搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于扩展信源熵值的穿墙成像雷达墙体强杂波抑制

李家强 蔡洪渊 陈金立 李鹏 葛俊祥

引用本文:
Citation:

基于扩展信源熵值的穿墙成像雷达墙体强杂波抑制

李家强, 蔡洪渊, 陈金立, 李鹏, 葛俊祥

A method of wall clutter removal for through-wall radar based on entropy of expanded antenna source

Li Jia-Qiang, Cai Hong-Yuan, Chen Jin-Li, Li Peng, Ge Jun-Xiang
PDF
导出引用
  • 提出了基于扩展信源熵值理论的超宽带穿墙成像雷达墙体强杂波抑制方法. 首先将回波信号离散化, 计算离散信源的概率空间并对该离散信源进行扩展, 计算得到扩展后含有墙体强杂波和目标回波的新信源的熵值. 然后根据墙体杂波熵值与目标信号熵值的差异设定门限, 自适应选取最佳门限调节因子, 对回波信号进行杂波抑制处理. 经过墙体强杂波抑制处理后, 利用后向投影方法对目标进行成像. 以基于时域有限差分方法(Finite Difference-Time Domain, FDTD) 的仿真软件GprMax2D/3D所获得的穿墙雷达数据进行仿真实验, 分别通过基于信源熵值的方法与本文所提方法来抑制墙体强杂波并成像, 通过对比结果可知, 前者的目标-杂波比增量为15.51 dB, 后者的目标-杂波比增量为19.74 dB. 因此, 本文所提方法能够在相同测量方式下得到更为精确的成像, 而且可以在保证成像效果的前提下大大减少天线扫描次数.
    Strong front wall clutter has serious impacts on the target detection and imaging in the through-wall radar (TWR) system. A method of robust wall clutter suppression based on the entropy of an expanded antenna source for ultra-wide-band through-wall radar is presented in this paper. The model of TWR scenario consists of four layers. Assume that the first and the third layers are air space, while the second and the fourth layers are composed of uniform flat concrete wall. The circular target, assumed to be a perfect electric conductor, is located in the third layer. Along the measurement line which is parallel to the front wall, the transceiver antenna scans uniformly. The echo signals that come from the target and walls are processed into discrete data at first, so that the calculation of probability space is subsequently implemented and the discrete data are expanded as well. And then the entropy of the expanded data that contain robust wall clutter and echo of target is calculated. Taking into consideration the amplitude of target signal varying in each scan, while that of clutter signal is not, it is evident that the entropy can be utilized to discriminate the signals between the target and wall. According to the difference between the entropy of the wall clutter and that of the target, a certain threshold can be set and the optimum tolerance threshold is adaptively selected on the basis of target-to-clutter ratio. With the optimum tolerance threshold, process of clutter suppression is conducted. Finally, back projection is employed for imaging of target. In this paper, data of through-wall radar for simulation are provided by GprMax2D/3D, based on the finite difference-time domain methsd. The clutter suppression and imaging are separately conducted by the method based on data entropy and the method proposed in this paper. Comparing the results of simulations, it is shown that the gain of target-to-clutter ratio for the former is 15.51 dB, and that for the latter is 19.74 dB. It is obvious that the proposed method can provide imaging with higher quality for the same measurement, and it requires fewer scans with the same quality of imaging as well. Computational complexity of the proposed method and the method based on entropy can be expressed as O(M NL) and O(M N) , respectively
      通信作者: 李家强, lijiaqiang@sina.com
    • 基金项目: 国家自然科学基金(批准号: 61372066, 61302188)、江苏省自然科学基金(批准号: BK20131005)和江苏高校优势学科建设工程自主项目(PAPD)资助的课题.
      Corresponding author: Li Jia-Qiang, lijiaqiang@sina.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61372066, 61302188), the Natural Science Foundation of Jiangsu province, China (Grant No. BK20131005), and the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.
    [1]

    Zhao X L, Kang X, Chen L, Zhang Z B, Liu J L, Ouyang X P, Peng W B, He Y N 2014 Acta Phys. Sin. 63 098502(in Chinese) [赵小龙, 康雪, 陈亮, 张忠兵, 刘金良, 欧阳晓平, 彭文博, 贺永宁 2014 物理学报 63 098502]

