进行了详细分析, 得到了惠普忆阻器工作的最佳尺寸范围在8-12 nm之间以及自旋忆阻器工作的最佳尺寸范围在500-600 nm 之间的结论. 实验结果不仅可为实际运用提供有力的支持, 同时也将为进一步研制钛氧化物忆阻器器件和相关理论工作提供重要的实验基础和理论依据.
    According to the completeness theory of circuit, Chua [Chua L O 1971 IEEE Trans. Circ. Theor. 1971 18 507] put forward the fourth basic circuit element memristor besides resistor, inductor and capacitor in 1971. And memorisistance is defined as the ratio of the flux to the charge passing through it. With the emergence and development of nanoscale semiconductor technology, HP laboratoty successfully fabricated a physical memristor in 2008. The successful fabrication of memristive device caused a stir in the whole electronic field and thus a vast number of researchers were involved in the research, owing to its superior properties, i.e., nanoscale dimension, continuous input and output property, switching characteristics and unique non-volatile memory capacity. With all these extraordinary properties, memristors possess many possibilities for the development of future integrated circuits and analog computer. With the gradually in-depth study of memristor, memristor is being microsized, and its internal structure, motion law among its internal particles and influences resulting from the parameters are further explored. In recent years, the memristor has made significant achievement in the areas of non-volatile solid-state memory, intelligent storage, very-large-scale integrated circuitry, programmable analog circuits, and artificial neural networks. So far, the influence of size parameter on the memristor has been little studied, although the size parameter is one of the key factors in the memristor fabrication technology, which severely restricts the memristor development and its practical application. In the paper, we theoretically analyze the influences of size parameter on two practical memristor models (i.e., the HP memristor and spintronic memristor) in detail based on the Ohm’s law. On this basis, a series of circuit experimental simulation is carried out, and the corresponding memristor characteristic curves are thus obtained. Furthermore, we choose 4 most representative experimental results, and make specific analysis on them. Those results indicate that the optimal length of HP memristor is in a range from 8 nm to 12 nm, while the proper range of spintronic memristor is from 500 nm to 600 nm. The final results can not only contribute to memristor physical implementation and its applications, but also provide theoretical references and reliable experiment basis for the further development of the titanium oxide memristor devices and the relevant research.
    • 基金项目: 新世纪优秀人才支持计划(批准号: 教技函[2013]47号)、国家自然科学基金(批准号: 61372139, 61101233, 60972155)、教育部“春晖计划”科研项目(批准号: z2011148)、留学人员科技活动项目择优资助经费(批准号: 渝人社办〔2012〕186 号)、重庆市高等学校优秀人才支持计划(批准号: 渝教人〔2011〕65号)、重庆市高等学校青年骨干教师资助计划(批准号: 渝教人〔2011〕65号)和中央高校基本科研业务费专项资金(批准号: XDJK2014A009, XDJK2013B011)资助的课题.
    • Funds: Project supported by the Program for New Century Excellent Talents in University of China (Grant No. [2013]47), the National Natural Science Foundation of China (Grant Nos. 61372139, 61101233, 60972155), the “Spring Sunshine Plan” Research Project of Ministry of Education of China (Grant No. z2011148), the Technology Foundation for Selected Overseas Chinese Scholars, Ministry of Personnel in China (Grant No. 2012-186), the University Excellent Talents Supporting Foundations in of Chongqing, China (Grant No. 2011-65), the University Key Teacher Supporting Foundations of Chongqing, China (Grant No. 2011-65), the Fundamental Research Funds for the Central Universities, China (Grant Nos. XDJK2014A009, XDJK2013B011).
    [1]

    Chua L O 1971 IEEE Trans. Circ. Theor. 18 507

    [2]

    Strukov D B, Snider G S, Stewart D R, Williams R S 2008 Nature 453 80

    [3]

    Williams R S 2008 IEEE Spectr. 45 28

    [4]

    Itoh M, Chua L O 2008 Int. J. Bifurc. Chaos 18 3183

    [5]

    Chen Y R, Wang X B 2009 IEEE/ACM International Symposium on Nanoscale Architectures San Francisco, CA, USA July 30-31, 2009

    [6]

    Chang T, Jo S H, Kim K H, Sheridan P, Gaba S, Lu W 2011 Appl. Phys. A 102 857

    [7]

    Pickett M D, Strukov D B, Borghetti J L, Yang J J, Snider G S, Stewart D R, Williams R S 2009 Appl. Phys. 106 074508

    [8]