    [2]

    Yuan J R, Huang H B, Deng X H, Liang X J, Zhou N G, Zhou L 2015 Chin. Phys. B 24 048501

    [3]

    Wu S Y, Ding Y P, Chen C, Xu Y Y, Fang G Y, Yin H J 2012 Journal of Electronics 34 1277 (in Chinese) [吴世有, 丁一鹏, 陈超, 徐艳云, 方广有, 阴和俊 2012 电子与信息学报 34 1277]

    [4]

    M Demollaian, K Sarabandi 2008 IEEE Trans. Geosci. Remote Sens. 46 1589

    [5]

    R Solimene, F Soldovieri, G Prisco, R. Pierri 2009 IEEE Trans. Geosci. Remote Sens. 47 1310

    [6]

    Wang F F, Zhang Y R 2012 Acta Phys. Sin. 61 084101(in Chinese) [王芳芳, 张业荣 2012 物理学报 61 084101]

    [7]

    Jia Y, Cui G L, Kong L J, Yang X B 2014 IEEE Geosci. Remote Sens. Lett. 11 970

    [8]

    Kevin Chetty, Graeme E Smith, Karl Woodbridge 2012 IEEE Trans. Geosci. Remote Sens. 50 1218

    [9]

    Colone F, Pastina D, Falcone P, Lombardo P 2014 IEEE Trans. Geosci. Remote Sens. 52 3486

    [10]

    Amin M G, Estephan H 2009 Proceedings of SPIE Orlando, Florida, USA, May, 2009 p6

    [11]

    Chang P C, Burkholder R J, Volakis J L 2010 IEEE Trans. Antennas and Propagation. 58 155

    [12]

    Admin M G, Ahmad F 2013 IEEE Trans. Aerosp. Electron. Syst. 49 1410

    [13]

    Zhao Z X, Kong L J, Ja Y, Li Z X 2014 Radar Science and Technology. 12 51 (in Chinese) [赵中兴, 孔令讲, 贾 勇, 李志希 2014 雷达科学与技术 12 51]

    [14]

    GaikwadA N, Singh D, Nigam M J 2011 IET. Radar, Sonar Navigation.5 416

    [15]

    Tivive F H C, Bouzerdoum A, Amin M G 2015 IEEE Trans. Geosci. Remote Sens. 53 2108

    [16]

    Y Yoon, M Amin 2009 IEEE Trans. Geosci. Remote Sens. 47 3192

    [17]

    D Potin, E Duflos, P Vanheeghe 2006 IEEE Trans. Geosci.Remote Sens. 44 2393

    [18]

    M Dehmollaian, M Thiel, K Sarabandi 2009 IEEE Trans. Geosci. Remote Sens. 47 1289

    [19]

    Raffaele Solimene, Antonio Cuccaro 2014 IEEE Geosci. Remote Sens. Lett. 11 1158

    [20]

    Fu Z Y 2001 Information Theory-Principles and Applications (Beijing: Electronics Industry Press) pp38-40 (in Chinese) [傅祖芸 2001 信息论基础理论与应用(北京: 电子工业出版社)第2240页]

    [21]

    Shore J E, Johnson R W 1980 IEEE Trans. Inform. Theory. 26 26

    [22]

    Fok Hing Chi Tivive, Abdesselam Bouzerdoum, van Ha Tang 2014 Sensor Array and Multichannel Signal Processing Workshop (SAM), 2014 IEEE 8th A Coruna, Spain, June 22-25, 2014 p48

  • [1]

    Zhao X L, Kang X, Chen L, Zhang Z B, Liu J L, Ouyang X P, Peng W B, He Y N 2014 Acta Phys. Sin. 63 098502(in Chinese) [赵小龙, 康雪, 陈亮, 张忠兵, 刘金良, 欧阳晓平, 彭文博, 贺永宁 2014 物理学报 63 098502]

    [2]

    Yuan J R, Huang H B, Deng X H, Liang X J, Zhou N G, Zhou L 2015 Chin. Phys. B 24 048501

    [3]

    Wu S Y, Ding Y P, Chen C, Xu Y Y, Fang G Y, Yin H J 2012 Journal of Electronics 34 1277 (in Chinese) [吴世有, 丁一鹏, 陈超, 徐艳云, 方广有, 阴和俊 2012 电子与信息学报 34 1277]

    [4]

    M Demollaian, K Sarabandi 2008 IEEE Trans. Geosci. Remote Sens. 46 1589

    [5]

    R Solimene, F Soldovieri, G Prisco, R. Pierri 2009 IEEE Trans. Geosci. Remote Sens. 47 1310

    [6]

    Wang F F, Zhang Y R 2012 Acta Phys. Sin. 61 084101(in Chinese) [王芳芳, 张业荣 2012 物理学报 61 084101]

    [7]

    Jia Y, Cui G L, Kong L J, Yang X B 2014 IEEE Geosci. Remote Sens. Lett. 11 970

    [8]

    Kevin Chetty, Graeme E Smith, Karl Woodbridge 2012 IEEE Trans. Geosci. Remote Sens. 50 1218

    [9]

    Colone F, Pastina D, Falcone P, Lombardo P 2014 IEEE Trans. Geosci. Remote Sens. 52 3486

    [10]

    Amin M G, Estephan H 2009 Proceedings of SPIE Orlando, Florida, USA, May, 2009 p6

    [11]

    Chang P C, Burkholder R J, Volakis J L 2010 IEEE Trans. Antennas and Propagation. 58 155

    [12]

    Admin M G, Ahmad F 2013 IEEE Trans. Aerosp. Electron. Syst. 49 1410

    [13]

    Zhao Z X, Kong L J, Ja Y, Li Z X 2014 Radar Science and Technology. 12 51 (in Chinese) [赵中兴, 孔令讲, 贾 勇, 李志希 2014 雷达科学与技术 12 51]

    [14]

    GaikwadA N, Singh D, Nigam M J 2011 IET. Radar, Sonar Navigation.5 416

    [15]

    Tivive F H C, Bouzerdoum A, Amin M G 2015 IEEE Trans. Geosci. Remote Sens. 53 2108

    [16]

    Y Yoon, M Amin 2009 IEEE Trans. Geosci. Remote Sens. 47 3192

    [17]

    D Potin, E Duflos, P Vanheeghe 2006 IEEE Trans. Geosci.Remote Sens. 44 2393

    [18]

    M Dehmollaian, M Thiel, K Sarabandi 2009 IEEE Trans. Geosci. Remote Sens. 47 1289

    [19]

    Raffaele Solimene, Antonio Cuccaro 2014 IEEE Geosci. Remote Sens. Lett. 11 1158

    [20]

    Fu Z Y 2001 Information Theory-Principles and Applications (Beijing: Electronics Industry Press) pp38-40 (in Chinese) [傅祖芸 2001 信息论基础理论与应用(北京: 电子工业出版社)第2240页]

    [21]

    Shore J E, Johnson R W 1980 IEEE Trans. Inform. Theory. 26 26

    [22]

    Fok Hing Chi Tivive, Abdesselam Bouzerdoum, van Ha Tang 2014 Sensor Array and Multichannel Signal Processing Workshop (SAM), 2014 IEEE 8th A Coruna, Spain, June 22-25, 2014 p48