    Kvatinsky S, Friedman E G, Kolodny A, Weiser U C 2013 IEEE Trans. Circ. Theor. 60 211

    [9]

    Kim H, Sah M P, Yang C, Roska T, Chua L O 2012 IEEE Trans. Circ. Theor. 159 148

    [10]

    Adhikari S P, Yang C, Kim H, Chua L O 2012 IEEE Trans. Neural Netw. Learn. Syst. 23 1426

    [11]

    Hu X F, Duan S K, Wang L D 2011 Sci. China F: Inform. Sci. 41 500 (in Chinese) [胡小方, 段书凯, 王丽丹 2011 中国科学F辑:信息科学 41 500]

    [12]

    Dong Z K, Duan S K, Hu X F, Wang L D 2014 Acta Phys. Sin. 63 128502 (in Chinese) [董哲康, 段书凯, 胡小方, 王丽丹 2014 物理学报 63 128502]

    [13]

    Snider G S 2010 Nanotechnology 22 015201

    [14]

    Wu H G, Bao B C, Chen M 2014 Chin. Phys. B 23 118401

    [15]

    Yu D S, Liang Y, Herbert H C I, Hu Y H 2014 Chin. Phys. B 23 070702

    [16]

    Zhang L, Chen Z, Yang J J, Wysocki B, Mcdonald N, Chen Y R 2013 Appl. Phys. Lett. 102 153503

    [17]

    Tian X B, Xu H, Li Q J 2014 Acta Phys. Sin. 63 048401 (in Chinese) [田晓波, 徐晖, 李清江 2014 物理学报 63 048401]

    [18]

    Xu H, Tian X B, Bu K, Li Q J 2014 Acta Phys. Sin. 63 098402 (in Chinese) [徐晖, 田晓波, 步凯, 李清江 2014 物理学报 63 098402]

  • [1]

    Chua L O 1971 IEEE Trans. Circ. Theor. 18 507

    [2]

    Strukov D B, Snider G S, Stewart D R, Williams R S 2008 Nature 453 80

    [3]

    Williams R S 2008 IEEE Spectr. 45 28

    [4]

    Itoh M, Chua L O 2008 Int. J. Bifurc. Chaos 18 3183

    [5]

    Chen Y R, Wang X B 2009 IEEE/ACM International Symposium on Nanoscale Architectures San Francisco, CA, USA July 30-31, 2009

    [6]

    Chang T, Jo S H, Kim K H, Sheridan P, Gaba S, Lu W 2011 Appl. Phys. A 102 857

    [7]

    Pickett M D, Strukov D B, Borghetti J L, Yang J J, Snider G S, Stewart D R, Williams R S 2009 Appl. Phys. 106 074508

    [8]

    Kvatinsky S, Friedman E G, Kolodny A, Weiser U C 2013 IEEE Trans. Circ. Theor. 60 211

    [9]

    Kim H, Sah M P, Yang C, Roska T, Chua L O 2012 IEEE Trans. Circ. Theor. 159 148

    [10]

    Adhikari S P, Yang C, Kim H, Chua L O 2012 IEEE Trans. Neural Netw. Learn. Syst. 23 1426

    [11]

    Hu X F, Duan S K, Wang L D 2011 Sci. China F: Inform. Sci. 41 500 (in Chinese) [胡小方, 段书凯, 王丽丹 2011 中国科学F辑:信息科学 41 500]

    [12]

    Dong Z K, Duan S K, Hu X F, Wang L D 2014 Acta Phys. Sin. 63 128502 (in Chinese) [董哲康, 段书凯, 胡小方, 王丽丹 2014 物理学报 63 128502]

    [13]

    Snider G S 2010 Nanotechnology 22 015201

    [14]

    Wu H G, Bao B C, Chen M 2014 Chin. Phys. B 23 118401

    [15]

    Yu D S, Liang Y, Herbert H C I, Hu Y H 2014 Chin. Phys. B 23 070702

    [16]

    Zhang L, Chen Z, Yang J J, Wysocki B, Mcdonald N, Chen Y R 2013 Appl. Phys. Lett. 102 153503

    [17]

    Tian X B, Xu H, Li Q J 2014 Acta Phys. Sin. 63 048401 (in Chinese) [田晓波, 徐晖, 李清江 2014 物理学报 63 048401]

    [18]

    Xu H, Tian X B, Bu K, Li Q J 2014 Acta Phys. Sin. 63 098402 (in Chinese) [徐晖, 田晓波, 步凯, 李清江 2014 物理学报 63 098402]