  • [1] 樊超阳, 李朝锋, 杨苏辉, 刘欣宇, 廖英琦. CEEMDAN联合小波阈值算法在水下激光雷达中抑制散射杂波的应用. 物理学报, 2023, 72(22): 224203. doi: 10.7498/aps.72.20231035
    [2] 陈松懋, 苏秀琴, 郝伟, 张振扬, 汪书潮, 朱文华, 王杰. 基于光子计数激光雷达的自适应门控抑噪及三维重建算法. 物理学报, 2022, 71(10): 104202. doi: 10.7498/aps.71.20211697
    [3] 李静和, 何展翔, 杨俊, 孟淑君, 李文杰, 廖小倩. 曲波域统计量自适应阈值探地雷达数据去噪技术. 物理学报, 2019, 68(9): 090501. doi: 10.7498/aps.68.20182061
    [4] 王珊, 王辅忠. 基于自适应随机共振理论的太赫兹雷达信号检测方法. 物理学报, 2018, 67(16): 160502. doi: 10.7498/aps.67.20172367
    [5] 王珽, 赵拥军, 赖涛, 王建涛. 机载极化阵列多输入多输出雷达极化空时自适应处理性能分析. 物理学报, 2017, 66(4): 048401. doi: 10.7498/aps.66.048401
    [6] 杨慧, 唐明, 蔡世民, 周涛. 异质自适应网络中的核心-边缘结构及其对疾病传播的抑制作用. 物理学报, 2016, 65(5): 058901. doi: 10.7498/aps.65.058901
    [7] 王莹, 侯凤贞, 戴加飞, 刘新峰, 李锦, 王俊. 基于自适应模板法的脑电信号转移熵分析. 物理学报, 2015, 64(8): 088701. doi: 10.7498/aps.64.088701
    [8] 张金鹏, 张玉石, 吴振森, 张玉生, 胡荣旭. 基于雷达海杂波的区域性非均匀蒸发波导反演方法. 物理学报, 2015, 64(12): 124101. doi: 10.7498/aps.64.124101
    [9] 朱磊, 韩天琪, 水鹏朗, 卫建华, 顾梅花. 一种抑制合成孔径雷达图像相干斑的各向异性扩散滤波方法. 物理学报, 2014, 63(17): 179502. doi: 10.7498/aps.63.179502
    [10] 朱航, 张淑宁, 赵惠昌. 基于改进自适应分解法的单通道雷达引信混合信号分离. 物理学报, 2014, 63(5): 058401. doi: 10.7498/aps.63.058401
    [11] 曾果, 李兴源, 刘天琪, 赵睿. 同时抑制低频振荡和次同步振荡的多通道广域自适应阻尼控制. 物理学报, 2014, 63(22): 228801. doi: 10.7498/aps.63.228801
    [12] 李金才, 彭宇行, 朱敏, 陈鹏. 基于空间自适应非凸正则项全变差相干斑噪声抑制. 物理学报, 2014, 63(18): 189501. doi: 10.7498/aps.63.189501
    [13] 陈卫东, 刘要龙, 朱奇光, 陈颖. 基于改进雁群PSO算法的模糊自适应扩展卡尔曼滤波的SLAM算法. 物理学报, 2013, 62(17): 170506. doi: 10.7498/aps.62.170506
    [14] 赵小峰, 黄思训. 大气波导条件下雷达海杂波功率仿真. 物理学报, 2013, 62(9): 099204. doi: 10.7498/aps.62.099204
    [15] 李金才, 黄斌, 彭宇行. 一种改进的用于合成孔径雷达图像相干斑抑制的双边滤波参数配置方法. 物理学报, 2012, 61(18): 189501. doi: 10.7498/aps.61.189501
    [16] 张伟超, 杨立军, 吕小青. 基于近似熵测度的铝合金P-MIG焊亚射流过渡自适应控制研究. 物理学报, 2011, 60(2): 020601. doi: 10.7498/aps.60.020601
    [17] 孙增国, 韩崇昭. 基于区域分类、自适应滑动窗和结构检测的合成孔径雷达图像联合降斑算法. 物理学报, 2010, 59(5): 3210-3220. doi: 10.7498/aps.59.3210
    [18] 李 强, 王太勇, 冷永刚, 何改云, 何慧龙. 基于近似熵测度的自适应随机共振研究. 物理学报, 2007, 56(12): 6803-6808. doi: 10.7498/aps.56.6803
    [19] 白 云, 刘新元, 何定武, 汝鸿羽, 齐 亮, 季敏标, 赵 巍, 谢飞翔, 聂瑞娟, 马 平, 戴远东, 王福仁. 在SQUID心磁测量中基于奇异值分解和自适应滤波的噪声消除法. 物理学报, 2006, 55(5): 2651-2656. doi: 10.7498/aps.55.2651
    [20] 童培庆. 混饨的自适应控制. 物理学报, 1995, 44(2): 169-176. doi: 10.7498/aps.44.169
计量
  • 文章访问数:  5656
  • PDF下载量:  153
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-01-12
  • 修回日期:  2015-05-12
  • 刊出日期:  2015-10-05

/

返回文章
返回