  • [1] 郭慧朦, 梁燕, 董玉姣, 王光义. 蔡氏结型忆阻器的简化及其神经元电路的硬件实现. 物理学报, 2023, 72(7): 070501. doi: 10.7498/aps.72.20222013
    [2] 胡炜, 廖建彬, 杜永乾. 一种适用于大规模忆阻网络的忆阻器单元解析建模策略. 物理学报, 2021, 70(17): 178505. doi: 10.7498/aps.70.20210116
    [3] 史晨阳, 闵光宗, 刘向阳. 蛋白质基忆阻器研究进展. 物理学报, 2020, 69(17): 178702. doi: 10.7498/aps.69.20200617
    [4] 徐威, 王钰琪, 李岳峰, 高斐, 张缪城, 连晓娟, 万相, 肖建, 童祎. 新型忆阻器神经形态电路的设计及其在条件反射行为中的应用. 物理学报, 2019, 68(23): 238501. doi: 10.7498/aps.68.20191023
    [5] 邵楠, 张盛兵, 邵舒渊. 具有经验学习特性的忆阻器模型分析. 物理学报, 2019, 68(19): 198502. doi: 10.7498/aps.68.20190808
    [6] 邵楠, 张盛兵, 邵舒渊. 具有感觉记忆的忆阻器模型. 物理学报, 2019, 68(1): 018501. doi: 10.7498/aps.68.20181577
    [7] 吴洁宁, 王丽丹, 段书凯. 基于忆阻器的时滞混沌系统及伪随机序列发生器. 物理学报, 2017, 66(3): 030502. doi: 10.7498/aps.66.030502
    [8] 阮静雅, 孙克辉, 牟俊. 基于忆阻器反馈的Lorenz超混沌系统及其电路实现. 物理学报, 2016, 65(19): 190502. doi: 10.7498/aps.65.190502
    [9] 俞亚娟, 王在华. 一个分数阶忆阻器模型及其简单串联电路的特性. 物理学报, 2015, 64(23): 238401. doi: 10.7498/aps.64.238401
    [10] 孟凡一, 段书凯, 王丽丹, 胡小方, 董哲康. 一种改进的WOx忆阻器模型及其突触特性分析. 物理学报, 2015, 64(14): 148501. doi: 10.7498/aps.64.148501
    [11] 袁泽世, 李洪涛, 朱晓华. 基于忆阻器的数模混合随机数发生器. 物理学报, 2015, 64(24): 240503. doi: 10.7498/aps.64.240503
    [12] 董哲康, 段书凯, 胡小方, 王丽丹. 两类纳米级非线性忆阻器模型及串并联研究. 物理学报, 2014, 63(12): 128502. doi: 10.7498/aps.63.128502
    [13] 刘玉东, 王连明. 基于忆阻器的spiking神经网络在图像边缘提取中的应用. 物理学报, 2014, 63(8): 080503. doi: 10.7498/aps.63.080503
    [14] 李志军, 曾以成, 李志斌. 改进型细胞神经网络实现的忆阻器混沌电路. 物理学报, 2014, 63(1): 010502. doi: 10.7498/aps.63.010502
    [15] 刘东青, 程海峰, 朱玄, 王楠楠, 张朝阳. 忆阻器及其阻变机理研究进展. 物理学报, 2014, 63(18): 187301. doi: 10.7498/aps.63.187301
    [16] 徐晖, 田晓波, 步凯, 李清江. 温度改变对钛氧化物忆阻器导电特性的影响. 物理学报, 2014, 63(9): 098402. doi: 10.7498/aps.63.098402
    [17] 田晓波, 徐晖, 李清江. 横截面积参数对钛氧化物忆阻器导电特性的影响. 物理学报, 2014, 63(4): 048401. doi: 10.7498/aps.63.048401
    [18] 许碧荣. 一种最简的并行忆阻器混沌系统. 物理学报, 2013, 62(19): 190506. doi: 10.7498/aps.62.190506
    [19] 李智炜, 刘海军, 徐欣. 忆阻逾渗导电模型中的初态影响. 物理学报, 2013, 62(9): 096401. doi: 10.7498/aps.62.096401
    [20] 贾林楠, 黄安平, 郑晓虎, 肖志松, 王玫. 界面效应调制忆阻器研究进展. 物理学报, 2012, 61(21): 217306. doi: 10.7498/aps.61.217306
计量
  • 文章访问数:  5478
  • PDF下载量:  1038
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-09-29
  • 修回日期:  2014-12-21
  • 刊出日期:  2015-05-05

/

返回文章
返回